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Abstract—This paper considers the problem of obtaining an
accurate spectral representation of speech formant structure when
the voicing source exhibits a high fundamental frequency. Our
work is inspired by auditory perception and physiological studies
implicating the use of pitch dynamics in speech by humans. We
develop and assess signal processing schemes aimed at exploiting
temporal change of pitch to address the high-pitch formant
frequency estimation problem. Specifically, we propose a 2-D anal-
ysis framework using 2-D transformations of the time–frequency
space. In one approach, we project changing spectral harmonics
over time to a 1-D function of frequency. In a second approach, we
draw upon previous work of Quatieri and Ezzat et al. [1], [2], with
similarities to the auditory modeling efforts of Chi et al. [3], where
localized 2-D Fourier transforms of the time–frequency space
provide improved source-filter separation when pitch is changing.
Our methods show quantitative improvements for synthesized
vowels with stationary formant structure in comparison to tradi-
tional and homomorphic linear prediction. We also demonstrate
the feasibility of applying our methods on stationary vowel regions
of natural speech spoken by high-pitch females of the TIMIT
corpus. Finally, we show improvements afforded by the proposed
analysis framework in formant tracking on examples of stationary
and time-varying formant structure.

Index Terms—Formant estimation, high-pitch effects, linear pre-
diction, spectrotemporal analysis, temporal change of pitch.

I. INTRODUCTION

E
STIMATING the formant frequencies of a speaker during

vowel utterances is a fundamental problem of speech anal-

ysis. Current state-of-the-art formant estimation systems typi-

cally perform short-time analysis in conjunction with a tracking

mechanism (Fig. 1). For example, in [4], short-time analysis is

used to generate linear predictive cepstral coefficients (LPCC)

which are used as observations in a Kalman filtering frame-

work. This paper focuses on the analysis component (shaded,
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Fig. 1. Schematic illustrating typical formant estimation system with analysis
stage (shaded) and tracking mechanism. Estimates can also be obtained directly

from the output of the analysis component (*) without the tracking mechanism.

Fig. 1) of such systems in relation to formant estimation of

high-pitch speakers (e.g., with pitch values ranging from 150

to 450 Hz). Under such conditions, short-time traditional and

homomorphic linear prediction analysis (by which LPCC are

obtained) are known to provide inadequate representations of

the formant structure [5], [6]. This paper addresses this limita-

tion in analysis by exploiting temporal changes in pitch.

The current work is inspired by psychophysical and physi-

ological studies of the auditory system implicating its use of

pitch dynamics in processing speech. For instance, McAdams

showed in a series of concurrent vowel segregation tasks that

subjects reported an increased “prominence” percept for vowels

whose pitch was modulated relative to those that were not mod-

ulated [7]. In another study by Diehl et al. [8], although limited

to a two-category vowel identification task, results indicated that

a linearly changing pitch can improve human vowel identifica-

tion accuracy. In both studies, the observed effects were greatest

when the synthetic source was chosen to have a high pitch (e.g.,

250–400 Hz). Physiological models of the auditory system

(e.g., [3]) have also proposed that high-level cortical processing

analyzes an auditory-based time–frequency distribution in both

the temporal and spectral dimensions, thereby exploiting tem-

poral changes in speech such as pitch dynamics.

The auditory model proposed by Chi et al. [3] may be

viewed as one realization of a generalized two-dimensional

(2-D) processing framework. In our work, we develop and

assess realizations of this framework for improving high-pitch

formant estimation. The foundation for our framework was first

introduced in [9], [10]. In one approach, we project changing

pitch harmonics to a single function of frequency to improve

the spectral sampling of a stationary formant envelope under

high-pitch conditions. This initial step is similar to the multi-

frame analysis method proposed by Shiga and King [11], in

which iterative techniques were subsequently used to derive

a cepstrum best fit to the collection of harmonic peaks in

a least-squared-error sense. Alternatively, in this paper, we

perform a simple interpolation across the harmonic peaks to

generate a magnitude spectrum to be used with the autocor-

relation method of linear prediction. In the second approach,

we compute two-dimensional Fourier transforms of spec-

trotemporally local regions of the short-time Fourier transform

magnitude as proposed by Quatieri [1] and extended by Ezzat

1558-7916/$26.00 © 2009 IEEE
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et al. [2]. Ezzat et al. have made phenomenological observa-

tions regarding the source-filter separability of this transformed

space. In our paper, we argue for these observations analytically

and exploit this characteristic to improve high-pitch formant

estimation.

We emphasize that this work focuses on improving the

analysis framework used in formant estimation for high-pitch

vowels rather than performing formant tracking (e.g., in

conjunction with Kalman filtering [4]). We therefore obtain

formant estimates directly from the output of the analysis

framework (*, Fig. 1) through linear prediction analysis rather

than through a tracking mechanism. Furthermore, our evalua-

tion primarily focuses on the canonical problem of estimating

formant frequencies under the assumption of a stationary vocal

tract (i.e., monophthong vowels) but with the added constraint

that pitch is changing throughout the duration of the stationary

vowel. These conditions will be shown to be often present on

natural vowels extracted from the standard TIMIT corpus [12].

The constraint of changing pitch will also be argued to be a

modest one with regards to the degree of pitch change required

to obtain improvements in formant estimates. Finally, we will

demonstrate that the proposed 2-D framework can provide

improvements in formant tracking for both the stationary and

time-varying vocal tract conditions. As will be subsequently

discussed, these improvements can be obtained whenever the

pitch dynamics and formant trajectories of a vowel are moving

in distinct directions. This more generalized set of conditions

for improving formant estimates may be explored in future

work towards a full formant-estimation system that incorpo-

rates a tracking mechanism.

This paper is organized as follows. Section II briefly re-

views the problem of high-pitch formant estimation using a

frequency-domain view often referred to as spectral under-

sampling. We propose a 2-D analysis framework in contrast to

traditional short-time analysis for addressing this issue under

certain conditions. Section III describes specific formant esti-

mation methods motivated from our observations in Section II.

Section IV presents a comparative evaluation of formant fre-

quency estimates from these methods using synthetic vowels.

In Section V, to demonstrate the feasibility of our analysis

methods on natural speech, we present formant estimation

results on monophthong vowels spoken by high-pitch females

from the TIMIT corpus. In Section VI, we demonstrate the

implications of our work for formant tracking of monophthong

vowels, comparing standard LPCC analysis with the proposed

2-D framework in several tracking tasks. Section VII extends

these efforts by demonstrating the feasibility of applying the

proposed 2-D framework to formant tracking of a time-varying

vocal tract configuration. Section VIII summarizes our conclu-

sions and describes future directions.

II. TWO-DIMENSIONAL PROCESSING FRAMEWORK

A long-standing problem in formant estimation is that of

obtaining accurate estimates for high-pitch speakers. Existing

analysis methods are known to provide poor representations

of the formant structure for a high-pitch source signal. For

instance, traditional linear prediction suffers from aliased au-

tocorrelation coefficients while cepstral analysis on high-pitch

Fig. 2. Schematic of short-time Fourier transform of a stationary formant en-
velope (shaded) under conditions of (a) fixed pitch (dashed) and (b) changing
pitch (solid). The black arrows indicate projection of spectral samples.

speech results in reduced source-filter separability in the que-

frency domain [5]. In this paper, we adopt an equivalent view

of this difficulty in analysis referred to as spectral undersam-

pling. Specifically, from the traditional source-filter production

model for vowels, a periodic source signal can be viewed as

harmonically sampling an underlying formant envelope in the

frequency domain. As the pitch of the source signal increases,

this harmonic sampling becomes more sparse, thereby leading

to a poorer spectral representation of the underlying formant

envelope in the resulting spectrum [9]. Herein we discuss

two realizations of a (2-D) analysis framework to address

the spectral undersampling problem under certain conditions.

Specifically, for a stationary formant envelope and changing

pitch, we argue that spectral sampling can be improved.

Similarly, in a second realization, we argue for source-filter

separability in a transformed 2-D space.

A. Harmonic Projection and Interpolation

Fig. 2 shows a schematic of a short-time Fourier transform

(STFT) for a fixed vocal tract (shaded regions) under 1) fixed

high-pitch (225 Hz) and 2) changing high-pitch conditions (200

to 250 Hz). As previously noted, a fixed high pitch results in

spectral undersampling; we highlight these spectral samples in

Fig. 3(b).1 In contrast, consider now the STFT of the same vowel

but with changing pitch from 200 Hz to 250 Hz; under a multi-

plicative source-filter model, the pitch harmonics sweep through

the spectral envelope over time in a fan-like structure. To un-

derstand why this fan structure arises, consider a pitch with

the th and th harmonics as and , re-

spectively. For a pitch change of , the th and th

harmonics of the new pitch become

and , respectively. Whereas the th har-

monic is shifted by , the th harmonic is shifted

by . Consequently, for a given , higher-order

harmonics are shifted more on an absolute frequency scale than

lower-order harmonics. A modest change in pitch shift can there-

fore invoke a substantial shift in increasing harmonic frequen-

cies. In the STFT, this results in fanning of the harmonic line

structure at higher frequency regions [Fig. 2(b)].

Invoking now the spectral sampling from the pitch harmonics,

multiple short-time spectral slices computed across time can

therefore be viewed as a collection of nonuniform samples of

the stationary spectral envelope for the condition of changing

pitch. These samples can be projected [arrows, Fig. 2(b)] to

the vertical frequency axis to provide improved sampling of

1Unless otherwise indicated, spectrograms plotted in this paper are on a linear
scale.
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Fig. 3. (a) Pitch-adaptive spectrogram (Section II-B) of synthetic vowel with
fixed pitch of 225 Hz. (b) Corresponding spectral samples of (a). (c) Pitch-adap-
tive spectrogram for synthetic vowel with moving pitch from 200 to 250 Hz;
observe the fanning of the harmonic line structure as expected from Fig. 2(b).
(d) Spectral samples from projection of changing pitch harmonics across time.

the underlying envelope. Fig. 3(c) shows an example of this in-

creased sampling due to changing pitch, contrasting the uniform

sampling in Fig. 3(b). A spectrum derived from this increased

sampling could provide an improved representation of the un-

derlying formant envelope especially under conditions of high

pitch relative to that of a single spectral slice. Observe also that

low-frequency regions (e.g., 500 Hz) exhibit narrower sam-

pling than the broader sampling in high-frequency regions (e.g.,

2000 Hz) due to the fanning of harmonic lines in higher-fre-

quency regions (i.e., higher order harmonics).

For the subsequent discussions, our results involving har-

monic projection are largely empirical. Note, however, that if

additional samples from projection were to provide an increased

density of uniform spectral samples, aliasing in the signal’s

corresponding autocorrelation function can be reduced and

linear prediction all-pole modeling can be improved [5]. More

generally, reconstruction methods from nonuniform samples

exist in the literature (e.g., [13]), but are beyond the scope of

this paper.

B. Grating Compression Transform

As another realization of the 2-D framework, we use an anal-

ysis scheme proposed by Quatieri in [1] and extended by Ezzat

et al. in [2]. Specifically, the Grating Compression Transform

(GCT) is defined as the 2-D Fourier transform computed over a

spectrotemporally localized region of the STFT magnitude. The

resulting 2-D space has been suggested to exhibit source-filter

separability by Ezzat et al. through phenomenological analyses

[2]. Herein we motivate analytically the GCT and propose a

model for source-filter separability to support those observa-

tions.

1-D Modeling of Source: To motivate the GCT, we first con-

sider a periodic impulse train in discrete time

(1)

Fig. 4. (a) Windowing a periodic impulse train with pulse alignment. (b) Mag-
nitude DFT of (a). (c) Windowing a periodic impulse train without alignment.
(d) Magnitude DFT of (c).

with as shown in Fig. 4(a). Windowing with a

symmetric window results in the signal

shown in Fig. 4(a). is chosen to be a Blackman window

with duration four times the periodicity of such that

. This short-time pitch-adaptive scheme en-

sures that the window captures three impulses when the window

center is aligned with an impulse and at most four impulses

when it is not aligned since the window has zeros at its end-

points. Fig. 4(a) shows the condition when the center of

is aligned with an impulse such that the windowed signal

contains three impulses. By symmetry of the window, and de-

noting then becomes

(2)

Fig. 4(b) shows the magnitude of the -point dis-

crete Fourier transform (DFT) of (denoted as )

(3)

such that

(4)

when . Our analysis shows that under certain con-

ditions, the short-time analysis scheme described results in

a Fourier transform magnitude corresponding to a sinusoid

resting on a DC pedestal. For our assumed values

and , the period of (denoted as ) is

.

Consider now the more general situation in which is

positioned such that it does not align with an impulse. In this

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:54 from IEEE Xplore.  Restrictions apply. 
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case, will correspond to four impulses with varying am-

plitudes as shown in Fig. 4(c), i.e.,

(5)

where corresponds to an offset based on the posi-

tion of the window and are the distinct amplitudes. Because

the spacing between impulses in is , the corresponding

exhibits periodicity with spacing . In the case

shown in Fig. 4(c), observe that such that

can be written as

(6)

The present derivation is similar to that of the aligned

window but with the addition of two complex exponential

terms. Fig. 4(d) shows for this case; observe that

despite the presence of these added terms, is similar

in shape to that of the ideal case with periodicity as

expected.

To quantitatively assess the effect of the exponential terms

in (6), Fig. 5 compares the Fourier transform of the short-time

spectra for both the aligned and unaligned cases. We

denote this transformed result as

(7)

In both cases, exhibits peaks at

, consistent with being

derived from a periodic sequence. For the aligned case, a single

peak [solid arrow, Fig. 5(a)] at can be observed

in addition to the DC term in , corresponding to a

sinusoid resting on a DC pedestal. The unaligned case exhibits

additional peaks at multiples of as can be expected

for a periodic sequence [e.g., dotted arrows, Fig. 5(b)]. Fig. 6(a)

and (b) plot gives locations and amplitudes of the two largest

non-DC peaks of for the unaligned case as a function

of the window offset . Observe that a dominant peak is

consistently located at while the secondary peak is

located at .

Our analysis demonstrates that the maximum non-DC peak of

is consistently located at a value corresponding to the

pitch period of the signal, and that its magnitude tends to domi-

nate , independent of the window alignment. In our sub-

sequent discussion, we approximate of the unaligned

case as a sinusoid resting on a DC pedestal as in the aligned

case.

One-Dimensional Modeling of Vocal Tract: The previous

discussion has shown that for an appropriate choice of window,

Fig. 5. (a) �� ���� for aligned window. (b) �� ���� for unaligned window;
solid arrows denote � � ����� while the dotted arrows denote multiples of
� � �����.

Fig. 6. (a) Location of two maximum non-DC peaks in �� ���� for unaligned
case. (b) Maximum values of two maximum non-DC peaks in �� ���� for un-
aligned case.

the Fourier transform of a windowed impulse train resembles a

sinusoid resting on a DC pedestal. In the traditional source-filter

production model, this impulse train is convolved with both

glottal source and formant structure components to generate

the speech signal. In accordance with this model, we view the

sinusoid on a DC pedestal as corresponding to the periodic

source component; in addition, for a localized frequency re-

gion, we view the source component as being modulated by

a slowly-varying function corresponding to the local glottal

source and formant structure spectral components. Let us

denote as the short-time magnitude spectrum com-

puted using the previously described pitch-adaptive Blackman

window. Denoting as the envelope and as a window

along the frequency dimension, we model a local portion of the

short-time magnitude spectrum as

(8)
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where is inversely proportional to the pitch. Denoting the

Fourier transform of as , we have that

(9)

where and are the Fourier transforms of and

, respectively, and is their convolution in the do-

main.

In Fig. 7, we analyze a portion of the vowel /ae/ spoken by

a female talker from the TIMIT corpus with pitch Hz;

the sampling rate of the waveform is 8 kHz such that .

Fig. 7(a) shows the short-time magnitude spectrum com-

puted using a pitch-adaptive Blackman window and

. Fig. 7(b) shows a localized frequency region of

to be analyzed. In absolute frequency, this region has size of

700 Hz to capture approximately a single formant peak region

as shown in Fig. 7(a) (rectangle). By low-pass filtering the cor-

responding , we may recover and divide out the envelope

(Fig. 7(b), red solid) from . The filtering operation

is done using a Hamming window with length corresponding to

a low-pass2 cutoff of

. The result of dividing out from is shown

in Fig. 7(b) (magenta dashed). Observe that this result approx-

imates the previously described sinusoid on a DC pedestal. In

addition, Fig. 7(d) shows the Fourier transform magnitude com-

puted for after windowing with a Hamming

window, which we denote as . Observe that a domi-

nant peak at can be observed, consistent with the

sinewave model. As previously discussed, may in gen-

eral contain additional lower-amplitude peaks at multiples of

due to imperfect alignment of the short-time anal-

ysis window. Nonetheless, as will be subsequently discussed in

Section III-B, these second peaks will have negligible effect on

the GCT analysis method used in formant estimation.

Two-Dimensional Modeling of Source and Vocal Tract: The

previous discussions invoke a 1-D modulation view of the short-

time magnitude spectrum along the frequency dimension. This

framework can be extended to include the time dimension of the

STFT magnitude. Consider now a localized spectrotemporal re-

gion of the STFT magnitude obtained using a 2-D window [e.g.,

Fig. 8(a)]. Specifically, denote as the STFT magnitude,

as the 2-D window, and the localized region centered

at and as

(10)

While a changing invokes a fanned harmonic line structure

in , a localized region exhibits a harmonic line structure

that is angled and approximately parallel as shown in Fig. 8(b)

(solid lines). Likewise, a stationary pitch will invoke a set of hor-

izontally-oriented parallel harmonic lines (dashed lines). Anal-

ogous to the 1-D case, we model the localized region as the

product between a 2-D sinusoid resting on a DC pedestal with

2Although there are a number of methods for computing the spectral enve-
lope, we do so here by low-pass filtering.

Fig. 7. (a) Short-time spectrum computed using pitch-adaptive analysis
scheme and localized region to be analyzed (rectangle). (b) Localized region
������ with recovered envelope from filtering (����, solid) and result of
dividing �� ���� by ���� (dashed). (c) Filtering in the ���� domain; note
that only the real part of���� is shown (solid) along with the simple Hamming
window filter (dashed). (d) Magnitude of � ���; a dominant peak is located
at � � ������ (arrow).

a slowly-varying envelope (denoted as ) [9] such that

is

(11)

where is the spatial frequency of the 2-D sinusoid, and

is defined as

(12)

corresponding to a term representing its spatial orientation. In

relation to the traditional source-filter production model, we in-

terpret as a 2-D “source” component corre-

sponding to harmonic line structure while corresponds

to a localized (in time and frequency) portion of the underlying

vocal-tract formant excitation envelope. Expanding (11), we ob-

tain

(13)

such that the localized region is the sum of a slowly-varying

component corresponding to the localized portion of the for-

mant envelope with a modulated version of itself.

Applying the 2-D Fourier transform to results in the

GCT. Specifically, let and denote the time and frequency

widths of the 2-D window, respectively; likewise, let and

denote the frequency variables corresponding to and , re-

spectively. The GCT of is defined as

(14)

Substituting (13) into (14), we obtain

(15)
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Fig. 8. (a) STFT and localized region (rectangle) used for GCT computation;
stationary formant (shaded), fixed-pitch (dashed), and changing pitch (solid).
(b) Localized region of STFT zoomed-in showing parallel harmonic line struc-
ture. (c) Grating Compression Transform of the modeled localized region of
(11); observe the localized formant envelope is centered at the origin (shaded
ellipse) while modulated versions of it are located� away from the origin at an
angle � off the � -axis depending on whether pitch is changing (solid ellipses)
or fixed (dashed ellipses).

Fig. 8 shows a schematic of the mapping from

to . We see that maps to a func-

tion centered at the origin and oriented along the

-axis (represented schematically by the shaded ellipses)

since the formant envelope is assumed to be stationary. The

orientation of components in can be seen through

basic properties of 2-D Fourier Transforms [14]. In con-

trast, is transformed to a pair

of smeared impulses located in opposed quadrants of the

-plane due to the conjugate symmetric property of the 2-D

Fourier transform. The radial distance between each smeared

impulse and the GCT origin corresponds to the spatial fre-

quency of the 2-D sinusoid . When is fixed, the smeared

impulses lie along the -axis (dashed ellipses) (i.e., ).

For changing , the rotational nature in transforming rotated

harmonic lines maps them off the -axis at a nonzero angle

(solid ellipses). Our formulation therefore illustrates ana-

lytically the GCT’s ability to invoke source-filter separability

observed phenomenologically in [2]. Specifically, for fixed ,

source-filter separability is invoked along the -axis when

and the -bandwidth of are such that there is minimal

interaction between and . For changing

pitch, separability may be improved since the modulated ver-

sion of is rotated off the -axis, thereby reducing its

interaction with the unmodulated oriented along the

-axis.

Observe that the separability invoked by the GCT is similar

to that of the cepstrum [5]. Specifically, both analysis methods

transform a multiplicative source-filter spectral model to an al-

ternate domain where the source and filter are additive com-

ponents; however, the GCT does so without invoking a homo-

morphic framework. In contrast to the cepstrum, the GCT can

provide additional separability when is changing even under

high-pitch conditions. Finally, observe that for changing , har-

monic lines in the STFT tend to fan out with greatest slope in

high-frequency regions. The increased fanning corresponds to

larger values of when mapped in the GCT. We therefore ex-

pect increased separability for these regions relative to lower

frequency regions. This is analogous to the broader harmonic

sampling discussed in Section II-A.

Our observations motivate a simple method for improving

spectral representations of the formant structure in high-pitch

speech to address spectral undersampling. Specifically, filtering

in the GCT domain followed by an inverse 2-D Fourier trans-

form can be used to generate a spectrum distinct from that ob-

tained from a single spectral slice.

III. FORMANT ESTIMATION METHODOLOGY

This section describes the methodology used in evaluating

our 2-D processing framework for formant estimation. As

discussed in Section I, we aim to directly assess the value

of spectral representations obtained from different analysis

methods and therefore obtain formant frequency estimates

directly from the results of analysis (Fig. 1, *) rather than with

a tracking mechanism. Herein we develop specific methods

for obtaining spectral representations motivated from our

observations presented in Section II. The resulting magnitude

spectra are then used in linear prediction to estimate formant

frequencies. In the development of these estimation methods,

and later in Section IV, we use a series of synthesized vowels

with varying amounts of linear pitch shifts. Finally two standard

analysis methods, traditional and homomorphic linear predic-

tion, are described, to be used as baselines in our comparative

study in Section IV.

A. Vowel Synthesis

In this portion of our development, we use for a source signal

in synthesis periodic impulse trains with varying degrees of

pitch dynamics, thereby excluding the glottal pulse shape and its

contribution to the speech spectrum. This is done to assess the

benefits of exploiting pitch dynamics in high-pitch formant esti-

mation with adequate compensation for this component. In our

subsequent discussion of processing natural speech (Section V),

we illustrate the feasibility of applying these methods to real and

resynthesized speech using a simple compensation method.

Periodic impulse-train source signals with starting

ranging from 80–200 Hz (males), 150–350 Hz (females), and

200–450 Hz (children) were synthesized with linear pitch in-

creases ranging from 10 to 50 Hz. and varied

in 5-Hz steps. Starting and ending pitch values were linearly

interpolated across the duration of each synthesized utterance.

To generate the impulse train with time-varying pitch, impulses

were spaced according to this interpolation across the desired

duration. Initially, we synthesized the source at 8 kHz; however,

with this sampling rate, sharp transitions were observed in the

spectrogram at pitch transition points, indicative of insufficient

temporal resolution. To generate a smoother pitch track, we used

instead a 96-kHz sampling rate for generating the impulse train

and downsampled the result to 8 kHz, thereby minimizing these
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TABLE I
AVERAGE VOWEL BANDWIDTHS USED IN SYNTHESIS (Hz)

TABLE II
AVERAGE VOWEL DURATIONS USED IN SYNTHESIS (ms)

transitions. Due to the time-varying nature of the desired source

signal and downsampling, the resulting source signal is not a

periodic impulse train; however, the source signal was not ob-

served to invoke significant spectral shaping to the vowel.

Source signals were filtered with sixth-order all-pole models

[15] corresponding to the vowels /ah/ , /iy/ (2), /ey/ (3),

/ae/ (4), /oh/ (5), and /oo/ (6). Formant frequencies (F1, F2, F3)

were set to average measurements reported by Hillenbrand et al.

for males, females and children [16]. Formant bandwidths (B1,

B2, B3) for all three genders were set to the average vowel-spe-

cific measurements made by Dunn listed in Table I [17]. Simi-

larly, synthesized-utterance durations for all three genders were

set to average measurements from the Switchboard corpus by

Greenberg and Hitchcock and are listed in Table II [18].

B. Method of Harmonic Projection and Interpolation

To generate a magnitude spectrum using the projection and

interpolation of harmonics (Fig. 2), we first used peak picking

to obtain the harmonic peaks. Initially, we performed short-time

analysis using a fixed 20-ms Hamming window. Fig. 9 (top)

illustrates short-time spectra for the female vowel /ae/ across

the minimum, average, and maximum pitch values used in

synthesis. Observe that distinct mainlobes of the analysis

window are located at harmonic frequencies of the pitch values

for the 290- and 500-Hz pitch conditions; this is not the case

for the 80-Hz pitch value due to the close proximity of the

corresponding harmonics in the frequency domain. To address

this, we used instead the pitch-adaptive short-time analysis

scheme described in Section II such that larger pitch periods

were analyzed with longer windows. Fig. 9 (bottom) shows

spectra derived in this manner. Specifically, the Blackman

window of length four times the pitch period was observed to

provide reasonable harmonic peaks across all pitch conditions.

The projection and interpolation method was therefore imple-

mented according to the following steps:

1) an STFT was computed with a pitch-adaptive Blackman

window with length four times the pitch period at a

1-ms frame interval ;

2) spectral slices of were scaled by

;

3) peak-picking of the harmonics was performed across all

normalized spectral slices of using the SEEVOC

algorithm [19];

4) all harmonic peaks were collapsed into a single function

and interpolated across frequency.

Fig. 9. Short-time analysis based on a fixed 20-ms Hamming window (top)
versus pitch-adaptive Blackman window (bottom); observe that harmonic reso-
lution is preserved in the latter method.

The value of used for the SEEVOC algorithm in Step 3 was

obtained from the pitch contour used in synthesis. Due to the

pitch-adaptive window, the corresponding short-time spectrum

is scaled differently across frames since is dependent on

the window length. The harmonic peaks corresponding to por-

tions of the formant envelope are therefore scaled by

to invoke the same absolute magnitudes across spectral slices,

independent of window length (Step 2). In Fig. 10(a), we show

the pitch-adaptive spectrogram while Fig. 10(b) illustrates peak-

picking using the SEEVOC algorithm. Interpolation across the

harmonic peaks using a shape-preserving piecewise cubic in-

terpolator [20] was performed to obtain a smooth spectrum.

Fig. 10(c) shows the collection of harmonic samples obtained

across the entire vowel and the interpolated magnitude spec-

trum. We denote this method as . Finally, to remove con-

founds of the interpolation method itself, interpolation was also

performed on harmonic spectral samples from a single spectral

slice of extracted from the middle of the utterance .

The resulting single-slice interpolation is shown in Fig. 10(b).

In addition to , we also implemented a simpler method of

projection and interpolation by computing the average (across

time) of all spectral slices of which we denote as .

Fig. 10(d) shows the result of averaging all magnitude spectral

slices in (solid) along with two sample spectral slices

(dashed) used in computing this average. This method can also

be thought of in the context of the GCT; specifically, it can be

easily shown that this method is equivalent to extracting the

-axis of the GCT computed for localized regions of

followed by an inverse Fourier transform.

C. Filtering the Grating Compression Transform

For method 6, we implemented filtering of the GCT based

on the model of Section II-B. As previously discussed in

Section II, the pitch-adaptive short-time analysis used for

through provides a reasonable correspondence to the model

invoked by the GCT. Specifically, localized frequency regions

approximately resemble a sinusoid on a DC pedestal modulated

by a slowly-varying function (as in Fig. 7) across pitch con-

ditions in Fig. 9. For method 6, localized regions (denoted
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Fig. 10. Harmonic projection and interpolation applied to vowel with time-
varying pitch. (a) Pitch-adaptive short-time spectrogram ����� �. (b) Single-
slice (spectral slice, dashed) peak-picking using SEEVOC algorithm (peaks,
vertical stem) at 296 Hz and single-slice interpolation (��, solid). (c) Projec-
tion of collected harmonic peaks across ���� (peaks, vertical stem) and in-
terpolated spectral envelope (��, solid). (d) Representative short-time spectra
(dashed) used in the computing the resulting average spectrum (��, solid).

as ) were extracted from with a separable 2-D

window . In time, we chose a rectangular window

spanning the full duration of the vowel; in frequency, we used

a 700-Hz Hamming window. Since the filtering operation is

adaptive across frequency regions, a 350-Hz overlap across

regions was invoked to reduce the effects of abrupt changes in

the filter.

Two distinct GCTs were computed for each localized region:

is used to perform peak-picking in estimating the local

spatial frequency of the sinusoid due to harmonic structure,

while is used to generate a spectral representation by

filtering in the GCT domain. For , a 2-D gradient operator

of the matrix form [14]

(16)

was applied to the entire STFT followed by removal of the DC

component, prior to windowing and computing the 2-D Fourier

transform. These operations were observed to reduce the mag-

nitude of components near the GCT origin such that could be

estimated using a simple peak picker [1], [21]. For , the

DFT was computed directly from the windowed region without

application of the 2-D gradient operation and DC removal

(17)

is filtered with an adaptive 2-D elliptic filter and recon-

structed to generate a time–frequency distribution as illustrated

through the example in Fig. 11. The 2-D filter was designed by

taking the product of two linear-phase low-pass filters in fre-

quency. In time, the pass and stop band edges were fixed to

and , respectively. corresponds to the esti-

mate derived from the lowest frequency region of with

Fig. 11. Filtering in the GCT. (a) STFT and localized region (rectangle) used
for computing the GCT; arrow denotes 350 Hz. (b) Zoomed-in localized region
from (a). (c) �	
� � showing source-filter separation. For display purposes

only, the DC component has been removed; note that this gives a null at the
GCT origin that is not reflected in the schematic of Fig. 5. (d) 2-D filter applied
to	
� . (e) Filtered version of	
� (magnitude only); observe the absence
of harmonic components off the �-axis. (f) Reconstructed time–frequency re-
construction; line denotes spectral slice extracted ����.

center frequency of 350 Hz (arrow, Fig. 11(a)). In frequency,

we used pass and stop band edges of and , respec-

tively, with corresponding to the local estimate for each re-

gion. The filter cutoffs were motivated from empirical observa-

tions showing that tended to increase with frequency region.

This effect is caused by the increased fanning of the harmonic

line structure towards high-frequency regions; because the har-

monic lines are no longer strictly parallel, was observed to

be slightly overestimated in these regions. Using the described

filter cutoffs, we therefore obtain an adaptive low-pass elliptical

filter that becomes more permissive along the -direction for re-

gions with increasing frequency, thereby allowing an improved

recovery of in each localized region. This is consistent

with the improved source-filter separation in high-frequency re-

gions previously discussed in Section II-B.

As shown in Fig. 11(e), filtering of removes

the modulated versions of the localized formant envelope

, thereby leaving only the un-

modulated version . Note that while we show only the

magnitudes of the GCT in Fig. 11, filtering was done on the

complex . To generate the magnitude spectrum for com-

parison with other methods, a reconstructed time–frequency

distribution (Fig. 11(f)) was computed using overlap-add, and

a spectral slice was extracted corresponding in time to the

middle of the utterance. Finally, recall from Section II-B. that

the approximate sinusoidal model can exhibit harmonic peaks

in the GCT domain at multiples of the local spatial frequency.

Nonetheless, since the current method extracts formant infor-

mation near the GCT origin using the low-pass filter, these

peaks will have negligible effect on the resulting reconstruction.

D. Baseline Methods

Two baseline methods were implemented for comparison

with those aiming to exploit temporal change of pitch. Specif-

ically, a magnitude STFT (denoted as ) was computed

for each utterance using a 20-ms Hamming window, 1-ms
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TABLE III
SUMMARY OF FORMANT ESTIMATION METHODS

Fig. 12. Raw percent formant error for female /ae/ F1.

frame interval, and 2048-point DFT. A single spectral slice

located in the middle of the utterance (denoted as )

was then extracted for use with linear prediction; we refer to

this as traditional linear prediction ).

As another reference, we performed homomorphic linear pre-

diction on . Specifically, Rahman and Shimamura

have suggested the computation of the real-cepstrum

(18)

followed by liftering with an ideal lifter with cutoff

for Hz and for Hz

[22]. As in method was obtained from the pitch contour

used in synthesis. The DFT was then computed to generate a

magnitude spectrum to be used with linear prediction.

E. Autocorrelation Method of Linear Prediction

For formant estimation, the one-sided magnitude spectra

resulting from methods through (denoted as )

are used to obtain autocorrelation estimates for use in linear

prediction. Specifically, is appended by a frequency-re-

versed version, thereby resulting in a two-sided zero-phase

spectrum denoted as . The inverse DFT of pro-

vides the autocorrelation estimate . is then used to

generate the normal equations which are then solved using the

Levinson–Durbin recursion [23]. Recall from our discussion

in Section III-A that we used as the vocal tract source signal

a downsampled periodic impulse train to eliminate the effects

of spectral tilt due to the glottal waveform present in natural

speech. The model order was therefore set to 6 to correspond

directly to the three synthesized formants. Finally, the roots of

the resulting coefficients from linear prediction are solved to

Fig. 13. Raw percent formant error for female /ae/, F2. Arrow denotes a relative
comparison between m3 and m1 for a pitch start of 295 Hz.

Fig. 14. Raw percent formant error for female /ae/, F3.

obtain the formant frequency estimates for all spectral repre-

sentations.

IV. RESULTS ON SYNTHETIC VOWELS

This section compares the results of formant estimation using

methods through in the experimental setup described in

Section III on synthetic vowels. Table III lists the methods to be

compared. We use as a metric the absolute percent error between

an estimated versus the true formant-frequency value:

% (19)

A. Raw Percent Error

For the th formant of the th vowel with pitch shift,

starting pitch , and gender , the raw percent error using

method is defined as

(20)

corresponds to the true th formant frequency of the th

vowel for gender while corresponds to

the estimate using method . Figs. 12–14 show representative

results across methods and formant number for the female vowel
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/ae/ with Hz; in this case, (20) can be viewed as a

function of the pitch start .

Some preliminary observations can be made for the tradi-

tional linear prediction baseline ( , Figs. 12–14). Recall that

we use for analysis a 20-ms Hamming window and a sixth-order

linear prediction estimate. We observe that errors exhibit an os-

cillatory behavior across ; in addition, the rate of oscillations

tends to increase with formant number, with the fastest oscilla-

tions occurring for F3. These observations are consistent with

those observed by Vallabha and Tuller and may be explained by

the alignment of pitch harmonics near (for local error minima)

and away from (for local error maxima) formant peaks [24]; we

refer to this explanation as “fortuitous sampling.” In accordance

with this explanation, pitch changes will invoke greater absolute

changes in harmonic positions for higher frequency regions than

lower regions such that F3 errors would be expected to oscillate

more than F1 errors. Finally, observe that the size of oscillations

increases with , consistent with the effect of spectral under-

sampling for higher-pitch formants.

Our results for homomorphic linear prediction are con-

sistent with those reported in [22] in providing gains over tradi-

tional linear prediction under some conditions (e.g.,

Hz). Nonetheless, observe that harmonic projection and in-

terpolation affords substantial error reductions over

and . In addition, the similarity between the errors invoked

with single-slice interpolation and in this particular

case suggest that the error reduction via is due to exploiting

temporal change of pitch rather than the interpolation method

itself. Similarly, and also afford reductions in the error

magnitude under certain conditions (e.g., ). These results

suggest that exploiting temporal change of pitch can improve

formant estimation for both low- and high-pitch conditions.

Observe that , and exhibit some oscillatory

behavior similar to ; however, the local maxima of these

oscillations can be lower than those of (e.g., , all for-

mants). For , and , we interpret this effect in rela-

tion to the “fortuitous sampling” explanation of the oscillatory

behavior as increasing the chances of harmonic peaks to align

with formant peaks. Nonetheless, this is achieved differently be-

tween the methods. Whereas cepstral liftering smooths a spec-

trum across frequencies and can therefore distribute energy to-

wards the true formant peaks, the projection and interpolation of

harmonics does so across time. It appears that the latter method

outperforms the former for this purpose (e.g., compare the peak

errors for F2 between and ). For , we attribute the

reduction in oscillation amplitude (e.g., for F2 and F3) to the

improved source-filter separability invoked in transformed 2-D

space.

B. Global Average

To assess the performance of methods across all synthesis

conditions (i.e., vowel, pitch shifts, pitch starts), we computed

a global average metric defined as

(21)

TABLE IV
GLOBAL AVERAGE OF RAW FORMANT %ERRORS

FOR MALES, FEMALES, AND CHILDREN

with S, D, and V corresponding to the total number of ,

and vowels, respectively. In addition, corresponds to the true

th formant frequency for the th vowel while is its

corresponding estimate for th starting and th .

Table IV gives values of this global average for males, fe-

males, and children using the traditional linear prediction .

Observe that the average error tends to increase from males, fe-

males, to children, consistent with the effects of increased spec-

tral undersampling for the higher pitch females and children.

Figs. 15–17 show the relative gains of all other methods with

respect to this baseline and is computed as

(22)

for each gender; here, denotes the methods through .

Overall, these results are consistent with those observed for

the example discussed in Section IV-A. Harmonic projection

and interpolation exhibits the best performance with rela-

tive gains up % for F3; in addition, relative losses incurred

by single-slice interpolation are consistent with the role of

changing pitch in improving formant estimation (rather than the

interpolation method itself). Spectral slice averaging and

filtering in the GCT also exhibit similar gains over in

all conditions. In addition, they provide gains over for F2

and F3 in males and females and F3 in children.

The similar performance of and is not entirely sur-

prising, as we previously saw that the averaging method can be

thought of in the context of the GCT (Section III-B). We believe

that and ’s relatively smaller gains with respect to for

F1 stem from the reduced fanning of harmonic lines in lower

frequency regions of the STFT. These are more likely to be

mapped along the -axis in the GCT, thereby reducing source-

filter separability. In conjunction with the exceptionally high-

pitch source signals used for synthesizing children’s speech, this

effect could also account for the relatively smaller gains in F2

for children using and . Conversely, , and

generally exhibit the larger gains for higher formants (e.g., F3)

than lower formants, presumably due to broader harmonic sam-

pling for and and the increased source-filter separability

in the GCT for in high-frequency regions.

V. MONOPHTHONG VOWELS IN NATURAL SPEECH

In this section, we illustrate the feasibility of applying the

proposed methods for natural speech. As in Section III, we

focus on the analysis framework for estimating formants rather

than perform formant tracking. Specifically, we apply the pro-

posed formant estimation methods discussed in Section III to

real vowels spoken by high-pitch female talkers of the TIMIT

corpus [12]. The vowels analyzed were extracted from TIMIT

based on the available phone transcriptions and correspond
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Fig. 15. Relative gains of�� through�� with respect to�� for males.

Fig. 16. Relative gains of�� through�� with respect to�� for females.

Fig. 17. Relative gains of�� through�� with respect to�� for children.

to monophthong vowels (i.e., those with stationary or near

stationary vocal tract configurations). While it is likely that the

TIMIT transcriptions correspond to vowel regions in which

the vocal tract is not strictly stationary, we believe this to be

a reasonable approximation to demonstrate that 1) sufficient

pitch variations are available in natural speech and 2) can occur

in regions of stationary or near-stationary vocal tract configura-

tions to be exploited by our methods. Two sets of analyses were

performed for each vowel. In the first, we applied our methods

directly to the natural speech. In the second, we estimate a set

of reference formant frequencies from the natural speech and

apply our methods to a resynthesized vowel. Herein we discuss

the motivation, methodology, and results of our analyses.

A. Real Vowels

Monophthong vowel regions were extracted from TIMIT

waveforms based on the available phone transcriptions. The au-

tocorrelation-based pitch tracker of the Praat software package

was employed using a 1-ms frame interval to estimate pitch

values across each vowel’s duration [25]. As a preprocessing

step to methods through , we applied a simple method

of spectral tilt compensation to reduce the glottal source con-

tribution to the speech spectrum present in natural speech.

Specifically, the real cepstrum of was computed and

the first (non-DC) cepstral coefficient was set to zero. This

operation has the effect of removing a spectral tilt as derived

from the real cepstrum at quefrency [5]. The modified

was then obtained using the inverse transform and

methods through were invoked as previously described

in Section III. For the analysis of natural speech, reference

formant frequencies have been proposed by Deng et al. in [26].

In that work, an initial set of formant values were estimated

using an automatic formant tracking system. These values were

then manually corrected to compensate for errors made by

the formant tracker, particularly in regions of rapid formant

transitions. However, because the ground truth formant values

were derived in part using linear predictive cepstral coefficients

(LPCC) in conjunction with a tracking mechanism, we are not

able to use these as an appropriate reference for comparing

against non-LPCC analysis methods (e.g., harmonic projection,

GCT-based filtering). The results of our analysis for natural

speech therefore serve primarily to illustrate differences in

estimation results between the proposed methods and those

of standard techniques. In contrast, our use of resynthesized

vowels provide reference formant values not derived from

LPCC-based estimation.

B. Resynthesized Vowels

In our second set of analyses, we aimed first to obtain a set

of reference formant frequency values for use in resynthesis

followed by the application of through on the resyn-

thesized vowel. As was previously discussed, one aim of this

experimental setup is to assess whether sufficient pitch dy-

namics are present in natural speech during stationary vowels

such that the proposed methods can provide improvements

over traditional methods. As a secondary aim for assessing

feasibility of our methods for natural speech, recall from

Section IV that our synthetic experiments used a periodic

impulse train for a source signal, thereby excluding the glottal

pulse shape’s contribution to the speech spectrum in natural

speech. This was done to illustrate the benefits of exploiting

pitch dynamics in formant estimation if this component can be

adequately removed. In this section, we instead incorporate a

glottal pulse shape in resynthesis followed by the previously

discussed cepstrum-based method of compensation in Section

VI-A. While a variety of techniques in the literature (e.g.,

[27]) exist for spectral tilt compensation, our aim here is to

assess the feasibility of employing the proposed methods in
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Fig. 18. (a), (c) Narrowband and log broadband spectrograms of real vowel.
/ah/ extracted from female TIMIT speaker. (b), (d) Narrowband and broadband
spectrograms for resynthesized vowel from estimated reference formant fre-
quency values: �� � ��� Hz, �� � ���� Hz, �� � �	�� Hz. The pitch
of the speaker ranged from 171–159 Hz throughout the vowel. The narrowband
and broadband spectrograms were computed using a 20- and 5-ms Hamming
window, respectively, at a 1-ms frame interval.

formant estimation in conjunction with a simple, though likely

incomplete, compensation method.

To obtain a set of reference formant frequencies from the ex-

tracted vowel, we reasoned that the spectral slice corresponding

to the lowest value in the vowel would be less likely to

suffer from spectral undersampling. From the previous section,

the spectral slice corresponding to the lowest of the modi-

fied was therefore used to estimate a set of reference

formant frequencies via traditional linear prediction (i.e., ).

These values were used in conjunction with the formant band-

widths of Table I to specify an all-pole model as described in

Section III; therefore, in the resynthesized vowels, we define

these reference formant frequency values as ground truth. To

generate the source signal for resynthesis, we used the estimated

pitch contour to determine pulse periodicity as in Section IV;

however, instead of a periodic impulse as in Section III, we used

in this section the derivative of the Rosenberg model to invoke

a glottal pulse shape [28]; the derivative was invoked to account

for the radiation characteristics at the lips [29]. The resynthe-

sized vowel was then analyzed by methods through

in conjunction with the cepstrum-based method of spectral tilt

compensation.

C. Results

In Fig. 18, we show an example of a real and resynthesized

vowel /ah/ from a female TIMIT speaker. Both the narrowband

(a,b) and log broadband (c,d) spectrograms are shown to empha-

size harmonic and formant structure, respectively. Observe from

the broadband spectrogram for the real vowel that F3 exhibits

some movement at the beginning of vowel (e.g., near 0.02 s).

Nonetheless, the formant structure appears stationary for the

majority of the vowel duration. The pitch variation throughout

the vowel increases from 251 to 278 Hz. Table V (top) lists the

formant frequency estimates of the real vowel using through

as well as the raw percent errors computed with respect to

TABLE V
/ah/, PITCH VARIATION �251 TO 278 Hz

TABLE VI
/iy/, PITCH VARIATION �171 TO 150 Hz

TABLE VII
/ey/, PITCH VARIATION �275 TO 205 Hz

TABLE VIII
/ae/, PITCH VARIATION �245 TO 213 Hz

the reference formant frequencies on the resynthesized vowel

for through (bottom). Similar sets of results are pre-

sented in Tables VI–VIII for /iy/, /ey/, and /ae/.

The results of our analysis on natural speech show that the

proposed methods provide estimates distinct from traditional

and homomorphic linear prediction ( and ). In addition,

observe for the resynthesized vowels that the methods ,

and exhibit smaller percent errors from the reference for-

mant frequencies than and . These results illustrate that

sufficient pitch variations are available in natural speech which

can be exploited in improving formant estimation accuracy over

traditional methods. In addition, the results illustrate the feasi-

bility of applying the proposed methods in conjunction with a

relatively simple spectral tilt compensation method in the pres-

ence of a glottal pulse shape.
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VI. IMPLICATIONS FOR FORMANT TRACKING

In this section, we demonstrate and discuss implications

of the proposed analysis framework for the formant tracking

problem. As previously noted, current state-of-the-art sys-

tems typically employ linear predictive cepstral coefficients

(LPCC) in conjunction with a tracking mechanism (e.g.,

Kalman filtering [4], [30]) to obtain formant estimates across

time. In particular, LPCCs are modeled as noisy observations

corresponding to an unobserved state (the desired formant

frequencies) to be estimated. Our previous results, however,

have shown that traditional and homomorphic linear prediction,

from which LPCCs are obtained, invoke poorer representations

of stationary formant structure compared to analysis methods

aiming to exploit temporal pitch dynamics. Herein we demon-

strate through examples the effect that such representations

have in formant estimation in stationary vowels in the context of

formant tracking (i.e., the final output in the scheme of Fig. 1).

For our experimental framework, we applied the baseline

extended Kalman filter (EKF) proposed originally in [4] and

extended in [30] to synthetic vowels using different analysis

methods for generating observations. State variables were

chosen to be the three formant frequencies of the synthesized

vowel and initialized to the reference formant frequencies.

Formant bandwidths were also initialized and held fixed to the

true bandwidths across state estimates in applying the EKF

equations.

As a baseline observation type, we used 15th-order LPCCs

computed for a 20-ms window of the speech signal computed

at a 10-ms frame interval as in [30]. To exploit temporal pitch

dynamics in generating observations, we applied the harmonic

projection, averaging, and GCT-based analysis methods previ-

ously described to generate short-time spectral representations;

these estimates were subsequently used to obtain 15th-order

LPCCs to be used as observations in the EKF. For averaging,

collections of spectral slices from spanning 20-ms du-

rations (20 slices total) were extracted at 10-ms intervals and

averaged. For harmonic projection, these same spectral slices

were used in peak-picking, projection to a single axis, and in-

terpolation to generate a spectral representation as described

in Section III; in addition, a control estimate of peak-picking

and interpolation using peaks of a single slice was computed.

For GCT-based analysis, the adaptive 2-D elliptical filter de-

scribed in Section III was applied across regions of

of size 700 Hz by 20 ms using a 2-D Hamming window. For

overlap-add, overlaps of 350 Hz and 10 ms were invoked in fre-

quency and time, respectively. This is in contrast to the GCT-

based analysis in Section III that used the full duration of the

vowel. Finally, spectral slices were extracted from the filtered

spectrogram at 10-ms intervals to generate the desired LPCC

observations.

Figs. 19 and 20 show results of the tracker for a synthetic fe-

male vowel /ae/ with pitch ranging from 150 to 200 Hz and 250

to 300 Hz, respectively. The baseline LPCC observation results

in errors in frequency estimates ranging from 1 Hz (e.g., F3

for the 150 to 200 Hz pitch variation) up to 50 Hz (e.g., F1 for

the 250 to 300 Hz pitch variation). For both vowels, the variation

Fig. 19. (a) Spectrogram female vowel /ae/ with pitch 150 to 200 Hz; the spec-
trogram is computed using a 20-ms Hamming window at a 1-ms frame interval;
lines denote true formant frequencies of the vowel. (b) F1 Estimates across time
using EKF with different observation types denoted by legend. (c) As in (a) but
F2 estimates. (d) As in (a) but F3 esimates.

Fig. 20. As in Fig. 19, but for female vowel /ae/ with pitch ranging from 250
to 300 Hz.

in errors across time likely reflects the “fortuitous sampling” ef-

fect previously noted in Section IV for baseline linear prediction

analysis. Qualitatively, the proposed methods that exploit tem-

poral pitch dynamics reduce the magnitude of this variation in

error across time. To quantitatively compare the performance

of the tracker using different observation types, we show in

Tables IX–X the root mean-squared errors (RMSE) in absolute

frequency computed across the full durations of the vowels. The

proposed analysis methods provide RMSE reductions ranging

from 2 Hz up to 25 Hz with respect to the LPCC baseline

for the cases considered. In addition, consistent with our ob-

servations in Section IV, the relatively poorer performance of

the control method suggests that the gains from the projection

method are due to its use of temporal pitch dynamics rather than

the interpolation method itself. Finally, observe that the overall

errors of the LPCC baseline are smaller for the vowel synthe-

sized in the 150 to 200 Hz case relative to the 250 to 300 Hz

case. This is consistent with our observations for the traditional

linear prediction baseline (Figs. 12–14) showing that errors in

formant frequency estimates increase with pitch.
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TABLE IX
RMSE IN Hz FOR PITCH 150-TO-200-Hz CASE

TABLE X
RMSE IN Hz FOR PITCH 250-TO-300-Hz CASE

Our findings illustrate limitations of standard LPCC analysis

for use in the formant tracking task. Observe that absolute er-

rors in formant frequency estimates up to 50 Hz can result

when using LPCCs as observations in a Kalman filtering frame-

work (Figs. 19–20). These effects are due to the inability of

LPCCs to accurately represent formant structure under condi-

tions of high pitch from spectral undersampling. Furthermore,

our results suggest that by explicitly exploiting temporal pitch

dynamics in analysis for generating observations, tracking per-

formance can be improved.

VII. ANALYSIS AND TRACKING OF TIME-VARYING FORMANTS

A limitation of the present work is that it imposes the con-

straint of a stationary vocal tract throughout analysis. As we

have seen in Section IV, this constraint may be reasonable for

portions of monophthong vowels; however, this condition is

not satisfied for speech sounds where the formant envelope is

changing (e.g., diphthongs, glides) as well as transitions from

distinct speech sounds (e.g., stop-to-vowel transitions). For

the analysis of speech sounds where the formant envelope is

changing, the harmonic projection methods (e.g., and )

are evidently not directly applicable. A potential extension to

these methods could be to project harmonic samples across

time along each formant trajectory; however, this approach

would require a priori estimates of the formant trajectories.

Alternatively, observe that the GCT can inherently maintain

source-filter separability when the vocal tract is changing.

Specifically, consider a formant transition in a localized region

that is increasing in frequency as illustrated in Fig. 21(a). Under

this condition, the corresponding centered at the origin

of the GCT will be rotated at an angle off the -axis as can

be shown from standard properties in image processing [14].

Let us denote this direction as a “principle axis,” analogous

to the -axis when the formant structure is stationary (as in

Fig. 8). From the model proposed in Section II, the modulated

versions of will be located off of this principle axis

when pitch is either stationary or decreasing (dashed and dotted

lines in Fig. 21) [14]. These conditions are analogous to that

of increasing and decreasing pitch for the stationary formant

case, thereby allowing for improved source-filter separability.

Fig. 21. (a) Localized region of STFT showing a formant transition increasing
in frequency (shaded region) along with stationary (dashed), increasing (solid),
and decreasing (dotted) pitch harmonics. (b) Corresponding GCT illustrating
source-separability of ������ (shaded) from its modulated versions; the
double-sided arrow denotes a new “principle axis” analogous to the � -axis
for a stationary formant. Enhanced separability can be obtained when pitch is
either decreasing (dotted) or stationary (dashed).

Conversely, when the pitch harmonics are moving in the

same direction as the transition (e.g., increasing, solid lines in

Fig. 21), separability can only be obtained when the width of

along the principle axis is less than the spatial fre-

quency of the 2-D harmonic structure. This is analogous to the

condition of stationary pitch and formant envelope illustrated

in Fig. 8.

To illustrate application to a time-varying formant structure,

we show in Fig. 22(a) a pitch-adaptive spectrogram (Sections II,

III) computed for a synthetic female diphthong .

The vowel was synthesized using a 135-ms duration source

signal as described in Section III with pitch variation from

325 to 275 Hz. A time-varying all-pole (order 6) model with

linear formant and bandwidth trajectories was applied to the

source signal. The starting and ending formant frequencies of

the filter were set to the female monophthongs /ae/ (

Hz, Hz, ) and /iy/ ( Hz,

Hz, Hz), respectively. Similarly, the

starting and ending bandwidths of the filter were set to the

values in Table I for /ae/ and /iy/. In Fig. 22(a), we indicate

a local region that contains the third formant transition from

2972 to 3372 Hz (rectangle). Consistent with the model of

Fig. 21, the corresponding GCT is shown in Fig. 22(c), and

contains components near the origin with orientation off the

-axis for some positive value of . Observe that the modulated

versions of this slowly varying envelope are also oriented in

this direction (dashed).

To assess the value of analyzing diphthongs using the GCT,

we employed GCT-based filtering and the EKF framework

(Section IV) for formant estimation of the diphthong shown in

Fig. 22(a). For GCT-based analysis, our steps are identical to

those described in Section III with the exception of the choice

of filter. Specifically, we extracted regions of size 700 Hz by

135 ms (i.e., the full duration of the vowel) with a 350 Hz

overlap in frequency. An adaptive 2-D filtering was applied

across regions, and overlap-add was used to reconstruct a

time–frequency distribution. Observe from Fig. 21 that the

2-D filter for a diphthong would ideally be a low-pass filter

along the new “principle axis” corresponding to the orientation

of the moving formant structure. This is in contrast to being

along the -axis as in the case of monophthongs. In our current

development, we approximate this design by using a separable

linear-phase low-pass filter as in Section III; however, the filter

is designed to capture similar low-frequency content in both
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Fig. 22. Filtering in the GCT as in Fig. 11 but for a diphthong. (a) Pitch-adap-
tive spectrogram and localized region (rectangle) used for computing GCTs.
(b) Zoomed-in localized region from (a). (c) ���� � showing new “principle
axis” (solid) corresponding to formant transition and modulated versions with
similar orientation (dashed). For display purposes only, the DC component has

been removed. (d) 2-D circular filter applied to ��� . (e) Filtered version of
��� (magnitude) showing “principle axis.” (f) Time–frequency reconstruc-
tion after filtering.

Fig. 23. (a) Broadband log spectrogram of diphthong /ae/� /iy/ with changing
pitch from 325 to 275 Hz; the spectrogram is computed using a 5-ms Hamming
window at a 1-ms frame interval; lines denote true formant transitions. (b) F1
estimates obtained from the baseline EKF filter and GCT compared with truth.
(c) As in (b) but for F2. (d) As in (b) but for F3.

the - and -directions [Fig. 22(d)]. The pass- and stop- bands

in both the and directions were therefore set to

and . For the localized region analyzed in Fig. 22(a)–(c), the

resulting GCT is shown in Fig. 22(e). Observe that the har-

monic components have been removed, and the slowly varying

components near the origin are preserved. Fig. 22(f) shows the

reconstructed time–frequency distribution from which spectral

slices are extracted every 10 ms to generate linear predictive

cepstral coefficients (LPCC) as observations to the tracker. This

was compared against the baseline 20-ms short-time analysis

LPCCs used in Section IV.

Fig. 23 and Table XI show the results of the output of the

tracker for both analysis schemes. Fig. 23(a) shows a broadband

log-spectrogram of the diphthong with the reference formant

frequency trajectories overlain (lines). Observe that due to the

TABLE XI
RMSE IN Hz OF TRACKING RESULTS FOR FEMALE /ae/ TO /iy/

WITH PITCH 150 TO 200 Hz

high pitch values of the source signal, the formant trajectories do

not exhibit smooth transitions across time as may be expected

for a low-pitch source. Similar to the observations of Section IV,

the baseline tracker exhibits deviations around the true formant

frequencies while the GCT-based analysis appears to reduce the

magnitude of these deviations [Fig. 23(b)–(d)]. This is quanti-

tatively demonstrated in Table XI, with the GCT-based analysis

providing reductions in RMSEs up to 30 Hz.

VIII. CONCLUSION AND FUTURE WORK

This work has proposed a 2-D processing framework to ad-

dress formant estimation of high-pitch speakers by exploiting

temporal change of pitch. We have shown quantitatively for syn-

thetic signals that our methods outperform traditional and ho-

momorphic linear prediction in formant estimation under con-

ditions of a stationary vocal tract and changing pitch. In addi-

tion, we have illustrated the feasibility of the proposed methods

for use on natural speech with examples of high-pitch monoph-

thong vowels from female talkers of the TIMIT corpus. We have

further demonstrated benefits of the proposed framework in re-

lation to the formant tracking problem in providing improved

representations of formant structure under high-pitch conditions

for both stationary and time-varying formants. Our results show

that the 2-D processing framework is a promising approach for

addressing the spectral undersampling problem in formant esti-

mation.

Several future directions are motivated from the current work.

The harmonic projection method ( , Section III-B) may be

used in conjunction with a method for detecting stationarity of

the vocal tract in formant analysis such as in [31]. This may in-

volve incorporating prior information of vowels as proposed by

Toda and Tokuda in [32]. Alternatively, an improved filtering

method in the GCT domain may be used to better isolate local-

ized formant structure (for both monophthong and diphthong

vowels) from its modulated versions. These analysis methods

may be used in conjunction with a tracking mechanism towards

a full formant estimation system for running speech.
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