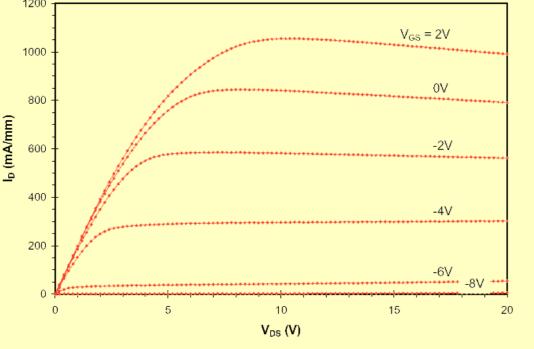

Poster presented at the 2003 Device Research Conference, Salt Lake City, June 23 to 25, 2003

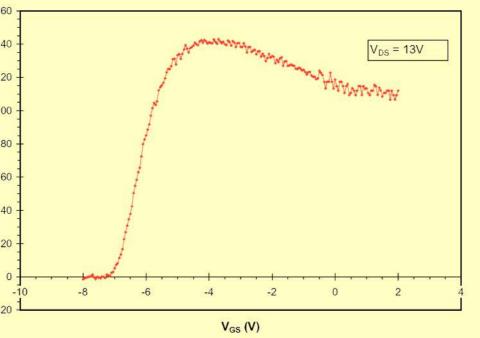
High Power GaN/AIGaN/GaN HEMTs Grown by **Plasma-Assisted MBE Operating at 2 to 25 GHz**

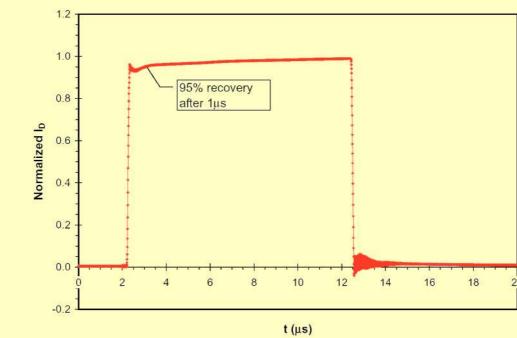
Thomas Waechtler^{1,2}, Michael J. Manfra¹, Nils G. Weimann¹, and Oleg Mitrofanov¹

- Bell Labs, Lucent Technologies, Murray Hill, NJ, USA, email: manfra@lucent.com
- 2 Chemnitz University of Technology, Chemnitz, Germany

	Layer					
2DEG GaN buffer	GaN cap	5		GaN buffer		GaN buffer
	AlGaN barrier	30 … 40				
AIN nucleation layer	GaN buffer	2000		AIN nucleation layer		 Metal stack formed by 20 nm Ti, 100 nm Al,
	AIN nucleation layer	30 … 60				55 nm Ni and 45 nm Au
6H-SiC	 Si doping of upper half of AlGaN barrier and GaN cap up to 10¹⁸ cm⁻³ GaN buffer semi-insulating 			6H-SiC		
						 Rapid Thermal Annealing (RTA) in N₂ atmosphere at 780 °C to 800 °C for 30 sec
	- Sheet charge densiti	y: 1.2 x 10 ¹³ cm ⁻²				
	 Room temperature mobility: 1400 cm²/Vs 		Mesa definition by ICP		Formation of the ohmic contacts	
MBE growth of the heterostructure MBE growth of the heterostructure etching in Cl_2/Ar pla						
W _G (SEI A S	TWEETOBLATERS TO THE TABLE AND		esist		Original Content of the drain contacts of the fishbone structure	$\mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$
$W_{G} = 0.8 \text{ mm}$, and length $L_{G} = 2 \mu \text{m}$ (optical micrograph)						Deposition of the Schottky gates:
Λ'. L	'I C I' C	alization that a second				

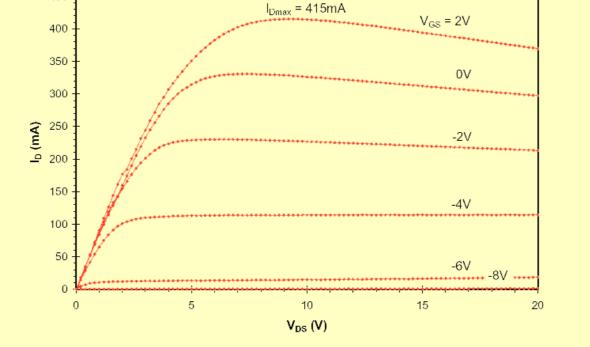

Air bridge formation for drain interconnects of large periphery devices


30 nm Ni, 300 nm Au


Results

• Small periphery devices:

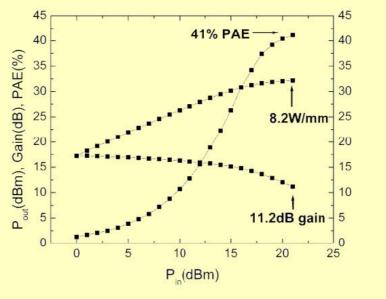
- Drain current I_D of up to 1100 mA/mm, and an average of 1000 mA/mm
- Transconductance g_m 120 ··· 140 mS/mm

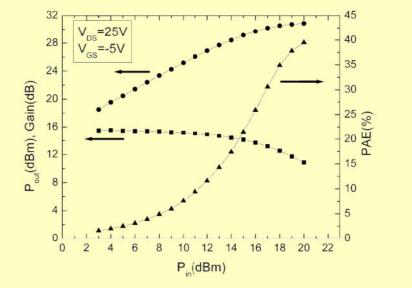

 I_D vs. V_{DS} for device with gate length $L_G = 2 \mu m$, a periphery of 150 μm and a drain-source opening of 6 µm. A maximum drain current of 1055 mA/mm has been measured.

Transconductance for the same 150 µm device, measured at a drain bias of 13 V.

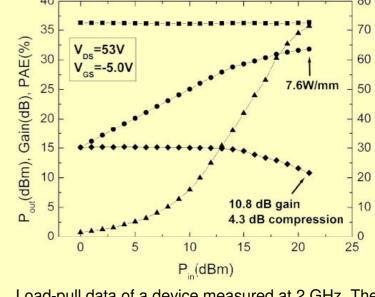
Behavior of the drain current when pulsed from pinch-off to $V_{GS} = 0 V$ for a similar device on the same wafer. After 1 µs, the drain current has recovered to 95% of its DC value.

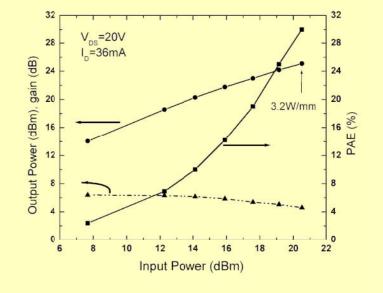
• Air bridged devices:


- Total gate length of up to 4 mm
- I-V characteristic scales well with periphery due to good heat dissipation by SiC substrate and Au air bridges


I-V characteristics of an air-bridged HEMT with a periphery of 0.4 mm and a gate length of 2 µm. The transistor displays a maximum drain current of I_{Dmax} = 415 mA and 1037 mA/mm, respectively.

• Load-pull data:


- HEMTs with gates of 1 μ m displayed an output power of more than 8 W/mm together with a power added efficiency (PAE) of 41% at 2 GHz.
- For submicron gates defined by electron beam lithography power values of 6.1W/mm (7 GHz) as well as 3.16 W/mm (25 GHz) have been obtained.
- RF dispersion is remarkably low considering that no SiN passivation is used.


Load-pull data of a device measured at 2 GHz. $V_{DS} = 45 \text{ V}, V_{GS} = -4.7 \text{ V}, L_G = 1 \text{ }\mu\text{m}, W_G = 200 \text{ }\mu\text{m},$ Source-Drain spacing: 5 µm

Load-pull data at 7 GHz for a 0.2 x 200 µm² device. A power density of 6.1 W/mm along with 40% PAE and 4.6 dB gain compression has been measured.

Load-pull data of a device measured at 2 GHz. The gate length is 2 µm, with a total periphery of 200 µm and a source-drain separation of 6 µm.

Load-pull data at 25 GHz. V_{DS} = 20 V, V_{GS} = -7.3 V, $L_G = 0.2 \mu m$, $W_G = 100 \mu m$. A linear gain of 6.5 dB together with a PAE of 30% and 1.8 dB compression has been obtained.

Future directions and challenges

- Load-pull data on large periphery devices needed
- Control of parasitic buffer conduction in MBE growth on 4H-SiC substrates
- High breakdown fields needed for high power operation
- Better understanding of RF dispersion in MBE GaN/AIGaN/GaN HEMTs

Acknowledgements

The authors would like to thank Kirk W. Baldwin for technical assistance. T.W. acknowledges financial support obtained from the German National Scholarship Foundation (Studienstiftung des deutschen Volkes).

Lucent Technologies Bell Labs Innovations