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High Power Current Sensorless Bidirectional
16-Phase Interleaved DC-DC Converter for

Hybrid Vehicle Application
Liqin Ni, Member, IEEE, Dean J. Patterson, Fellow, IEEE, and Jerry L. Hudgins, Fellow, IEEE

Abstract—A new 16-phase interleaved bidirectional dc/dc con-
verter is developed featuring smaller input/output filters, faster
dynamic response and lower device stress than conventional de-
signs, for hybrid vehicle applications. The converter is connected
between the ultracapacitor (UC) pack and the battery pack in a
multisource energy storage system of a hybrid vehicle. Typically,
multiphase interleaved converters require a current control loop in
each phase to avoid imbalanced current between phases. This in-
creases system cost and control complexity. In this paper, in order
to minimize imbalance currents and remove the current control
loop in each phase, the converter is designed to operate in discon-
tinuous conduction mode (DCM). The high current ripple associ-
ated with DCM operation is then alleviated by interleaving. The
design, construction, and testing of an experimental hardware pro-
totype is presented, with the test results included. Finally, a novel
soft switch topology for DCM operation is proposed for future re-
search, to achieve zero-voltage switching (ZVS), or zero-current
switching (ZCS) in all transitions.

Index Terms—Battery, discontinuous conduction mode, energy
storage system, multiphase interleaved dc-dc converter, PHEV hy-
brid electric vehicle, soft switching, ultracapacitor.

I. INTRODUCTION

THE TRANSITION from internal combustion engine (ICE)

vehicles to pure electric vehicles (EVs), or hybrid electric

vehicles (HEVs) is very attractive and desirable, but there are

still some serious issues with regard to energy storage technol-

ogy. The lithium-ion battery is the most commonly used energy

storage device in current hybrid vehicles, because of its high

power and energy density. However, it has over-heating issues,

limited life cycle, and durability limitations, especially under

high power conditions. In contrast, the ultracapacitor has the

advantages of a long life cycle, high output power and high re-

liability. Thus, the combination of batteries and ultracapacitors

as an energy storage unit is a potential solution to improving

vehicle performance, battery lifetime, and durability [1], [2].

It also offers excellent performance in both high acceleration
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Fig. 1. Typical topology of a battery and ultracapacitor energy storage system.

and regenerative braking. The typical topology of a battery and

ultracapacitor energy storage system is shown in Fig. 1. The

battery pack is parallel connected with the ultracapacitor pack

through a bidirectional dc/dc converter [3], [4]. One objective

of the design is that the converter has to achieve a high power

density with low current/voltage ripple, particularly on the bat-

tery side. Moreover, the converter has to meet basic automotive

industry requirements, such as high efficiency, low cost, low

EMI, and compact component size. Several different circuit de-

signs for high power applications have been published [5]–[10].

Most of these designs require large inductors/transformers and

devices with high voltage/current ratings. The volumes of these

components are generally large [7]–[10], or the designs have

the disadvantage of limited voltage ratio [5], [6]. A multiphase

interleaved dc/dc converter is adopted as a good solution for the

application with high power and high current with low current

ripple.

Interleaving techniques have been widely used in power con-

verters in recent years [9], [11]–[16]. Typical benefits of inter-

leaving techniques include reduced device stress by separating

power into each discrete phase, reduced filter size by increas-

ing effective frequency, and alleviation of the effects of current

ripple. The interleaving technique also enables other beneficial

technology changes, such as replacement of aluminum elec-

trolytic or polymer organic capacitors by film or ceramic capac-

itors, which improves the equivalent series resistance, power

density, and reliability in a rugged thermal environment.

However, most of the published papers require a current con-

trol loop in each phase to achieve balanced phase currents and

to improve dynamic response [13], [16]–[18]. The cost, weight,

and control complexity grows when the number of phases in-

creases, which limits the total number of phases to be consid-

ered. The optimum number of phases will be another issue that

has to be considered [12], [19], [20]. The imbalance current

0885-8993/$26.00 © 2011 IEEE
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mainly depends on duty cycle differences, inductance value dif-

ferences, and parasitic resistance differences among different

phases, all of which integrate over time in a continuous conduc-

tion mode converter. In order to minimize imbalance currents

and eliminate current control loops, some authors designed a

synchronous converter working in continuous conduction mode

(CCM) [14], [15]. However, the inductor current falls to a neg-

ative value during every switching cycle, which would lead to a

higher current ripple per phase and lower efficiency, especially

for light load conditions.

This paper proposes the design of a 16-phase interleaved

power converter operating in discontinuous conduction mode

(DCM) that improves the current balance without using current

control loops, which can simplify control system and reduce

cost. This also allows the circuit to use a larger number of

phases, which decrease power stress on each device and reduce

filter size requirements. Therefore, compared to traditional dc/dc

converters with current control, the proposed method is a cost-

effective approach.

The design also features fast dynamic response since the

phase current is reset to zero at every switching cycle. To verify

the proposed approach, a 45-kW hardware prototype has been

constructed and tested with experimental results presented.

II. INTERLEAVING DC/DC CONVERTER IN DCM

A. Interleaved Converter Topology and Operation

The multiphase interleaved dc/dc converter is a circuit topol-

ogy where basic converter circuits are placed in parallel between

input and output. The number of phases is in relation to effi-

ciency, cost, volume, and control complexity. This paper adopts

16 phases based on a previous research [12]. Also, a 16 phase

design will result in moderate current flow in each phase. There-

fore, switches and filters will be smaller and easy to obtain/build.

The optimization of the number of phases is a critical issue and

will be further investigated in a separate paper. The schematic

diagram of the 16-phase interleaved dc/dc converter is shown in

Fig. 2. An ultracapacitor pack is placed on the low-voltage side

with voltage range 86.4 to 172.8 V, and a battery pack is placed

on the high-voltage side with a voltage range of 192 to 268.8 V.

The battery voltage working range in this paper is designed to

be compatible with 2004 Toyota Prius specifications. The high-

voltage side is also connected with the traction system or load.

When the demand power is larger than the battery pack rated

power, the ultracapacitor pack releases power for acceleration

and the converter operates in boost mode. When the ultraca-

pacitor pack is not fully charged and the regenerative braking

power is larger than the battery pack rated power, the ultraca-

pacitor pack absorbs power from regenerative braking and the

converter operates in buck mode.

The switch gate signals and inductor currents are shown in

Fig. 3. The gate signals for the phases are exactly shifted by

360◦/N (N is the number of phases, here N = 16). All phase

currents have the same waveform, except that they are shifted

360◦/N. The ripple in the low voltage side current iL , which is

the sum of all low side phase-currents, is significantly reduced

Fig. 2. Power stage of a 16-phase bidirectional DC/DC converter.

due to harmonic elimination. Furthermore, the frequency of the

ripple in iL is increased to N∗fs (fs is the switching frequency).

Because of lower current ripple and less harmonic content,

the size of the filter capacitance on the low voltage side can be

reduced, or even removed. The filter capacitance on the high

side is composed of N capacitors. Each one is placed physically

close to its phase, in order to reduce the parasitic inductance

between the switch and the capacitor. Each phase processes

only 1/N of the total power, which, therefore, reduces the stress

on the switching devices.

B. Synchronous DC/DC Converter in DCM

This proposed design is working in DCM so that the system

has a small imbalance current and fast response, since the induc-

tor current is reset to zero at every switching cycle. Moreover, the

inductance requirement for each phase is small in DCM. The

converter current is related with duty ratio directly in DCM,

which could simplify the control system.

In boost operation mode, the duty ratio of the main switch

(low side switch, e.g., Q1_1) is a function of output current, and

can be calculated by the following equation:

Dboost =

√

2LfsIH (VH − VL )

N · V 2
L

(1)

where L is the inductance in each phase, fs is the switch fre-

quency, IH is the average current on the high voltage side, VH

is the voltage on the high voltage side, VL is the voltage on the

low voltage side, and N is the number of phases.

In a synchronous converter in CCM, the duty ratio D′ of

the freewheeling MOSFET equals D̄ with necessary dead time.

In DCM, the freewheeling MOSFET has to be turned OFF by

zero current detection on the inductor current, or the on-time is

estimated by the control stage. In this paper, the on-time of the

freewheeling MOSFET is estimated by the following equation

in boost mode

D′

boost =
Dboost · VL

VH − VL

. (2)
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Fig. 3. Gate signals and inductor currents waveforms.

Fig. 4. D′ estimation result in boost converter (see vg 2 ).

In buck operation mode, the duty ratio functions for the main

switch and freewheeling MOSFET are calculated by (3) and (4),

respectively

Dbuck =

√

2LfsILVL

N · VH (VH − VL )
(3)

D′

buck =
Dbuck · (VH − VL )

VL

. (4)

Figs. 4 and 5 show the results of D′ estimation by (2) for

the boost converter and (4) for the buck converter. These results

show the slave switch turns OFF close to where the inductor cur-

rent reaches zero and thus the D′ estimation equations work well

in the real system. After the inductor current falls to zero, the

circuit experiences some voltage oscillations due to the influ-

ence of the inductor and parasitic capacitances of the switches.

These voltage oscillations cause only very small losses in each

phase, since all devices are turned OFF and the current is al-

most zero. Furthermore, they do not overstress the devices. The

oscillations can be reduced by adding an RC snubber circuit

Fig. 5. D′ estimation result in buck converter (see vg s1 ).

between each switch and transfer losses caused by oscillation

from switch to the snubber circuit. However, when observed

from input and output of the whole converter with the proposed

interleaving techniques, these oscillations will not be apparent,

even if snubber circuits are not added.

From the above equations, it is noted that the imbalance cur-

rent depends primarily on duty ratio differences and inductance

differences. However, in DCM mode, the imbalance current is

very small since each phase current starts from zero at every

switching cycle. A 1% difference in duty cycle will cause a 2%

increase of current imbalance in theory. In CCM mode, how-

ever, a 1% difference in duty cycle can cause an unacceptable

current imbalance (for example, 84% imbalance current in [12])

over time. In order to minimize the difference in each duty cy-

cle, digital controllers, such as field-programmable gate arrays

(FPGA), can generate many signals simultaneously with high

accuracy [21]. The phase shift techniques are also implemented

in the digital controller.
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Fig. 6. Battery power requirement during urban driving for battery power
alone system.

C. Control Stage Design

There are two control stages in this energy storage system:

power distribution control stage and the converter control stage.

The power distribution control stage determines the power

distribution between ultracapacitor power and battery power.

While a vehicle is driving, especially in urban conditions, the

power requirement changes frequently. A simulation-based bat-

tery power requirement model has been built with battery power

requirement shown in Fig. 6 [23]. The simulation was based

on local driving conditions in urban an area of Lincoln, Ne-

braska, using a 2004 Toyota Prius data with assumption of

Lithium-ion battery presented in this paper. Detailed modeling

and calculation of the battery power requirement is available in

[23].

In order to improve the battery lifetime and meet the over-

heating limitation, the ultracapacitor provides/absorbs most

peak power and the battery is kept at almost constant power.

Thus, it is important to ensure the ultracapacitor stores enough

power to release during acceleration, and has enough room to

absorb power during braking. A system control strategy has

been designed to keep the ultracapacitor voltage in a range at

different vehicle speeds as in reference [24] and shown in Fig. 7.

According to the ultracapacitor voltage, the battery SOC and the

traction demand power, the control system gives out the demand

power for dc/dc converter.

The converter control stage will generate the driving signals

for the 16 phases according to dc/dc converter demand power,

that is, in total 32 gate signals need to be generated. Using

digital control, these pulses can be timed to a high accuracy level

such that the differences of duty ratio between each phase are

very small and the imbalance current can be minimized. Thus,

a current control loop in each phase can be removed and the

complexity of control circuit can be reduced. The main switch

duty ratio can be calculated by (1) in boost mode and (3) in buck

mode in the open-loop control system. Also, the control can be

achieved by a simple proportional-integral controller (PI) in

the closed-loop control system. The duty ratio of freewheeling

Fig. 7. Ultracapacitor voltage working range at different vehicle speed (be-
tween Va and Vd). Va is the voltage to ensure that ultracapacitor can provide
enough power for acceleration; Vd is voltage to ensure that ultracapacitor has
enough room to absorb power during braking.

Fig. 8. Phase-shifter structure implemented in an FPGA.

transistor is calculated by (2) in boost mode and (4) in buck

mode. Each driving signal is shifted from the previous one.

The gate signals are generated by making a comparison be-

tween the duty cycle and the counter. Each phase has its own

counter. The phase shift is achieved by controlling the value of

the counter. The phase-shifter structure is shown in Fig. 8. There

is a main counter, with the calculation of other counters based on

it (see CT0 in Fig. 8.). For the main switch in each phase, these

subordinate counters are the value of the main counter minus

some constants to get subordinate counter values, and then each

is compared to the duty cycle. The main switch counter CTi and

constants Ci to be added are:

CTi = CT0 − Ci (5)

Ci =
i · Cp

N + 1
. (6)

For the slave switch of each phase, the counter value can be

calculated as

CT ′

i = CTi − D − DT (7)

where, i is the phase number, (N+1) is the number of the phase,

Cp is the resolution of the period which is equal to the range of

the counter, and DT is the dead time.
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TABLE I
CORE LOSS CALCULATION FOR DIFFERENT CORE MATERIALS

TABLE II
DC/AC RESISTANCE AND WINDING LOSS CALCULATIONS

The FPGA NI 7831R real-time system, used in this converter,

has a 40 MHz on-board frequency generator with a high duty

cycle resolution (400 different duty cycles for 100 kHz switch

frequency).

D. Inductor Design

The inductors used in this interleaved dc/dcconverter have

low inductance value, but work at high frequency with high

current ripple. Therefore, the inductor losses become a main

issue during design. The inductor losses mainly include core loss

and winding loss. The core loss is related to the core material

used, and has been calculated for different core materials at

rating power (L = 5 µH, IL = 32 A, f = 100 kHz, VL = 87 V,

VH = 268 V), shown in Table I. A 1.5 mm air gap is adopted

for ferrite core material during calculation.

According to Table I, the core loss of ferrite core materials

is much lower than the powdered core materials. Therefore, the

ferrite core 3C94 has been chosen for inductors in the dc/dc

converter.

Winding losses mainly include dc winding losses and ac wind-

ing losses. DC resistance can be calculated according to wire

length; ac resistance is estimated according to [22]. Resistance

values and winding losses are calculated at the above condition,

and the results are shown in Table II.

When ferrite core material is chosen, using a single concen-

trated airgap, the gap induced eddy current loss in the conductors

has to be considered, especially for inductors working at high

current ripple and high frequency. Any winding turns positioned

closed to the gap will most likely exist within the high flux den-

sity of the fringing field and huge eddy current losses can occur

in those few turns close to the gap, which can cause severe

localized heating problems, even leading to the failure of the

inductor. To reduce the gap-loss and avoid the winding heating,

the following actions were taken during experiment hardware

design: 1) using Litz wire winding to reduce ac winding loss;

2) keeping the windings positioned close to the air gap to a sin-

gle layer; and 3) keeping other windings a little distance from

Fig. 9. Photo of a hand-wound inductor.

air gap. Fig. 9 is a photo of a hand-wound inductor in the dc/dc

converter circuit. The bobbin has been eliminated to save space

in the board.

E. Power Loss Analysis

Power losses of multiphase dc/dc converter, similar to tra-

ditional single phase of dc-dc converter, mainly include in-

ductor loss, switch device loss and input/output capacitor loss.

Input/output capacitor loss should be considered in whole sys-

tem, and total capacitor loss would be lower than signal phase.

In this paper, most of losses are from main switch due to high

peak current in DCM in each phase. The inductor loss has been

discussed in the previous section. This section focuses on MOS-

FET losses in a boost converter.

Conduction losses are defined by the RDS(on) of the

MOSFET. The losses can be estimated by the following

Pcond = I2
RMS · RDS(on) . (8)

Here the IRMS is the triangular current through the MOSFET,

not the output current of the converter.

The low side MOSFET loss during switch turned ON is neg-

ligible because it has zero-current switching in DCM; the loss

during switch turned OFF is the main loss in the whole system

due to high peak current in each phase. It can be estimated by

following

Psw(off ) =
VH · Ipk

2
· tsw off · fsw (9)

Ipk is the inductor peak current, tsw off is the transition time from

switch on to off, and fsw is the converter switching frequency.

The switching loss of high side MOSFET is negligible, be-

cause it has almost zero-voltage switching when turned ON due

to the conduction of its body diode and zero-current when turned

OFF due to DCM.
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Fig. 10. Physical phases position with optimized order for two boards.
(a) Physical positions of odd phases. (b) Physical positions of even phases.

There is a dead time between low side MOSFET turned OFF

and high side MOSFET turned ON. The inductor current goes

through the diode, which is parallel with high side MOSFET.

The calculation of the diode power loss can be taken by using the

following parameters: forward voltage drop of the body diode

VD , the source to drain body diode current ISD , the dead time

tD and switching frequency fsw

PDT = VD · ISD · tD · fsw . (10)

The losses in MOSFET also include reverse recovery loss,

output capacitor loss, and gate drive loss. These losses are much

smaller than switching loss.

F. PCB Board Topology

In order to minimize imbalance current among phases, the

structural differences between phases should be minimized. The

heat sink and inductor occupy a large volume in each phase.

Therefore, it would be congested if all 16 phases were placed

on a single circuit board. The 16 phases are separated into two

boards with each board having 8 phases, distributed as a star-

shape with optimized phase order. Fig. 10 shows the physical

phase positions of two boards with phase numbers labeled. One

board hosts the odd phases and is ordered with minimized para-

sitics. The other board hosts the even phases and is also ordered

with minimized parasitics. The capacitors in each high volt-

age side are composed of 16 film capacitors, with each one

placed close to its phase, to reduce harmonics in the circuit. The

star-shaped distribution is used to maintain the same physical

distances for each phase. The optimized phase order not only

keeps each phase under the same operation condition but also al-

lows precise harmonic elimination and current ripple reduction

in the high side capacitor.

III. EXPERIMENT AND RESULTS

Based on the above design methodology, a 16-phase bidirec-

tional dc/dc converter without current control loops has been

built and tested. The converter is connected with resistance load

instead of propulsion motor in the experiment. A photo of the

16-phase prototype is shown in Fig. 11(a), which is composed of

two circuit boards with each one hosting an 8-phase converter,

shown in Fig. 11(b).

Fig. 11. Photos of prototype interleaved dc/dc converter. (a) 16 phases on two
boards. (b) 8 phases on one board.

In the experimental hardware design, the following compo-

nents have been used: Power MOSFET IRFP4242; Gate driver

FAN7390; Inductor 5 µH, ETD54 core, and 3C94 material with

Litz wire winding; low side capacitor 30 µF; and high side ca-

pacitor 240 µF (composed of 16 film capacitors of 15 µF each).

The gate control signal has been implemented by applying an

FPGA board (National Instrument NI-7831R FPGA, 40 MHz)

programmed by a PC. The complete converter power rating is

45 kW and the switching frequency is 100 kHz.

The imbalance currents are mainly caused by the differences

in inductance and duty ratio among each phase. Fig. 12 shows the

inductor current of each phase and the total current before/after

the capacitor filter. The differences in current of each phase

are primarily caused by the differences in manufacturing of the

individual inductors. The differences in the duty ratio between

phases are very small because of the high accuracy of the driving

signals generated by the FPGA. The results show that based on

the proposed design discussed above, the imbalance current

among these phases is very small. Based on the test results, it is

concluded that in general a 1% difference in inductance causes a

2% or less current imbalance. The ripple of total current from 16

phases before filtering is much smaller than that of individual

phase currents. Therefore, it is possible to get a lower ripple

current in the low side of the converter using a small capacitor

filter.

To validate the effectiveness of this approach, an external

0.5% and 1% extra duty cycle has been applied to Phase 14 to

compare the inductor current with and without an incremented

duty cycle condition. Figs. 13–15 and Table III show the results

of this experiment. Phase 15, without an extra duty cycle, is cho-

sen to compare with Phase 14 in Table III since the inductance in

these two phases is very close. The results show that the current

imbalance is still acceptable and the performance is very good

even with an extra 1% duty cycle. Normally, the differences in

the duty ratio in an FPGA are very small, typically less than

0.25% in this application.

The power rating for this dc/dc converter is 45 kW with

2.82 kW in each phase. Due to equipment limits, only a 5.5 kW

experiment can be carried out in the laboratory. The efficiency,

as a function of input power for one stage boost/buck converter,

is shown in Fig. 16, operating up to rated power of 2.82 kW.

The efficiency of buck converter is a little higher than that of

boost converter. The efficiency values for 2 phases, 8 phases,

and 16 phases of boost converter is shown in Fig. 17, up to
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Fig. 12. Inductor current of each phase and their total current with/without capacitor filter.

Fig. 13. Phase current without extra duty cycle in Phase 14.

Fig. 14. Phase current with extra 0.5% duty cycle in Phase 14.

5.5 kW. The efficiency for 16 phases is high and there is a trend

that indicates that the efficiency will be higher if more power

were taken from it. The loss analysis is provided in Table IV for

the 16-phase boost converter. Most of the losses are from low

side MOSFETs in the boost converter and over 90% of these

losses are from switching losses, due to the large peak current

Fig. 15. Phase current with extra 1% duty cycle in Phase 14.

TABLE III
IMBALANCE CURRENT INDUCED BY DIFFERENTIAL DUTY RATIO

in the inductor and high switching frequency. The input/output

capacitor losses are categorized as “Other Losses.”

Two phases of the boost converter operating at 5.4 kW level

have been tested, with the results shown in Fig. 18. The low

side voltage is 172.8 V and the high side voltage is 236 V. The

peak inductor current, IL , is 50.3A. Vds1-1 and Vds2-1 are drain-

source voltages in the low side of MOSFETs in two phases.

There are high voltage spikes in those waveforms due to high

di/dt values. The efficiency for the two-phase boost converter is

94.9% at 5.4 kW.

Sixteen phases of theboost converter operating at 5.1 kW

have been tested with the results shown in Fig. 19. The low side

voltage is 163 V and the high side voltage is 195 V. The peak

inductor current, IL , is 14.22 A. The efficiency is 95.3%.
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Fig. 16. One stage boost/buck converter efficiency at various input powers.

Fig. 17. Efficiency of boost converter with 2, 8, and 16 phases versus various
input powers.

TABLE IV
LOSS DISTRIBUTION OF 16-PHASE BOOST CONVERTER OPERATED AT 100 KHZ

WITH 5.1 KW INPUT POWER

Fig. 18. Low side MOSFET voltage Vds1 and inductor current of two-phase
boost converter at 5.4 kW.

Fig. 19. Low side MOSFET voltage Vds1 and inductor current of 16-phase
boost converter at 5.1 kW.

Fig. 20. Experiment results for 16-phase boost converter connected with
ultracapacitor.

Fig. 21. Proposed ZVS/ZCS soft switch topology.

The ultracapacitor pack has been connected to the low voltage

side of the 16-phase dc/dc converter, and the high voltage side

is connected to a resistive load. The test results are shown in

Fig. 20. The input/output voltage and current data are collected

by the NI DAQ USB 6008. The input power is around 4.8 kW.



NI et al.: HIGH POWER CURRENT SENSORLESS BIDIRECTIONAL 16-PHASE INTERLEAVED DC-DC CONVERTER 1149

Fig. 22. Simulation results of the boost mode.

IV. ZVS/ZCS SOFT SWITCHING FOR DCM OPERATION

DCM operation has the advantage of zero current turn-ON.

However, this operation significantly increases turn-OFF losses

because the main switch is turned OFF at more than twice the av-

erage inductor current value. This drawback not only increases

power losses but also induces current/voltage parasitic ringing.

Soft switching techniques provide a solution for this problem.

A topology is proposed to achieve ZVS turn-OFF in the DCM

mode, as shown in Fig. 21.

To verify the theoretical analysis of the proposed topology, a

simulation model was built in PSpice for a one-stage converter

using the following design specifications: L = 5 µH, C3 =
C4 = 47 nF and a switching frequency fs = 100 kHz, VL = 90

V with Rload = 51 Ω which is connected to VH for boost mode

operation. The switches used in this simulation are MOSFET

IRFP4242’s manufactured by International Rectifier, Inc. The

simulation results are shown in Fig. 22.

In the boost mode, there are two different operation modes

compared with the hard switched topology: the period of tran-

sition from Q1 turn-OFF to Q2 turn-ON and the period of the

series LC resonance (inductor L and capacitor C3) after the in-

ductor current has reached zero. The auxiliary switch Q3 turns

ON before the main switch turns OFF, so that Q1 turns OFF at

zero voltage due to the capacitor C3. Q3 turns OFF before the

high side switch Q2 turns OFF. After the inductor current IL falls

to zero, the inductor L and capacitor C3 compose a series LC

resonant circuit, until C3 voltage VC 3 falls to zero, and then VC 3

will be clamped at zero. All switches in this circuit are turned

ON and OFF at zero voltage or zero current or both. The circuit

has a similar operation in the buck converter mode.

A 400 W hardware prototype was designed, built, and tested

to verify the proposed soft switch and evaluate its performance.

A 16.8 nF capacitor and IRFP4242 MOSFET are used in the

circuit. The frequency for main switch is 100 kHz. The control

signal is generated by the FPGA.

The result is shown in Fig. 23 operating in boost mode with-

out a snubber and external gate resistor. The input voltage is 50

V and the output voltage is 120 V. The efficiency is 92%. Similar

operation for hard switching was also tested and compared with

soft switching. Fig. 24 shows the experimental results for the

hard switch topology with a gate resistor of 2.7 ohm. The effi-

ciency is 91.5% for hard switching. Comparing soft switching

with hard switching, the efficiency does not improve signifi-

cantly, due to the losses in auxiliary circuit. However, the spike

voltage and high frequency voltage ringing of soft switching

have been reduced, even without an external gate resistor. The

noise of the soft switching gate signal is also smaller than that

of hard switching signal.

The proposed method can also improve efficiency, reduce the

heat sink size for the main switch and allow reduction of both

di/dt and dv/dt by increasing the gate drive resistor. In addition,

the soft switching circuit can reduce the voltage overshoot dur-

ing the main switch turn-OFF. Since the losses in the auxiliary

switches are very small, it is not necessary to use a heat sink for
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Fig. 23. Experiment result for proposed soft switch with Rg = 0 ohm.

Fig. 24. Experiment result for hard switch with Rg = 2.7 ohm.

them. This proposed method is under investigation in ongoing

research.

V. CONCLUSION

In the proposed design, the imbalance current among phases,

caused by difference of duty ratio and component mismatch, is

small and acceptable based on DCM operation, thus the cur-

rent control loop in each phase can be removed. This allows

cost-effective converters with a high number of phases. Another

advantage of DCM operation is that it can reduce the inductance

in each phase. The high current ripple in each phase associated

with DCM operation can be alleviated by interleaving. By in-

terleaving techniques, the power and current can be separated

in each phase, and the device stress can be reduced. The cur-

rent ripple is also reduced, particularly on the battery side, which

might improve the battery lifetime. The proposed method makes

it possible to increase the switching frequency and reduce filter

size requirements, which can give benefits through smaller vol-

ume, lower cost, and higher safety. Moreover, high efficiency

can be achieved with a proper design. The proposed design is

generic and is also applicable for other applications. Finally,

a novel ZVS/ZCS soft switch topology for DCM operation is

proposed and simulated to show its operability and improved

performance, with respect to issues such as switching losses

and voltage overshoot.
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