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HIGH-POWER FREE-ELECTRON LASERS DRIVEN BY

RF LINEAR ACCELERATORS

I. INTRODUCTION

About the time that the Strategic Defense Initiative (SDI) began,

in 1983, the free-electron laser was rapidly gaining acceptance as a

strong candidate for directed-energy applications. There are several

reasons for the increased interest. FELs provide direct conversion of

electron beam energy to electromagnetic radiation with relatively high

efficiency. Furthermore, the output wavelength can be made tunable by

varying the electron energy. High average power comes naturally; in

an amplifier mode, the FEL can operate without lenses, mirrors, or

other material objects in the high-power-density region of the FEL

interaction. Moreover, electron accelerators have been developed to

the point where extension to the power needed to drive FELs, though

extremely demanding in terms of cooling and beam handling, irvolves no

new principles. For these reasons, among others, the FEL became the

concept of choice for a ground-based laser system in 1986 [1].

Two distinct technologies are presently being pursued in the SDI

program to provide the high-energy electron beam that drives the FEL.

Induction accelerators, developed originally in the United States for

the electron injector in the ASTRON fusion program at Lawrence

Livermore National Laboratory (LLNL), can provide high beam current

capability [2], but require further development to achieve high

average power and low beam emittance (a measure of beam quality,

defined in Sect. III). Micrk'av (more commonly, "rf") linear

accelerators can provide high energy, high average power, and low

emittance, but need further development to achieve the required

combination of current and emittance.

It is not yet clear which electron beam technology is most

suitable for ballistic missile defense, especially when system,

reliability, and cost factors are considered. The SDI Organization is

therefore presently pursuing a parallel development approach until a

more educated choice can be made. LLNL is teamed with TRW to develop

the induction method, while Los Alamos National Laboratory (LANL) is

teamed with Boeing Aeorspace to pursue the rf method.

Manuscrip approved March 3, 1989.



Section II gives a general introduction to the FEL mechanism,

including the important concept of optical guiding, viz., where the

intense electron beam acts as a "light pipe" to guide and focus the

generated radiation beam. In Sect. III the design principles of rf

linacs are reviewed. The Boeing Aerospace linac is used to illustrate

some of the methods employed to enhance performance. Section IV gives

a summary of the Boeing wiggler and optical system, and the last

section includes a brief discussion of additional technical issues and

some recent LANL FEL results.

II. FEL MECHANISM

The first observation of the amplification of radiation (at 10 Pm

wavelength) using an rf linac was by John Madey's group at Stanford

University [3]. But years before, the microwave Ubitron device

developed by Robert Phillips at General Electric employed the same

mechanism (4]. The FEL field began to flourish during the late

1970's, and at this writing ten international FEL conferences have

been held, the most recent in Williamsburg, VA [5), and in Israel [61.

Figure 1 is a schematic of the basic FEL configuration. High-

energy electrons are injected along the z-axis between rows of magnets

which produce an alternating periodic field transverse to the axis.

The periodic magnetic ("wiggler") field causes the electrons to bunch

and oscillate in the (y-z) plane and emit radiation in the direction

of the electron motion. In Fig. 1, the radiation is plane polarized

with the electric vector in the plane of oscillation. The wavelength

X of the emitted radiation, for the fundamental resonance condition,

is

K2 2

where Xw is the period of the wiggler, K is a dimensionless measure of

the peak magnetic wiggler field Bw, and y is the electron total energy

in units of the rest energy, mc . With Bw in Tesla and X in meters,

K = 66.0 B X for linear polarization wigglers. Fields of 0.5 to 1 T

and wiggler periods from 2 to 5 cm yield visible light with electron

beams in the energy range from 100 to 200 MeV.
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An FEL may be operated in an amplifier or an oscillator mode. In

either case, once an electromagnetic wave is moving along the axis

with the polarization shown in Fig. 1, the wave, e-beam, and wiggler

field interact to produce a force in the z direction (called

"ponderomotive" force) which bunches the e-beam at the radiation

wavelength. Bunching increases the interaction and enhances the

coherent radiation intensity. If the beam current and wiggler field

are strong enough, the radiation intensity can grow exponentially

along the axis until saturation occurs. Moreover, a significant

fraction of the electrons can become trapped by the ponderomotive wave

and, if a "tapered" wiggler is employed as explained below, the

intensity can continue to grow well beyond the normal saturation

level.

Efficiency Enhancement

A tapered wiggler is a vital part of a high-power FEL. Loss of

resonance, due to the normal decrease of electron energy, is

compensated by spatially tapering the wiggler parameters, Bw and/or

X w to keep the output wavelength constant as the electron energy

decreases. In this way the intensity, efficiency, and spectral purity

are all improved. In an oscillator, tapering the wiggler reduces the

overall gain, hence the conditions for starting the oscillation become

an issue. However, the round-trip gain is normally sufficient to

start oscillation.

In addition to tapering the wiggler, the FEL efficiency can also

be enhanced by recovering energy from the spent e-beam. This can be

accomplished in an rf linac by directing the spent beam into one or

more sections of recovery waveguide structure. The recovery waveguide

is, in principle, identical to the accelerating waveguide. Energy is

coupled from the spent e-beam to an rf wave generated in the recovery

waveguide because the electrons are still highly bunched at the rf

frequency after emerging from the wiggler. This process is easily

observed in multi-section linacs by simply turning off the power in

one of the downstream sections and observing the rf power induced by

the beam. Proof-of-principle recovery experiments have been conducted

by the LANL group [7].
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Optical Guiding

Recently, the importance of focusing the FEL radiation by the

electron beam has been recognized [8,91. If the e-beam is intense--

several hundred amperes or more--then the refractive index in the

vicinity of the beam is sufficient to refract, guide, and contain the

FEL radiation, much like an optical fiber. The phenomena was first

analyzed for low-gain FELs where the focusing effect was of primary

interest. Recently, the effect has been studied in the small signal,

exponential growth regime, to obtain the asymptotic behavior of the

radiation. Optical guiding will clearly play a central role in high-

gain, high-power, FEL systems that require long wigglers; otherwise

the radiation would diffract out of the beam.

Use of the guiding mechanism together with a long wiggler makes

possible an FEL power amplifier design that is attractive from a

system viewpoint. The FEL radiation increases exponentially along the

axis until saturation occurs, at which point the wiggler is tapered to

enhance the efficiency. Sprangle et al. give example designs of such

high-power, high-gain amplifiers for both rf and induction linacs [9].

Pulse Slippage

In general, the axial velocity of the beam pulses and the velocity

of the radiation packets are not identical, although they are both

close to the velocity of light. Because the micropulses from an rf

linac are short (typically 10 to 30 ps) this velocity difference leads

to the possibility of pulse "slippage," wherein the beam pulse may lag

(or lead) the radiation packet produced. In extreme cases, this

slippage can significantly reduce the gain and efficiency of the FEL.

The effect can be estimated as follows.

To obtain the effective velocity (group velocity) of the wave, we

use the dispersion relation

2 ckZ) 2 (2)

4



where the longitudinal wave number is kz = 2n/X, the transverse wave

number is kt = n/rL, and rL is the radius of the radiation beam with

frequency (. Taking the partial derivative of w with respect to k

and using kz >> kt, we obtain the group velocity

2
vg/c = 1 - (1/2 )(X/2 rL) (3)

The axial electron velocity, vz, is approximately

v c=1- 1/y, (4)

where yz = y/T1+k2. The slippage distance, s, defined positive for lagging

electrons, is then

s = (L/c)(v - vz) = (L/2)((1/y Z) 2 - (X/2rL)2), (5)

where L is the wiggler interaction length. From Eq. (5) it can be

seen that slippage is eliminated if the condition

rL = (1+K2 )-1/2 Xy/2, (6)

is satisfied.

We use two cases to illustrate the magnitude of slippage.

Preliminary designs for a strategic-defense FEL indicate that an

interaction length as long as 80 m may be used. For X = 1 m, K = 1,

y = 235 (120 Mev), and rL = 0.5 mm, this gives s = 1 mm, roughly 10%

of the micropulse length. For a quite different application, heating

fusion plasma with an rf linac-driven FEL, we obtain, for X = 0.5 mm,

K = 1, y = 30 (15 MeV), and rL = 0.5 cm, the result, s = -0.1 mm, for

an interaction length of I m. In this case the radiation packet lags

the electron beam, and the slippage is small, approaching zero with

increasing K. Clearly slippage needs to be checked for each

application, particularly if very high efficiency is desired.

However, in many cases it is negligible or can be minimized by

adjusting the parameters to satisfy the condition in Eq. (6).
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III. RF LINEAR ACCELERATORS

The most widely used electron linac design, the traveling-wave

linac, was pioneered at Stanford University in the late 1940's, and is

the basis for the two-mile long, 50-GeV linac used for high energy

physics research at the Stanford Linear Accelerator Center (SLAC)

[101. Early standing-wave linacs for research were developed at

M.I.T. and Yale for electrons, and at Berkeley for protons. Later,

during the 1960's, the "side-coupled" standing-wave design was

pioneered at Los Alamos, and was used for the half-mile long, 800-MeV

Los Alamos Meson Physics Facility, LAMPF [111]. Thousands of electron

linacs in the 3 to 30 MeV range have been built for radiation

processing, x-ray analysis, cancer therapy, and other applications

112]. The Yale linac is especially noteworthy because it's separate-

cavity, 600-MHz design 1131 is similar to that proposed by Boeing for

the White Sands Missile Range FEL linac. However, none of the early

linacs had beam currents sufficient to drive a high-power FEL.

Figure 2 shows a section of the Boeing rf linac structure, used

here as an example structure. Both traveling-wave and standing-wave

linacs operate by designing the accelerator to make the phase velocity

of the wave equal to the particle velocity (a standing wave can be

analyzed as opposing traveling waves). Bunches of particles are

injected on the crest of the forward wave and accelerated through the

entire length of the structure. Multi-section linacs frequently

employ one high-power amplifier per section, and phasing between

sections is easily accomplished by adjusting the phase at each

amplifier input. The choice of rf frequency and the principal design

parameters are normally determined by optimization studies based on

cost, desired performance, available rf sources, and other factors.

In most cases rf power sources for linacs are klystrons. The

development of klystrons to a large degree has been driven by the

development of linacs. A famous example is the development of the

klystron at Stanford University after WW-II. The Stanford group

leaped from the then-available kilowatt level to more than i megawatt

in one jump! Early klystrons were pulsed, with a typical duty factor
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of 0.1%. Research needs were adequately met with pulsed accelerators,

and they offered a cost-effective way to achieve high energy. Gradual

development, recently spurred by the prospect of large linear

colliders for high-energy physics research, has resulted in reliable 3

GHz tubes operating at the 50 MW level; and research klystrons have

achieved 150 MW peak [141.

As with nuclear and high-energy physics, FEL research has been

conducted initially with pulsed systems. High average power

introduces a new set of problems, requiring advanced cooling

techniques and careful beam handling. A great deal of experience with

high-power rf linacs can be adapted to FEL linacs. For example, both

SLAC and LAMPF are capable of hundreds of kilowatts of average beam

power. A Chalk River group has operated a prototype cw linac section

at 3 MW average rf input power [15]; and in recent years a number of

cw klystrons have been developed [161.

The electron beam from a pulsed rf linac consists of a train of

"micropulses." The sequence of micropulses forms the "macropulse."

The micropulse duration is a small fraction of the rf period, and is

repeated at the rf frequency or, for FEL linacs, at a subharmonic of

the rf frequency. The macropulse is a train of hundreds or thousands

of micropulses or ultimately, a continuous (cw) train of micropulses.

All of this is shown schematically in Fig. 3, together with the

radiation packets associated with the Boeing FEL oscillator.

Beam Voltage and Current

Linac design is most simply described by referring to "Ohm's law"

for traveling-wave, uniform-structure linacs:

V/V = 1 - (1/21 M), where V° = nk(PRL)2 (7)

Here V is the voltage acquired through the linac having n sections

with beam current, I, averaged over the macropulse, V0 is the

"unloaded" (low current) voltage, P is the power input to each

section, L is the section length, R is the shunt impedance per unit

length, and kI and Im are defined below. It is assumed in these
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simplified formulas that the structure has been designed to make the

phase velocity equal to that of light, and that the electrons are

bunched at the peak of the sine wave.

The linear decrease of V versus I is known as the linac "load

line." Maximum beam power (IV) and efficiency (IV/nP) is obtained

when I = Im, in which case V = V0/2. This current, Im, is obtained

from

Im  k2 (P/RL)
1/2  (8)

where k1 = (2/*L)
1/2(1-e-(L ) and k2 = (aL/2)l/2(1-e- OL)/(aL+e- L-1)

are functions of aL only, for the uniform-structure case. Here a is

the attenuation per unit length of the effective axial field strength,

E, as a result of wall losses. That is, E varies as exp(-az), where a

is related to the resonant 0 by a = w/2Qv and v is the group
g g

velocity of the rf wave with angular frequency w. Convenient units

are V in megavolts, P in megawatts, L in meters, R in megohms per

meter, I in amperes, and a in nepers/meter.

These formulas illustrate some of the performance tradeoffs

involved in linac design. If energy is more important than current,

the structure may be designed to make aL = 1.2, in which case k, peaks

at 0.9 and, for example, a 12 MV klystron powering a 3m section with a

50 MQ/m shunt impedance would provide 21 MV per section at Im = 0.3 A.

For high-current FEL applications, otL may be reduced by using larger

apertures, reducing the frequency, and using shorter sections. This

procedure increases the beam current capability and efficiency with a

modest sacrifice in voltage. For example, if aL = 0.4, Im is doubled

while V0 is reduced by only 18%, and the theoretical maximum

efficiency, ImVo/ 2P = k1k2/2, is an impressive 77%. In general, rf

linacs specifically designed for high current are very efficient in

converting rf power to beam power.



Structure Variations and Beam-Breakup

Structure details modify the above analysis somewhat. For

example, Eqs. (7) and (8) refer to a uniform structure in which all

cells are identical. The structure parameters R, v , and a, which

depend primarily on the aperture, are constant. In practice, a

tapered structure, in which the hole size decreases from cell to cell

(or in groups), is normally designed to maintain the field strength

more nearly constant along the axis. In this case the parameters vary

and the structure is slightly more costly to fabricate. Equations (7)

and (8) remain the same, but k1 and k2 change form. Standing-wave

structures exhibit somewhat higher shunt impedance than traveling-wave

structures (other parameters remaining the same), and require a

different analysis. Figure 4 shows the load line for the Boeing

linac, which is a tapered traveling-wave structure (17].

A tapered structure has another major benefit: it reduces the

growth of the beam-breakup (BBU) instability. First observed at SLAC,

BBU is a virulent instability for electron linacs [18J. Off-axis

electrons excite higher order electromagnetic modes in the

accelerating waveguide which have transverse electric fields. The

instability is often sufficient to deflect the beam into the walls.

Growth depends on details of the modes and increases with increasing

beam current. Tapering the structure reduces the growth rate.

Focusing also helps, as does a high quality, on-axis injected beam.

Means for reducing BBU in the Boeing linac and in proposed White Sands

designs are described below.

Pulse Considerations

The pulse structure of a linac depends on the application. High

peak power is required for high-energy physics research, and moderate

average power can be obtained at reasonable cost. Similar reasoning

applies to FEL research. Substantial reductions in cost can be

realized by using peak power appropriate to the FEL physics while

reducing the average power to the level necessary for adequate data

rate. In any event, the rf pulse duration must be longer than the

time required to fill the accelerator with rf energy. This "fill

time" is given by L/v and is typically -1 us. The fill time is thusg

not a limitation unless the macropulse is very short.
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Additional considerations dictate the pulse structure for an FEL

linac. To achieve high gain the instantaneous beam current in the

micropulse must be a few hundred amperes or more. If every rf cycle

("bucket") were filled with electrons at this level, the average

macropulse current, I, would be far greater than necessary, and very

costly. To avoid this condition and still provide high gain, the

injection system is designed to operate at a subharmonic of the rf

frequency, filling only a fraction of the available rf buckets. The

peak current, Ip, is then given by Ip = hI(2n/#), where h is the

subharmonic number (available rf buckets/filled buckets), and A+ is

the phase width of the micropulse. Judicious choice of h and careful

design to achieve small A+ can then yield a high micropulse current

while keeping the macropulse current at a reasonable level.

For an FEL oscillator further conditions are imposed on the pulse

structure. In particular, the macropulse duration must be longer than

the buildup time of the oscillator. This time depends on mirror

reflectivity, outcoupling, and other elements in the optical system,

and frequently is tens of microseconds or more (60 Vs in the Boeing

FEL oscillator). Also, the period between micropulses must be

precisely equal to, or a multiple of, the round-trip time in the FEL

cavity to guarantee synchronism between the radiation packets and the

electron pulses, as shown in Fig. 3.

Injector Systems

Linac injector systems vary from simple electron guns to

sophisticated bunching systems such as the Boeing system, shown in

Fig. 5. For FELs, the highest possible current density must be used

at the source to ensure a dense, small-diameter beam; aberrations must

be kept to a minimum, so that particle trajectories are smooth and

anearly laminar with a minimum number of crossing trajectories. Also

focusing elements must be carefully designed to balance space charge

forces without over-focusing. A complete injector system generally

includes an electron gun, one or more prebunchers, and a high-power

tapered-phase-velocity buncher/accelerator section. The micropulse

current from well designed systems can be two orders of magnitude

greater than the peak current available from the electron gun.
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The design of high-current injector systems is seriously

complicated by space-charge forces. These forces cause the beam to

expand in both the transverse and longitudinal directions, and degrade

the beam quality. Once the energy reaches 2 to 3 MeV, the

relativistic cancellation of the self-electric repulsive force by the

self-magnetic attractive force makes the beam relatively rigid, and

space charge can then be largely neglected.

An interesting new type of injector employs laser-initiated

photo-emission from the cathode. Research conducted at LANL indicates

that substantially better performance results from combining the

higher current density available from laser-induced cathode emission

with placement of the cathode directly in a microwave cavity having a

high electric field [191. This "photoinjector" must be further

developed to demonstrate reliability and adequate lifetime, but in any

case is a promising venture. Figure 6 shows an experimental set-up

used by LANL for this purpose.

Beam Quality

Emittance, a key measure of beam quality, can be loosely

described as the product of beam diameter and angular divergence.

More precisely, Eq. (9) gives a widely used definition of the

"envelope"l or "edge" emittance, c, and the normalized emittance, en'

En = 0ye = 43y[<x 2><x'2> - <xx'> 2 ]1 / 2, (9)

where x is the coordinate of a particle in the beam, x' = dx/dz, and

< > indicates averaging over the entire beam (201. A separate

equation, with y substituted for x, is written for the y plane (z is

the axial coordinate).

The importance of normalized emittance derives from the fact that

it remains constant through the entire linac and beam transport system

for linear focusing systems; as the energy (0y) increases, c

decreases, keeping cn constant. Thus, except for ever-present small

errors that cause some emittance growth, a design specification on the

normalized linac output emittance can be considered a specification of

the required injector system.

11



Gain, efficiency and spectral purity of the FEL suffer from

finite electron beam energy spread. In general, energy spread in rf

linacs comes from five sources: (1) inherent spread introduced by the

injector bunching system, typically 0.2-0.3 MV; (2) spread due to

longitudinal wake fields induced by the beam; (3) spread due to the

finite phase width, A#, of the micropulse in the linac structure; (4)

stability and pulse flatness of the power applied to the accelerating

waveguide; and (5) stability of the beam current, since V (Eq. (7))

varies directly with current. With careful design these effects can

be held to the desired level, < 1%. In many cases, energy spread due

to wake fields can be reduced by phasing the micropulses slightly

ahead of the sine-wave peak in the accelerator.

The Boeing L-Band Linac

Linac development at Boeing began in the 1960's with the

installation of a 20-MeV, S-band linac designed for radiation effect

studies. Upgraded in 1980 and 1983, the linac was used for early FEL

experiments in 1982 [21]. Installation of the L-band linac for

research on a high-power, visible-light FEL began in 1985 and was

completed in 1987. For this purpose the Physical Sciences Center at

Boeing was enlarged to provide a new 12 m by 70 m FEL/linac room. A

schematic of the facility is shown in Fig. 8. The first electron

beams were obtained in 1986 and, with an incomplete optical system,

spontaneous emission was observed in May, 1987. Lasing with red light

was obtained in April, 1988.

Design specifications for the L-band accelerator were evaluated

in a preliminary multiparameter FEL computer model (22]. The

principal linac specifications are given in the first column of Table

I and the major laser oscillator parameters are given in Table II.

Early calculations of the FEL gain as a function of electron energy

and emittance are shown in Fig. 7. These calculations, while

approximate, show the strong dependence of gain on beam emittance.

The nominal design point, also shown, was chosen slightly high in

energy to allow for some uncertainty in the final beam emittance.

12



The L-band linac has a number of features which enable the Boeing

group to produce an electron beam suitable for FEL oscillator

experiments. Some of the important features are summarized below:

" The accelerating waveguide is a constant-gradient, traveling-wave

structure, with six 2.9 m-long sections. The load line (Fig. 4)

accommodates a wide range of voltage and current. The cell

apertures are large (5 to 7 cm), larger than simple scaling of S-

band apertures, and the rf phase shift per cell is 3n/4 radians.

These features improve the beam stability to BBU and wakefield

effects by reducing the number of higher order modes, and thereby

increase the beam current capability [23].

o The deleterious effect of higher modes is further reduced by

lowering their 0 with absorbers placed between the accelerating

sections. This technique was developed at Boeing with prototype

studies [24).

" Shunt impedance, 40 MQ/m, is enhanced by contouring the interior

shape of the cavities [231.

o The injector system (Fig. 5) employs a 100 keV SLAC-type gun, two

low-power subharmonic prebunchers, and a high-power, tapered-

phase-velocity buncher/accelerator section. The system was

optimized with extensive use of computer calculations, primarily

using EGUN, ORBIT, and MASK [25].

o The klystron modulators employ closed-loop phase and amplitude

stabilizing circuits to level the rf power.

High-Current Linac Survey

Very few linacs have the peak current necessary for advanced FEL

research, primarily because of the sophistication required in the

injector system. Table I gives a list of rf linacs with peak

micropulse current exceeding 100 A. Assuming the energy spread is

small (<Ug), the most important parameters are peak current and

emittance. These parameters are combined in the beam brightness, B.

13



Brightness is a frequently used figure of merit proportional to

current divided by the square of emittance. Unfortunately, the

constant multiplier in the definition for brightness varies in the

literature. The definition used here, 21 p/(n) 2, is tied to the

basic definition of optical brightness [26].

The Boeing linac is unique in having the energy necessary for

visible light as well as high brightness. The 40 MeV injector for the

Stanford Linear Collider [27] and PHERMEX are also included in

Table I. PHERMEX, primarily used for pulsed radiographic analysis at

LANL, is listed because it provides the premier example of shifting to

ultra-low frequency (50 MHz) combined with transient operation to

obtain very high charge per pulse [28]. It cannot be used for FEL

research because of the large energy spread. The linacs at the

University of Osaka [29] and the Argonne National Laboratory [30] are

used for single pulse, special purpose applications such as transient

chemical studies and advanced accelerator research. The Los Alamos

accelerator is discussed in the last section in connection with their

recent FEL results.

IV. BOEING OPTICAL RESONATOR AND WIGGLER

Our review would not be complete without describing some of the

development issues inherent in the optical system. Here again we use

the Boeing design for this purpose. A ring resonator geometry, shown

schematically in Fig. 8, was chosen for the Boeing FEL 1321. The

principal advantage of the ring geometry is that grazing incidence

mirrors can be used at the input and output of the FEL wiggler, where

the power density is high and optical damage would occur on normal

incident surfaces. The grazing angle is small, about 30, and the

mirrors have a hyperboloid shape. Two paraboloids and two flats

complete the major optics of the resonator. One of the flats is a

beamsplitter to provide out-coupling, and both flats are employed in a

precision alignment system.
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The resonator is large by laser standards, 50 m between hyper-

boloids and 133 m total path length. The calculated optical beam

diameter is 1.4 mm at the wiggler midpoint. At the grazing hyper-

boloids it is ten times larger, and at the paraboloids the diameter is

a tolerable 10 cm. A vacuum system connected directly to the linac

vacuum contains the FEL radiation and resonator optics, except for the

outcoupled radiation, which is passed to air through a fused silica

window.

The 5 m long wiggler employs samarium cobalt permanent magnets

combined with vanadium permendur pole pieces to give a 10 kG magnetic

field, unusually high for a visible-light wiggler [331. With 220

periods of 2.2 cm each, the field is tapered as described in Sect. II

to increase the FEL power and efficiency. Adjustment of the taper, up

to 12%, is accomplished by building the wiggler in ten 50 cm segments

and adjusting the magnetic gap of each segment. The nominal gap is

4.8 mm, about 2.5 times the diameter of the radiation beam at the

wiggler ends.

A technical issue common to all wigglers is stringent tolerances,

necessary to ensure that the electron beam does not wander off axis or

shift in phase. Focusing of the electrons is aided by canting the

pole pieces slightly, which adds a quadrupole component to the

magnetic field. This procedure has the net effect of adding focusing

in the plane of the wiggler while sacrificing some of the natural

focusing in the other plane, to give a balanced result.

The electron beam is brought onto the axis of the wiggler by means

of the last bending magnet in a series of bending magnets and quadru-

pole focusing magnets. These magnets, together with collimators,

steering coils, and numerous beam diagnostics, comprise the beam

transport system from the linac exit to the wiggler. After traversing

the wiggler, the electrons are bent downward in a magnetic

spectrometer so that measurements can be made of the electron energy

spectrum, as well as to deflect the beam away from sensitive optical

components.
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V. ISSUES AND PLANS

The Boeing group achieved lasing with red light in April, 1988

134). This was done using an optical system of normal-incidence

mirrors while waiting for installation of the more complex ring

resonator system. Optical damage was avoided by reducing the

micropulse rate to lower the power, which was =2 kW averaged over an

80 us macropulse. The peak power was reported to be 40 MW, with =1Z

of the electron energy converted into red light. Since this is the

first visible-light rf-driven FEL to be operated with such high beam

currents, a great deal of new operating experience remains. Numerous

experiments must be performed on alignment, pulse stability,

sidebands, modes of oscillation and harmonics. Harmonics in the

ultraviolet, for example, are known to be more damaging to optical

elements than visible light.

For a weapon-grade FEL system to be proposed for installation at

White Sands a number of improvements are necessary. An important

improvement in the linac is to adopt a lower operating frequency,

specifically near 400 MHz, and shift to a standing-wave, independent-

cavity, design rather than traveling wave. These changes will allow

additional increases in the beam current and power handling

capability, and will further reduce wake field effects and improve the

stability to BBU. The Boeing group is currently installing an

accelerator test bed known as the MCTD, designed to operate at an

impressive 1 A average current at about 10 MeV. It will employ four

4 MW cw klystrons to power eight 433 MHz cavities, and will also be

used to test a laser-driven photoinjector.

An equally major change is proposed for the FEL optical system.

The higher currents available from the linac will allow a power

amplifier FEL design to be used instead of the oscillator which is

appropriate to the present linac. When combined with the optical

guiding described in Sect. II, which occurs naturally in the presence

of high-current, low-emittance beams, the result is an attractive

design [9]. Driven by a separate low-power oscillator, the

combination constitutes a Master-Oscillator-Power-Amplifier (MOPA)
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system. Since the optical beam is maintained at a small radius over a

much longer distance, a long wiggler can be employed, yielding very

high gain. A MOPA is somewhat more complex than an oscillator system,

and potentially introduces more stringent tolerances on the wiggler

and electron beam. These issues and others are currently being

explored theoretically and with prototype experimental development.

The Los Alamos FEL group has conducted an extensive program of

research and development at a longer wavelength, typically -11 Um.

Recently the LANL group reported an FEL extraction efficiency as high

as 4.4% in an oscillator configuration [31]. The LANL group made

significant improvements in the accelerator and beam transport system

and incorporated a special short wiggler ahead of the main wiggler to

prebunch the electrons as they enter the wiggler. They also report a

factor of two increase in the efficiency and cavity power by using the

wiggler prebuncher. Two different wigglers were used, one with 12%

taper and the other 30%. They studied the sidebands and found they

could be suppressed by adjusting the length of the optical cavity to

detune the cavity. In general, they found reasonable agreement with

FEL modeling predictions.

In a large research program of this kind many important questions

must be addressed which are beyond the scope of this review. These

include atmospheric propagation, space mirror development, and

vulnerability to countermeasures, to mention only three. However, it

is clear that the FEL itself is well on the way to achieving its

goals. A great deal of progress has been made in the development of

tunable, high-power, visible-light FELs for strategic defense or for

any application requiring such a powerful source.
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TABLE I HIGH-CURRENT RF LINACS

Linac Boeing LANL Osaka ANL SLAC PHERMEX

(Purpose) (FEL) (FEL) (Multi) (Multi) (Injector) (Note 1)

Energy (MeV) 120 21 34 22 40 26

Freq. (MHz) 1300 1300 1300 1300 2856 50

I (A) 250 300 600 1000 600 400P

Charge (nC) 4 4 10 25 8 1300

c (mm-mrad) 50 120 67 480 150 260

B (A/m2rad 2 )x10 9  20 4 28 0.9 5 1

dE/E (Z) 1 1 1 1 1 10-30

T (us) 200 120 Note 2 Note 2 1 0.2

Subharmonic 36 60 12 12 16 1

Rate (Hz) 1 10 720 1000 180 0.1

Reference 17 31 29 30 27 28

Symbols: I = peak micropulse current; T = macropulse duration;

cn = normalized edge emittance = 
40y[<x 2><x 2>-<xx> 211/2

B = brightness = 21 p/(en )2 (Ref. 26).

Note 1: LANL facility used primarily for radiographic analysis.
Note 2: Produces a single micropulse, at the rate noted.

Table II BOEING FEL OSCILLATOR DESIGN PARAMETERS

WIGGLER OPTICAL CAVITY

Length (m) 5 Length (m) 55

Wavelength (cm) 2.18 Rad. Diam., Wiggler (mm) 1.4

Taper (%) 0 to 12 Small Signal Gain (%) 10 to 20

Peak Field (kG) 10.2 Startup Time (us) 60

Number Periods 220 Macropulse Output (kW) 30
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output
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X 
magnets

input Xk
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S e -beam

Y

Fig. 1. Basic elements of a free-electron laser. Electrons are
injected into an alternating periodic magnetic field produced by
wiggler magnets as shown. The magnet array causes the electrons to

oscillate in the y-z plane, parallel to the electric field, E, of the
radiation. The transverse energy of the electrons is thereby coupled
to, and amplifies, the radiation field. Although the radiation is
shown at the wiggler output for simplicity, the interaction occurs

over the entire length of the wiggler.

OUTPUT RF

WINDOW & LOAD

INPUT RF COUPLER

STEERING
MAGNET

FOCUSING

MAGNT-, -HIGHER MODE ABSORBER

VACUUM STATION

POSITION MONITOR

Fig. 2. Accelerator waveguide section, one of six, for the Boeing L-

band linac. The design is typical of traveling-wave linac structures

except for the contoured cells. The addition of high-order-mode

probes between sections reduces the growth of deleterious transverse

deflection modes.
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-- RF LINAC MACROPULSE------

(ca)
" - ---- MIRROR-7

SUBHARMONIC NUMER
(C)

(d)

Fig. 3. Pulse timing sequence shows the time scale from macropulse to
micropulse (values refer to the Boeing linac): (a) beam macropulse
duration 200 us; (b) schematic of FEL resonator mirrors, showing
synchronization between radiation packets and beam micropulses.
Effective mirror one-way transit time 221 ns; (c) beam micropulses
occupy a maximum of 1 out of every 36 rf "buckets," for a spacing of
27.7 ns; (d) beam micropulse duration about 20 ps. Linac rf
frequency: 1.3 GHz; macropulse repetition rate: 1 Hz.

a 1.0 , , , , , ,

0.8 16MW
1Z 12 -FEL DESIGNz4

i" 0.6 10 ENERGY

m KLYSTRON

w 0.4 PEAK POWER
.J

a- 00.2

0 40 80 120 160

KINETIC ENERGY (MeV)

Fig. 4. RF linacs have a "load line" characteristic of the design
parameters. Available beam current, averaged over the macropulse,
decreases with kinetic energy. The Boeing design energy, 120 MeV,
occurs at a current of 0.2 to 0.4 A, depending on applied klystron
power (Ref. 17).
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1St ACCELERATOR SECTION

12MW KLYSTRONINPUT- ..

EMITTANCE MEASUREMENT
TRANSVERSE

108 MHz FMODE ABSORBER

PREBUNCHER1300 MHz BUNCI-ER

433 MHz PREBUN' HER

CURRENT MONITOR

Fig. 5. The Boeing injector system, shown here in schematic form, is

typical of advanced high-current linac injectors. Beam micropulses

are formed by (a) pulsing the grid in the electron gun; (b) pre-

bunching in two stages, at 108 MHz and again at 433 MHz; and (c) final
bunching in a 1300-Hz high-power tapered-velocity buncher/accelerator

section. The subharmonic number is set by pulsing the gun grid; the

lover limit, 36, is determined by the charge per pulse and the maximum

allowed macropulse current. Coils (not shown) are located along the
injector axis to provide an axial magnetic field up to 500 G to help

prevent the beam from spreading due to space charge. Electron gun

voltage: 100 W; output energy: 2 MeV (Ref. 17).

TWO SEPARATELY WALL CURRENT
PHASED CAVITIES MONITOR

LASER QUARTZ
EVAPORATORS BE AM SCREN

MIRRO

_ WALL CURRENT

P ITOCATIIODE MON ITOR

PREPARATI ON-
CHAMER SCREEN

S, SOLE I PS- MAGNI TI C

SPECTROMETER

GUARTZ SCREEN
AN PEPER-
POT PLATE

Fig. 6. Experimental setup used for photoinjector development at
LANL. The schematic shown is for a two-cavity experiment (Ref. 19).

Drawing courtesy of LANL.
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e-BEAM ENERGY (MeV)

Fig. 7. FEL gain per pass is a sensitive function of linac beam
emittance and kinetic energy. These design calculations were based on
0.5-um radiation from a 5-m long wiggler, using 5% extraction and a
100-A micropulse (Ref. 22). Shifting the design point off the peak
allows for some uncertainty in the achievable emittance.

Fig. 8. Schematic layout of the Boeing facility. The 5-section,

120 MeV linac with klystrons and modulators is shown in the lover

right. The optical design is based on a ring resonator, shown above

the ltnac, which employs grazing-incidence hyperbolotd mirrors 50 m

apart to avoid mirror damage (Ref. 32]. The 5-m long wiggler is

placed between the mirrors. The beam is transported to the wiggler

through a series of bending and focusing magnets.
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