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I.   INTRODUCTION  

For high-power converters with ratings above 10 MW substantial attention is paid to the efficiency. The driving factor is not 

only the problem to remove the heat caused by the losses, but also the cost for the energy losses, as this cost is usually 

accounted for when evaluating the total cost for the converter in these applications [1]. A very promising converter topology in 

this power range is the modular multilevel converter (M2C) [2]-[5], which can provide excellent output waveforms without 

impairing efficiency. In fact, efficiencies in the range of 99.5 % have been indicated for High-Voltage Direct-Current (HVDC) 

converters [1]. No other Voltage Source Converter (VSC) topology for HVDC application has shown such high efficiencies. 

This holds for two-level VSCs, diode-clamped multilevel VSCs and capacitor-clamped multilevel VSCs. Additionally, the two 

latter suffer from very complicated high-voltage design problems [1]. The reason for the high efficiency of the M2C is that very 

low switching frequencies can be used, e.g. 150 Hz for a converter operating at a fundamental frequency of 50 Hz. At such low 

switching frequencies, the on-state losses dominate. The question, therefore, arises what can be done in the future to reduce 

these losses and to increase the efficiency even more. A very tempting solution is to use silicon carbide (SiC) switches [6]-[8], 

which potentially could have substantially lower conduction losses than current silicon Insulated Gate Bipolar Transistors 



  

(IGBTs). Replacing the Si IGBT with a SiC counterpart is possible but not necessarily uncomplicated. A Si n-channel IGBT is 

fabricated starting with a p-type substrate. Such substrates are also available in SiC, but the resistivity is far too high for to be 

used in components aiming for high-power applications [9]-[11]. Another problem with fabricating a SiC IGBT is to form a 

good and stable gate oxide layer enabling low channel resistivities [9], [11]. Finally, the SiC IGBT is a bipolar component, and 

as such it is prone to suffer from parameter degradation due to stacking faults. Even if all these problems are dealt with by many 

highly qualified scientists, it does not seem likely that SiC IGBTs are on the market within 10 years. Nevertheless, several 

excellent attempts have been made to fabricate laboratory-scale SiC IGBTs with blocking voltages of 5 kV [10], 7.5 kV [12] 

and 10 kV [13]. Keeping the fabrication problems of SiC IGBTs in mind, however,  the two most realistic switch candidates are 

the SiC Junction Field Effect Transistor (JFET) and the SiC Bipolar Junction Transistor (BJT) since these two devices are 

already in series production [8], [14]-[19]. The voltage and current ratings of the devices are, however, not sufficiently high for 

application in HVDC converters, but with the rapid development in this field it is not unrealistic to foresee substantially 

increased ratings within 5 years. Additionally, the devices in [8], [14]-[19] have not been tested extensively in commercial 

products. This would be a reasonable next step before considering application in HVDC converters. Unfortunately, both 

devices are challenging from a systems perspective. The SiC JFET, on the one hand, is a normally-on component if it is 

optimized for minimum on-state losses [16]. The SiC BJT, on the other hand, requires a continuous base current as long as the 

collector current flows [15], [21]. This is a serious drawback in high-voltage applications, since supply transformers for the 

base-drive circuit are very costly in high-voltage applications, and since the base current is required when the voltage across the 

BJT is almost zero. With this in mind, the SiC JFET seems to be the most promising candidate. Additionally, no anti-parallel 

diodes are necessary if the JFETs are operated as diodes when the valve current is negative [22]-[23]. Consequently, a certain 

amount of the cost increase imposed by the, potentially costly, SiC devices can be reduced at the same time as the complexity is 

reduced and the availability can be increased. In the present paper the possibility to use SiC JFETs in high-power M2Cs will be 

explored. The investigation will be made partly as analytical considerations, especially the loss and efficiency estimations, and 

partly experimentally on an existing M2C prototype. 

II.   DESCRIPTION OF THE M2C CONVERTER 

A.   Main Principles 

The M2C converter was proposed by Marquardt and Lesnicar in 2003 [24], while several other research groups have 

investigated a variety of different aspects dealing with this converter [3], [25]-[27]. In fact, the basic circuit, using voltage 

sources instead of capacitors, was already proposed by Alesina et al. in 1981 [28]. The main advantage of this multilevel design 

seems to be the very low switching frequency in comparison to the conventional 2-level converters [1]. The low switching 



  

frequency causes lower switching losses and the dominant part of the total converter losses is the conduction losses of the 

devices. An estimation of the power losses and the efficiency as well of a realistic, high-power converter which totally consists 

of SiC JFETs, are presented in Section VI. 

A schematic of a three-phase M2C is shown in Figure 1(a). Each phase-leg consists of two arms: the upper and the lower one 

connected in series. The vital part of this converter is the sub-modules which are connected in series in each arm and in series 

with a small inductor LARM. This inductor is connected in order to take up the voltage difference, which is produced when a 

submodule is switched in or out. A schematic of a single sub-module is presented in Figure 1(b) consisting of two switches with 

two antiparallel diodes and the capacitor bank. In this figure the switches are drawn as MOSFETs (as in the laboratory 

prototype), but for a full-scale converter typically high-voltage IGBTs would be chosen. 

 

(a) (b)
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Fig. 1: (a) Schematic of the M2C, (b) Single sub-module. 

 
From the operation point of view, the maximum number of the voltage levels on the output depends on the number of the 

sub-modules per arm, N. The output voltage is created by the insertion and bypassing of the sub-module capacitors according to 

a switching pattern created by the modulator. It is important to make sure that the individual capacitor voltages Uc of the sub-

modules are properly balanced. Additionally, the sum of all capacitor voltages of the upper arm must be kept the same as that of 

the lower arm. Finally, the circulating currents in the arms must be controlled. Several control methods dealing with the issues 

mentioned above have been suggested for the M2C. In this investigation, however, a simple, yet well-performing, open-loop 

method has been chosen.  

 
B.   Open-loop control 

In order to investigate the behavior of the M2C when one of the sub-modules is replaced with the SiC counterpart, a simple 

control method is utilized. This control method is the so-called open-loop control for the M2C converter [29]. A closed-loop 



  

control system requires measurement of the total arm voltages as well as those of all sub-modules, which implies a high amount 

of exchanged data between the controller and the modulator, especially for converters with a high number of sub-modules. On 

the other hand, the open-loop system estimates the total capacitor voltage, namely the stored energy in the arm, by measuring 

other quantities, easier to interface with the controller. The open-loop control system is fully described in [29]. 

III.   EXPECTED PERFORMANCE IMPROVEMENTS WITH SIC SWITCHES 

Due to the rapid development and improvement of the SiC material, device fabrication techniques, design aspects of the 

devices and various relative issues, the SiC power devices have come closer to the commercialization stage [19]-[20], [22], 

[30]. Power semiconductor switches built in SiC (e.g. SiC JFETs, SiC BJT and SiC MOSFETs) are already offered as restricted 

prototype samples by some companies for evaluation, while SiC Schottky diodes are commercially available since a few years 

ago [31]. High temperature operation of SiC devices (>200oC), lower switching losses, higher current density and smaller 

device area for the same blocking capability as the Si counterparts are counted as the advantages of SiC versus Si. Recent 

research results have indicated that both SiC JFETs and SiC BJT potentially may play very important roles in future multi-

megawatt power converters that are used for power transmission and high-power motor drives. This can be also verified by 

comparing the conduction losses for SiC JFETs and SiC BJTs. It is obvious from [17] that JFETs have lower specific on-state 

resistance than BJTs at the same current density and blocking voltages up to 4-5 kV.  

State-of-the art on-state resistances for the SiC JFET have been reported to be lower than 2mΩ.cm2 for 1200V designs [16], 

[32], while the currents density of the already developed SiC JFETs exceeds 200A/cm2 and might overpass this value in the 

future [16]. On the other hand, both the complicated gate-drive circuits (negative pinch off voltage requirement to turn the JFET 

off) and the high cost of the existing SiC JFET technology constitute drawbacks that impede commercial use. 

Compared to the SiC JFET, the SiC BJT, which has slightly higher on-state resistance (in the range of 4.5mΩ.cm2 for 1200V 

design), requires the simplest base-drive configurations, but also a substantially higher base current than the JFET, which 

should be supplied when the load current flows. Moreover, in order to achieve very short turn-on times, a high-peak current is 

required to be supplied from the base-drive circuit. 

From the drive power consumption point-of-view, the SiC JFET gate power depends on the switching frequency, while the 

BJT base power consumption is almost constant at low switching frequencies [33]. However, since the switching frequency is 

very low for the targeted high-power M2Cs, the power consumption of the JFET gate driver will be substantially lower than that 

for the SiC BJT. Thus, the SiC JFET seems to be a better candidate for this. 

Additionally, the ability of high temperature operation of the SiC switches leads to the reduction of the cooling-systems 

volume. Practically this means less cooling systems for the same power level as the corresponding Si devices, because the SiC 



  

chips can become hotter. This issue also counts to the reduction of the total size and cost of a converter. On the other hand, high 

temperature packaging for SiC devices is still under development and not that cost-effective.  

An additional advantage of SiC JFETs is the possibility of diode-less operation [22]-[23]. This means that no anti-parallel 

diodes are required in order to pave way for negative load currents, as the JFET conducts also in the negative direction. Since 

very low voltage drops are anticipated, the body diode of the JFET will not be forward biased during normal operation, except 

during short transients during the switching between the upper and lower JFETs. This also contributes not only to the total cost 

and size reduction of the converter, but also to the conduction losses reduction since the reverse current flows through the 

channel and not through the body diode. 

Taking into account the comparison between SiC JFETs and SiC BJTs, it seems that using JFETs might be more efficient for 

multi-megawatt M2C converters, because of the lower on-state losses. Note also that the switching frequency of the M2C 

converter is significantly low, thus the contribution of the switching losses on the total converter losses is expected to be slightly 

lower. A problem with commercially available JFETs is that the ratings are not sufficiently high for application in HVDC 

converters. In order to have high production yields, chip sizes are comparably small today. In the future, however, the chip sizes 

are anticipated to be increased significantly with the same production yield due to improvements in material quality and 

fabrication processes. The development towards larger chip sizes will probably be accelerated by the demand for high voltage 

(>4.5 kV) switches as these require larger areas for edge terminations. Therefore, higher current ratings will be promoted by 

two separate development treads. It is, therefore, the opinion of the authors that sufficient current ratings for HVDC converters 

(approximately 1200 A) could probably be anticipated within 10 years.  

IV.   SUB-MODULE DESIGN WITH SIC SWITCHES 

The sub-modules of the lab prototype are all identical in size and appearance and have been implemented with silicon 

MOSFETs except one, which instead is implemented with two SiC JFETs. As a result of the different switches used, the ratings 

of the prototype will be scaled down, in order to match the ratings of the lowest rated devices. The current and voltage ratings 

of the SiC JFETs and Si MOSFETs that are used for the down-scaled prototype and the on-state resistances as well are shown 

in Table I. The rated power of the original MOSFET 3-phase converter is 10 kVA. However, as the current rating of the SiC 

JFETs used is almost 3 times lower compared to the Si MOSFETs, the converter rating when using the SiC JFETs will be 

reduced 3 times. The voltage rating of each sub-module of the prototype converter is limited by the voltage rating of the Si 

MOSFET. If the voltage rating of the sub-module should be chosen with respect to the voltage rating of the available 1200 V 

SiC JFETs, a substantially higher voltage rating of the sub-module would be used. However, since the MOSFETs are only rated 

300 V this is not possible without having sub-modules with different voltage ratings. 



  

 

TABLE I 
RATINGS OF THE SWITCHING DEVICES 

 SiC JFET Si MOSFET 

Voltage rating Vds = 1200 V Vds = 300 V 

Current rating @ 25oC  Id = 15 A  Id = 46 A 

On-state resistance @ 25oC Ron = 100 mΩ  Ron = 46 mΩ 

 

 The MOSFET Printed Circuit Board (PCB) has been modified in such a way that it is possible for the normally-on SiC 

JFETs to be driven. The differences between the two sub-modules can be seen on the block-diagrams in Figure 2, while both 

the MOSFETs and the SiC JFETs lab prototype boards are shown in Figure 3. As shown in this Figure, the design of the two 

sub-modules looks almost identical. A number of essential changes have been done in order to control the normally-on SiC 

JFETs. For the down-scale prototype the SiC JFETs are connected without any anti-parallel diodes in the same way as the 

MOSFETs [22]. On the other hand in multi-megawatt M2C converters using SiC JFETs without external, anti-parallel diodes 

will be a great advantage in comparison to the IGBTs which require external diodes. The difference between the SiC JFETs and 

Si MOSFETs sub-modules deals with the gate-drive circuit. The MOSFET is a normally-off device, which requires a positive 

gate-source voltage in order to conduct the current, whereas the SiC JFET is a normally-on switch which needs a negative gate-

source voltage. This voltage should be lower than the device pinch-off voltage, in order to keep the JFET turned-off. The gate-

drive design is a standard one for the SiC JFETs and has been derived from [34]. The driver is supplied from 24 V integrated 

dc/dc converter and the gate-source voltage when the JFET is blocking equals to the pinch-off voltage, while it is equal to 0 V 

when it is conducting. The signals to the SiC JFET sub-module are communicated through fiber-optics from the main 

controller. To minimize the losses for the sub-module the blanking time should be very small. Thus, the body diode will 

conduct only for very short time during the transition and after this the reverse current will flow through the channel of the SiC 

JFET. For this implementation the blanking time is set to 100 ns for both turn-on and turn-off of each device. Doing so, the 

reverse conduction losses are minimized, since the voltage drop across the channel is lower than the one across the body diode 

[23], [39].  
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Fig. 2: (a) Sub-module design with Si MOSFETs, (b) sub-module design with SiC JFETs. 

 
 

 
Fig. 3: SiC and Si sub-module boards. 

 
The main energy storage unit of the sub-module is an external capacitor mounted outside the PCB. In order to reduce the 

influence of stray inductances, a small film capacitor is placed directly on the board suppressing high-frequency transients while 

switching. The sub-module capacitor voltage is measured and converted into a pulse train with a frequency determined by a 

voltage controlled oscillator (VCO). Tuning the VCO to a sufficiently high frequency allows an accurate measurement by the 

FPGA in a short period of time. In this experimental set-up all the VCOs are tuned to produce a 500 kHz digital pulse train 

when the sub-module capacitor voltage is at its nominal value. 



  

V.   EXPERIMENTAL RESULTS 

Even though the M2C converter aims to be used for high power applications (HVDC transmission, high power motor drive 

systems etc), a down-scaled prototype was built in the lab. It consists of 5 sub-modules per arm, which means 10 sub-modules 

per phase, all built with Si MOSFETs. In a large-scale converter each phase will consist of a significantly larger number of sub-

modules, as will be discussed in Section VI. Naturally, it will be more complicated to build and control a large-scale converter, 

as there is a need to control a significantly larger number of signals, but the M2C concept implies quite good scalability as the 

topology is modular. On the contrary, in a large scale converter, the greater number of levels per phase will create waveforms of 

much higher quality than the results shown by the downscaled laboratory prototype. However, even when experimenting only 

with 10 sub-modules per phase-leg, it is possible to draw safe qualitative conclusions about the shape of the voltages and 

currents flowing in and out of the converter. The aim then of this paper is to verify the feasibility of using SiC JFETs in such a 

converter. Thus, one of the Si sub-modules was replaced by a SiC counterpart as shown in Figure 4. Table II summarizes the 

ratings of the so established 3 kVA M2C prototype including the SiC JFET sub-module. 

Note that the measurements for Figures 8, 9 and 10 have been done by using a PC-based data acquisition system, while all 

the others by using a normal oscilloscope. This is because the access on the SiC JFETs sub-module was easier by using the 

oscilloscope probes rather than building a separated PCB for measurements of the JFET voltage and current.  Hence, the 

sampling rate of those two instruments is different and therefore the current in Figure 8 is clearer than the one in Figure 5. 

 

Si MOSFETs

SiC JFETs

 
Fig. 4: Phase-leg of the lab prototype showing the SiC and the Si sub-modules. 

 
The low switching frequency of the M2C seems to be one of its greatest advantages. As a result of the low switching 

frequency, the switching losses are also very low, and thus only the conduction losses play the most important role on the 

efficiency of such a converter. Figure 5 verifies this statement, showing the drain to source voltage, Vds of the lower SiC JFET 



  

(connected between midpoint and negative bus of the sub-module). The voltage across the upper arm, on which the sub-module 

with the SiC JFETs is connected, is illustrated in the same figure and the upper arm current as well. It is obvious that the JFET 

is switching 7 times during the 2 time periods that are shown. A closer view of the upper arm and the drain-source voltages 

shows exactly the time intervals that the SiC sub-module is either inserted or bypassed (Figure 6). When the lower JFET is 

turned-off, the upper one is on and the capacitor is inserted, providing an additional voltage level on the output voltage and 

vice-versa. 

 
TABLE II 

RATINGS OF THE PROTOTYPE  
Rated Power S = 3 kV A 

Input Voltage UD = 500 V 

Carrier frequency fs = 1 kHz 

Rated RMS current IN = 5.7 A 

Number of sub-modules per  arm N=5 

Sub-module capacitor voltage Uc=100V 

Sub-module capacitance C=3.3mF 

Arm inductance LARM=3.3mH 

Output voltage frequency f0=50Hz 

Modulation  index m=0.9 
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Fig. 5: Upper arm current and voltage, and drain-source voltage of the lower JFET (sampling frequency 50 kHZ). 

 
The operation of the two SiC JFETs on the sub-module is complementary and this can be proven in Figure 7 that shows the 

drain currents of the two SiC JFETs which correspond to the switching states that are shown in Figure 5. With the chosen 

control method, the switching states are not identical for each time period, but they depend on the capacitor charge and the 



  

sorting algorithm. This can be verified for the SiC sub-module in Figure 7. The three-phase output currents during normal 

steady-state operation are shown in Figure 8, while the same Figure also shows the upper and the lower arm currents of the SiC 

sub-module corresponding phase-leg and the circulating current as well. It can be seen that the circulating current is 

approximately dc-current equal to one third of the total input dc-current of the converter. Typical steady-state waveforms of the 

line-line and the three-phase output voltages for the M2C are shown in Figure 9, verifying at least the feasible operation with 

the SiC sub-module. 
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Fig. 6: Insertion and bypass of the SiC sub-module (sampling frequency 50 kHZ). 
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Fig. 7: JFETs switching currents (sampling frequency 50 kHZ). 

 
Figure 10 presents the voltages across the capacitors of the phase-leg on which the SiC sub-module is connected. These 10 

voltages look similar to each other even for the SiC sub-module, also proving that it normally operates as the Si ones do.  
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Fig. 8: Three-phase output and arm currents during steady-state operation (sampling frequency 10 kHZ). 
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Fig. 9: dc-link, line-line and three-phase output voltages during steady-state operation (sampling frequency 10 kHZ). 
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Fig. 10: Capacitor voltages for a whole phase-leg during steady-state operation (sampling frequency 5 kHZ). 

 

VI.   POWER LOSS ESTIMATION FOR A HIGH-POWER CONVERTER 

A.   High-power SiC JFETs 

The power loss estimation has been done assuming two different cases of high-voltage, high-current, normally-on SiC JFETs 



  

with the ratings 3.3 kV/1.2 kA and 4.5 kV/1.2 kA respectively. The threshold voltage has been set equal to -50 V. Although it 

seems to be unrealistic device cases today, it is likely to fabricate such high-power switches in the future. Therefore, the JFET 

data that are used for the loss estimation are only simulation results using the Medici software. A current density of 200 A/cm2 

and a switching speed of di/dt=500 A/μs is assumed for the simulations. Table III shows the obtained on-state resistance and the 

switching-on and off energies as well at 150oC for both JFET cases. As shown in Table III, even though the switching energies 

for the two SiC JFET cases are similar, the on-state resistance of the 4.5 kV JFET is significantly higher, because this device is 

closer to the theoretical limits of the unipolar SiC devices [17]. 

 

 TABLE III 
SIC JFET ON-STATE RESISTANCE AND  

SWITCHING ENERGY AT 150OC  
 3.3 kV SiC JFET 4.5 kV SiC JFET 

On-state resistance Ron = 7.8 mΩ.cm2 Ron = 29 mΩ.cm2 

Turn-on energy Eon = 68 mJ Eon = 57 mJ 

Turn-off energy Eoff = 75 mJ Eoff = 74 mJ 

 
B.   Power losses 

In order to estimate the power losses and the efficiency for a 300 MW three-phase M2C that totally consists of SiC JFETs 

without any externally connected anti-parallel diodes, a number of assumption have been done: 

 The losses on the auxiliary and control circuits have been neglected since they are low enough compared to the 

conduction and switching losses. However, in practice these losses should be included. 

 The inductor power losses are also neglected for the present study.  

 Each sub-module consists only of two SiC JFETs, thus there are no parallel or series connected devices. 

 Since the voltage rating of each SiC JFET is 3.3kV, a voltage of 1.8kV is assumed across the capacitor of each sub-

module. Similarly, a voltage of 2.4 kV is assumed across the capacitor when 4.5 kV devices are used.  

 Taking into account the capacitor voltage and a dc-link voltage of Vdc=300 kV, a number of n=167 levels per arm are 

considered for the 3.3 kV device case, while a number of n=125 sub-modules for the case of 4.5 kV SiC JFETs.  

 The circulating current that is shown in Figure 8 is assumed to be pure dc-current in order to calculate the RMS 

current flows through the switches.  

 The power flow is positive. This means that power is flowing from the dc to the ac side.  

 The average switching frequency is 200 Hz as in the measurements. Considering the 50 Hz frequency of the output 

voltage, this practically means that each of the devices is switching only 4 times during the time period. 



  

 The conduction power losses on the body diode are also neglected due to the very narrow blanking time that was used.  

 The upper and the lower SiC JFETs have the same ratings and they are conducting complementary to each other. 

Following all the assumption given above, Figure 11 shows the power losses of the SiC M2C converter for various output 

powers when 3.3kV SiC JFETs are used, while Figure 12 the losses for 4.5 kV SiC JFETs case. It is obvious that for both 

device cases, the switching losses are really low compared to the conduction losses. Despite the lower number of sub-modules 

when 4.5 kV devices are used, the power losses are higher caused by the higher on-state resistance. Additionally, the total 

power losses at 350 MW output power with 3.3 kV devices are only 30% of the corresponding losses with 4.5 kV JFETs. Thus, 

by using 3.3 kV devices, the volume of the cooling system will be smaller.   

Finally, the total efficiency of the SiC M2C converter for both SiC JFET cases is presented in Figure 13. It is high as 

expected for the SiC JFETs and comparing to the IGBT M2C case presented in [1], the efficiency here exceeds at least 0.3% 

the corresponding IGBT M2C one, when the output power is 350 MW. 
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Fig. 11: Power losses for different output power levels with 3.3 kV SiC JFETs.  
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Fig. 12: Power losses for different output power levels with 4.5 kV SiC JFETs.  
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Fig. 13: Comparison of the SiC M2C efficiency for both device cases. 

VII.   CONCLUSION 

This paper investigates the possibility to build multi-megawatt converters using SiC switches. As comparing the use of SiC 

BJTs and JFETs in such a converter, it is concluded that the SiC JFET seems to be a better solution than the BJT. This is due to 

the fact that the JFET is a voltage controlled device while the BJT is current controlled and requires a high base current when it 

is conducting load current. 

Based on the discussion between the two SiC switches, one sub-module of a down-scaled 3 kVA M2C with 30 sub-modules 

was built with SiC JFETs and the experimental results show that it operates as well as the sub-modules with Si MOSFETs. 

Various steady-state operation waveforms are shown and verify the whole concept and is proved that such an idea is feasible in 

the future.  

Due to the high temperature operation of the SiC devices, cooling requirements for the power devices can be reduced. 

Consequently the volume, weight and cost for the whole cooling system can be reduced. This paper has also shown that the 

diode-less operation of the SiC sub-modules is feasible since the SiC JFET that are considered have an integrated body-diode. 

Furthermore, the conduction losses have been calculated for SiC-based M2Cs assuming high-power SiC JFETs and it is 

shown that the losses can be reduced considerably compared to the Si case, while the total efficiency is increasing at least 0.3%. 

For high-voltage direct current transmission an M2C is found to have an efficiency of approximately 99.8 %.  
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