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IMAGE: high-powered detection of genetic
effects on DNA methylation using
integrated methylation QTL mapping and
allele-specific analysis
Yue Fan1,2, Tauras P. Vilgalys3, Shiquan Sun2, Qinke Peng1, Jenny Tung3,4 and Xiang Zhou2,5*

Abstract

Identifying genetic variants that are associated with methylation variation—an analysis commonly referred to as

methylation quantitative trait locus (mQTL) mapping—is important for understanding the epigenetic mechanisms

underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in

sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data

and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL

discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to

analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.

Keywords: Allele-specific methylation, ASM, Methylation quantitative trait locus, mQTL, IMAGE, Bisulfite sequencing,

Binomial mixed model, Penalized quasi-likelihood

Introduction
DNA methylation is a stable, covalent modification of cyto-

sine residues that, in vertebrates, typically occurs at CpG di-

nucleotides. DNA methylation also functions as an

important epigenetic regulatory mechanism, with known

roles in genomic imprinting, X-inactivation, and suppression

of transposable element activity [1, 2]. DNA methylation is

thus thought to play a key role in responding to the environ-

ment and generating trait variation, including variation in

disease susceptibility. In support of this idea, methylation

levels have been associated with diabetes [3, 4], autoimmune

diseases [5–7], metabolic disorders [8–10], neurological dis-

orders [11, 12], and various forms of cancer [13–17].

Importantly, DNA methylation variation at individ-

ual CpG sites often has a strong genetic component

[18–29]. Family-based and population-based studies

have shown that DNA methylation levels are 34%

heritable on average in adipose tissue and are 18–20%

heritable on average in whole blood, with heritability

estimates reaching as high as 97% [21, 24, 26, 30].

Genetic effects on DNA methylation levels can be ex-

plained, at least in part, by cis-acting SNPs located

close to target CpG sites, where CpG methylation level

is associated with the identity of physically linked al-

leles [23, 31–35]. Indeed, recent methylation quantita-

tive trait loci (mQTL) mapping studies have shown

that up to 28% of CpG sites in the human genome are

associated with nearby SNPs [23, 26, 31, 32, 36].

Further, cis-mQTL often colocalize with disease-

associated loci and cis-expression QTL (cis-eQTL)

[26], suggesting that genetic effects on gene expression

may be mediated by DNA methylation. Therefore,

identifying cis-mQTL is an important step towards un-

derstanding the genetic basis of gene regulatory vari-

ation and, ultimately, organism-level traits.

Most mQTL mapping studies thus far rely on DNA

methylation data generated using array-based platforms

[36–38]. However, the falling cost of sequencing and the

development of high-throughput sequencing-based ap-

proaches to measure DNA methylation levels makes
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mQTL mapping using sequencing data increasingly feas-

ible. Sequencing-based approaches offer several advan-

tages. They can extend the breadth of DNA methylation

analysis to the full genome (e.g., via whole genome bisul-

fite sequencing [39]), increase the flexibility to target

specific regions of interest (e.g., via capture methods

[40]), improve the representation of genomic regions or

regulatory elements that are poorly represented on

current array platforms (e.g., via reduced representation

bisulfite sequencing [41, 42]), and distinguish 5-hmc

modifications from 5-mc modifications (e.g., via TET-

assisted pyridine borane sequencing [43] or TAB-seq

approaches [44]). Further, unlike arrays, which are

largely limited to studies in humans, sequencing-based

approaches can be applied to any species [45–48].

Therefore, sequencing-based approaches have become

the workhorse of major initiatives like the 1001 Ge-

nomes Project in the plant model system Arabidopsis

thaliana [49, 50]. Importantly, sequencing techniques

also facilitate the estimation of allele-specific methyla-

tion levels, which should greatly improve the power of

mQTL mapping approaches (as allele-specific expression

estimates have been shown to do for eQTL mapping:

[51, 52]). Early attempts to perform mQTL mapping

with bisulfite sequencing data have yielded promising re-

sults [35, 49, 53]. However, existing mQTL mapping

methods are designed with array data in mind [37, 38].

To maximize power, mQTL mapping using sequencing

data requires new statistical method development that

can properly account for two of its distinctive features.

First, methylation data collected in sequencing studies

are counts, not continuous representations like those pro-

duced by arrays. Specifically, methylation-level estimates

at a given cytosine base are based on both the total read

count at the site and the subset of those reads that are un-

converted by sodium bisulfite (or other processes [43]).

Previous mQTL studies have dealt with these data by first

computing a ratio between the methylated count and the

total count, and then treating this ratio as an estimate of

the true methylation level [35, 49]. However, the count na-

ture of the raw data means that the mean and variance of

the computed ratio are highly interdependent. This rela-

tionship is not captured by previously deployed linear re-

gression methods, which likely leads to loss of power.

Indeed, similar losses of power are well documented for

differential methylation analysis [40] and differential ex-

pression analysis of RNA-seq data [54–57]. To overcome

this challenge, statistical methods for sequencing-based

differential methylation analysis now adapt over-dispersed

count models, including beta-binomial models [58–62]

and binomial mixed models [40, 63, 64], to properly

model the mean-variance relationship and potential over-

dispersion. In differential methylation analysis, these ap-

proaches can substantially improve power compared with

normalization-based approaches [30, 65, 66]. Because

mQTL mapping is conceptually similar and can be effect-

ively viewed as genotype-based differential methylation

analysis, extending over-dispersed binomial models to

mQTL mapping is a promising approach.

Second, sequencing-based techniques are capable of

measuring DNA methylation levels in heterozygotes in

an allele-specific fashion (i.e., allele-specific methylation,

ASM). When ASM estimates support differences in

methylation levels between the two alleles carried by

heterozygotes, they can be used to increase the power of

mapping analysis. Indeed, assuming that additive genetic

effects dominate, true cis-acting genetic differences in

DNA methylation are expected to lead to both (i) differ-

ential methylation by genotype across all three genotypes

at a biallelic site and (ii) ASM in heterozygotes. These

two types of evidence are only available in sequencing

studies, since ASM is not generally detectable when

DNA methylation is profiled using arrays. Notably, pre-

vious methods for detecting genotype-dependent ASM

suggest that it is common across tissue types and spe-

cies, is more often explained by cis-acting variants than

trans-effects, and is enriched near genes that also display

patterns of allele-specific expression [67–75]. Thus, inte-

grating ASM analysis into mQTL mapping analyses

should also contribute to understanding the basis of cis-

regulatory effects on gene expression. There is strong

precedent for such a combined strategy in other omics

studies. For example, the methods implemented in Tre-

CASE and WASP can integrate allele-specific expres-

sion information to greatly enhance the power of eQTL

mapping [51, 76–78], and the software RASQUAL inte-

grates allele-specific patterns with individual-level dif-

ferences to facilitate QTL mapping of chromatin

accessibility and ChIP-seq data [79]. However, to our

knowledge, no method currently exists for integrating

ASM with mQTL mapping in sequencing-based studies

of DNA methylation.

Here, we develop a new statistical method for mQTL

mapping in bisulfite sequencing studies that both ac-

counts for the count-based nature of the data and takes

advantage of ASM analysis to improve power. We refer

to our method as IMAGE (Integrative Methylation

Association with GEnotypes), which is implemented as

an open-source R package (www.xzlab.org/software.

html). IMAGE jointly accounts for both allele-specific

methylation information from heterozygous individ-

uals and non-allele-specific methylation information

across all individuals, enabling powerful ASM-

assisted mQTL mapping. In addition, IMAGE relies

on an over-dispersed binomial mixed model to dir-

ectly model count data, which naturally accounts for

sample non-independence resulting from individual

relatedness, population stratification, or batch effects
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that are commonly observed in sequencing studies

[40, 57]. We develop a penalized quasi-likelihood

(PQL) approximation-based algorithm [64, 80, 81] to

facilitate scalable model inference. We illustrate the

effectiveness of IMAGE and compare it with existing

approaches in simulations. We also apply IMAGE to

map mQTLs in two bisulfite sequencing studies from

wild baboons and wild wolves.

Results
Method overview and simulation design

IMAGE is described in detail in the “Materials and

methods” section, with additional information provided in

Additional file 1: Supplementary Text. Briefly, IMAGE

combines the benefits of both standard mQTL mapping

and ASM analysis by jointly modeling non-allele-specific

(i.e., per-individual) methylation information across all indi-

viduals together with allele-specific methylation informa-

tion (i.e., per-allele) from heterozygous individuals. This

approach enables cis-mQTL mapping when the heterozy-

gous SNP and the CpG site of interest are captured either

on the same sequencing read or with known phasing infor-

mation (Fig. 1). By combining both allele-specific and non-

allele-specific information, IMAGE improves power over

traditional mapping approaches that use non-allele-specific

information alone. In addition, IMAGE relies on a binomial

mixed model to directly model count data from bisulfite

sequencing and naturally accounts for over-dispersion as

well as sample non-independence. IMAGE uses a penalized

quasi-likelihood-based algorithm for scalable inference and

is implemented in an open-source R package, freely avail-

able at http://www.xzlab.org/software.html.

We performed simulations to examine the effective-

ness of IMAGE and compare it with other approaches.

In each simulation, we started with real genotypes for

n= 50–150 individuals [82] and examined power and ac-

curacy over a range of parameters: the background herit-

ability h2, the over-dispersion variance σ2, the SNP

minor allele frequency MAF, the expected per-site total

read TR across individuals, the average methylation ratio

π0, the SNP effect size PVE, the sample size n, and the

proportion of total environmental variance that is shared

between two alleles ρ (a detailed explanation of these pa-

rameters is available in the “Materials and methods” sec-

tion). In the simulations, we examined the role of each

of these eight modeling parameters in determining

mQTL mapping power. To do so, we first created a

baseline simulation scenario where we set the simulation

parameters to typical values inferred from real data [40]

(“Materials and methods” section). Afterwards, we chan-

ged one parameter at a time to create different simula-

tion scenarios and examined the influence of each

parameter on method performance. In each scenario, we

simulated 10,000 SNP-CpG pairs. For 9000 pairs, the

methylation level at the CpG site was independent of the

SNP genotype, while for the remaining 1000 pairs, CpG

site methylation was associated with the SNP genotype,

such that genotype explained a fixed proportion of

methylation levels equivalent to the parameter PVE.

After simulation, we discarded the methylation measure-

ments for CpG sites on non-informative individuals (i.e.,

those with total read counts of zero). We then applied

IMAGE and five other approaches to analyze each SNP-

CpG pair separately.

The five other approaches perform mQTL mapping using

different information: (1) IMAGE-I, a special case of IMAGE,

which uses only non-allele-specific, individual-level informa-

tion across all individuals; (2) IMAGE-A, another special case

of IMAGE, which uses only allele-specific information

from heterozygous individuals; (3) MACAU [40, 57],

which uses a binomial mixed model to perform

mQTL mapping using only non-allele-specific infor-

mation; (4) GEMMA [83–85], which uses a linear

mixed model to perform mQTL mapping using only

non-allele-specific information; and (5) BB, which im-

plements a beta-binomial model [40] to perform

mQTL mapping using only non-allele-specific infor-

mation. Note that, with the exception of IMAGE and

IMAGE-A, all methods perform mQTL mapping

using only non-allele-specific information. In addition,

with the sole exception of GEMMA, all methods

model counts directly. For GEMMA, we used normal-

ized data in the form of M values for analysis, follow-

ing the previous literature [40, 57]. We performed 10

simulation replicates (each consisting of 10,000 SNP-

CpG pairs) for each scenario and computed power

based on a known false discovery rate (FDR) for each

scenario by combining simulation replicates.

Simulation results

Overall, the simulation results show that IMAGE out-

performs all other methods across all tested parame-

ters (Fig. 2 and Additional file 2: Figure S1). For

example, in the baseline simulation scenario, at an

FDR of 0.05, IMAGE reaches a power of 57.15% in a

sample size of 100 individuals. IMAGE-I, IMAGE-A,

MACAU, GEMMA, and BB reach a power of 7.55%,

10.27%, 7.49%, 2.25%, and 6.79%, respectively. The

ranking of different methods is not sensitive to differ-

ent FDR cutoffs. For example, at an FDR of 0.1, the

power of IMAGE is 68.78%, while the power of

IMAGE-I, IMAGE-A, MACAU, GEMMA, and BB is

14.98%, 24.35%, 13.64%, 2.84%, and 15.03%, respect-

ively. The superior performance of IMAGE suggests

that incorporating ASM information into mQTL map-

ping can greatly enhance power.

Among the eight parameters we examined, six have

similar effects on power across IMAGE and the five
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other models we compared. For example, the power

of all methods increases with larger sample size n

(Additional file 2: Figure S1A), larger genetic effect

size PVE (Additional file 2: Figure S1B), larger minor

allele frequency MAF (Additional file 2: Figure S1C), lar-

ger read depth TR (Additional file 2: Figure S1D), and lar-

ger over-dispersion variance σ2, which implicitly increases

the genetic effect size PVE (Additional file 2: Figure S1E).

In addition, the power of all methods is the highest for

CpG sites with intermediate methylation level π0, but re-

duced for both hypomethylated and hypermethylated sites

(Additional file 2: Figure S1F). The power dependence on

π0 is presumably because higher methylation variance in

the middle range of π0 leads to higher power.

Careful examination of the relative performance of dif-

ferent methods in different scenarios yields additional

insights. First, among the mQTL mapping methods, we

found that count-based approaches (IMAGE-I, MACAU,

BB) often outperform a normalized data-based approach

(GEMMA). Such performance differences become more

apparent when sample size n is small (Additional file 2:

Figure S1A), methylation level π0 is either low or high

(Additional file 2: Figure S1F), or mean per-site read

depth TR is low (Additional file 2: Figure S1D). For ex-

ample, when the mean total read TR = 10, the power of

IMAGE-I, MACAU, and BB is 5.8%, 4.56%, and 5.33%,

respectively (n = 100), while the power of GEMMA is

only 1.01%. When TR increases to 30, the power of

IMAGE-I, MACAU, and BB becomes 15.25%, 15.32%,

and 14.55%, respectively, while the power of GEMMA

remains low, at 6.14%. The superior performance of

count-based methods is consistent with previous

Fig. 1 Schematic of ASM-assisted mQTL mapping. The top three panels show bisulfite sequencing data mapped to a CpG site where methylation

level is associated with a nearby SNP, in an AA homozygote (left), an AT heterozygote (middle), and a TT homozygote (right). Note that, while

illustrated in the panels, the allele-level methylation information in the two homozygotes is not observed. The bottom three panels depict three

methods to detect SNP-CpG association: the standard mQTL mapping approach (left) uses non-allele-specific information from all three

individuals to detect an association, the standard ASM analysis (middle) uses allele-level information from the heterozygote only, and the joint

analysis approach (right) presented here uses both types of information to achieve a gain in power. mQTL methylation quantitative trait loci, ASM

allele-specific methylation
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observations [40, 57], suggesting that modeling sequen-

cing data in the original count form has added benefits

for mQTL mapping. For DNA methylation levels, this

advantage may arise in part because uncertainty in DNA

methylation-level estimates is more accurately modeled

in the count data than in normalized ratios. For example,

a methylation level of one (completely hypermethylated) is

strongly supported for a site-sample combination where

read depth is very high, but weakly supported for combina-

tions where read depth is low. The count-based methods

effectively capture this distinction, which is lost in conver-

sion to a single ratio.

Second, ASM-based approaches (IMAGE and IMAGE-

A) often outperform mQTL mapping approaches that

only use non-allele-specific data. This result holds even

for IMAGE-A, even though it only models data for hetero-

zygotes at nearby SNPs (and hence, uses only a subset of

the data: 42% of the full set of simulated individuals on

average). The generally higher power of ASM analysis

likely stems from the fact that ASM methods control for

both environmental and trans-acting genetic background

effects (for each heterozygote, both alleles reside in the

same individual, providing a natural internal control). Our

simulations suggest that there are two important parame-

ters that influence the relative power of ASM analysis and

mQTL mapping. The first important parameter is back-

ground heritability, h2. Increased background heritability

can reduce the performance of mQTL mapping methods,

as increased confounding from polygenic effects of other

SNPs likely increases the difficulty of identifying individual

SNP associations [40, 57]. For example, when h2 = 0, the

power of IMAGE-I, MACAU, GEMMA, and BB is

13.57%, 11.62%, 2.69%, and 13.88%, respectively. When h2

increases to 0.6, however, the power of IMAGE-I,

MACAU, GEMMA, and BB reduces to 6.48%, 7.05%,

1.50%, and 5.92%, respectively. In contrast, ASM analysis

relies on a model that explicitly accounts for the heritable

component that arises from genetic background effects,

and thus achieves relatively stable performance. For ex-

ample, when h2 = 0, the power of IMAGE and IMAGE-A

is 57.48% and 10.30%, respectively. When h2 increases to

0.6, the power of IMAGE and IMAGE-A actually in-

creases to 63.07% and 23.09%, respectively. This observa-

tion is consistent with the fact that the two alleles

modeled in ASM, for each individual, share an identical

genetic background that becomes easier to control for as

its contribution to DNA methylation increases (i.e., as h2

increases). Thus, IMAGE-I outperforms IMAGE-A when

background heritability is zero (h2 = 0), but performs

worse when background heritability is moderate or high

(h2 = 0.3 or 0.6; Fig. 2a).

The second important parameter is the ratio parameter

ρ, which represents the relative contribution of shared/

common environmental effects (i.e., the “trans” acting en-

vironment) and also influences the relative power of ASM

vs mQTL. For mQTL methods, increasing ρ necessarily in-

creases the contribution of common environmental noise

shared between the two alleles. Common environmental

noise is not explicitly accounted for by mQTL models, thus

leading to a reduction in power. For example, when ρ = 0,

IMAGE-I, MACAU, GEMMA, and BB detect 7.55%,

7.49%, 2.25%, and 6.79% of true effects, respectively. When

ρ increases to 0.9, the power of IMAGE-I, MACAU,

GEMMA, and BB reduces to 3.50%, 3.44%, 1.67%, and

Fig. 2 IMAGE achieves higher power to detect mQTL across various simulation settings. Power is measured by number of true mQTL detected at

a false discovery rate (FDR) of 0.05. Each simulation setting is based on 10 simulation replicates, each including 10,000 simulated SNP-CpG pairs,

10% of which represent true mQTL. a We vary h2, the background heritability, to be either 0, 0.3, or 0.6, while maintaining other parameters at

baseline. b We vary ρ, the proportion of common environmental variance, to be either 0, 0.3, or 0.9, while maintaining other parameters at

baseline. The middle panel in a and the left panel in b correspond to the baseline simulation setting. Increasing both h2 and ρ, which capture

genetic and common environmental background effects, respectively, results in increased power for methods that use ASM information (IMAGE

and IMAGE-A), but losses in power for methods that do not use ASM information (IMAGE-I, MACAU, GEMMA, BB). FDR false discovery rate
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3.57%, respectively. In contrast, ASM analysis explicitly ac-

counts for both common and independent environmental

background effects, again because it measures DNA methy-

lation in the two alleles in the same individual. ASM

methods thus achieve better, not worse, performance with

higher values of ρ. For example, when ρ = 0, the power of

IMAGE and IMAGE-A is 57.15% and 10.27%, respectively.

When ρ increases to 0.9, the power of IMAGE and

IMAGE-A becomes 84.15% and 67.55%, respectively. Con-

sequently, while mQTL methods have similar power as

ASM when ρ is small, ASM can outperform mQTL when ρ

is large (Fig. 2b).

In addition, we note that IMAGE can estimate FDR rea-

sonably accurately by constructing an empirical null via per-

mutations. In particular, IMAGE produces either calibrated

or slightly conservative FDR estimates regardless of the

values of h2 (Additional file 2: Figure S2A), ρ (Additional file 2:

Figure S2B), n (Additional file 2: Figure S2C), genetic

effect size PVE (Additional file 2: Figure S2D), MAF

(Additional file 2: Figure S2E), average read counts

per site TR (Additional file 2: Figure S2F), over-dispersion

variance σ2 (Additional file 2: Figure S2G), or average

methylation ratio π0 (Additional file 2: Figure S2H).

Finally, we note that while we set PVE = 0.10 and

h2 = 0.30 in the baseline simulations to capture realis-

tic effect sizes and background heritability across all

SNP-CpG pairs genome-wide, reasonable data filtering

decisions will often increase mean PVE and h2 among

SNP-CpG pairs tested in real data applications. For

example, in the wolf and baboon data sets analyzed

below, the median PVE was approximately 0.15 and

the median h2 estimate was near 0.5. For direct com-

parability, we therefore also created a simulation sce-

nario in which we set PVE to 0.15 and h2 to 0.50

(Additional file 2: Figure S1G). Notably, the relative

power of different methods in this setting largely re-

capitulates our observations in the real data applica-

tions (see below).

mQTL mapping in wild baboons

We applied our method to analyze a reduced representa-

tion bisulfite sequencing data collected on 67 baboons

from the Amboseli ecosystem of Kenya [40, 45]. Detailed

data description and processing steps are provided in the

“Materials and methods” section, with an illustrative pro-

cessing diagram shown in Additional file 2: Figure S3.

Briefly, we extracted 49,196 SNP-CpG pairs from the bi-

sulfite sequencing data, which consists of 13,753 unique

SNPs and 45,210 unique CpG sites. We applied IMAGE

together with the other five approaches described above

to analyze each SNP-CpG pair individually. We performed

permutations to estimate FDR for each method, and we

report results based on a fixed FDR cutoff.

Consistent with our simulations, our method achieves

higher power compared with other methods in the ba-

boon data set (Fig. 3a). For example, at an empirical

FDR of 5%, IMAGE detected 7043 associated SNP-CpG

pairs, which is 45% more than that detected by the next

best method (IMAGE-A, which detected 4855 pairs at a

5% FDR). IMAGE-I, MACAU, GEMMA, and BB de-

tected 3585, 3024, 2629 and 3259 pairs, respectively.

Also consistent with the simulations, the higher power

of IMAGE compared to other methods is robust with re-

spect to different FDR cutoffs (Fig. 3a). We illustrate a

few example sites that were only detected by IMAGE in

Additional file 2: Figure S4. For these sites, methylation

levels measured in the heterozygotes are noisy and often

indistinguishable from at least one type of homozygote

(often because total read counts are unevenly distributed

across alleles). However, by separating methylation levels

in heterozygotes into the contribution from each indi-

vidual allele and modeling ASM information together

with non-allele-specific information, IMAGE remains

capable of identifying mQTLs in these sites. In addition,

consistent with simulations, we also observed that our

method could detect more associated SNP-CpG pairs

with increasing MAF (Additional file 2: Figure S5A), in-

creasing read depth TR (Additional file 2: Figure S5B),

increasing sample size (Additional file 2: Figure S5C), or

at intermediate methylation levels (Additional file 2:

Figure S5D).

To validate the mQTLs we identified, we randomly split

the sample into two approximately equal-sized subsets (one

with 34 individuals and the other with 33 individuals) and

examined the consistency of the SNP-CpG pairs detected

in the two subsets. We removed IMAGE-A from this ana-

lysis as it requires at least five heterozygous individuals,

which is no longer satisfied for many SNP-CpG pairs in

each of the two subsets. For the remaining methods, we

found that IMAGE detects more consistent SNP-CpG pairs

between the two subsets than the other approaches (Fig. 3b).

For example, among the top 5% (n = 2511) associated SNP-

CpG pairs based on IMAGE, 53.8% of them were identified

in both subsets. In contrast, among the top 5% (n = 2511)

associated SNP-CpG pairs based on IMAGE-I, MACAU,

GEMMA, and BB, 35.84%, 35.12%, 33.92%, and 37.64%

overlapped between the two subsets. The greater

consistency of results from IMAGE thus provides conver-

gent support for its increased power.

Next, we assessed the set of detected SNP-CpG asso-

ciations by performing functional enrichment analysis

to compare our findings against published results

(Fig. 3c). Here, we refer to the CpG sites with associ-

ated mQTL as mCpG sites. We examined whether the

set of mCpG sites were enriched in CpG islands,

CpG island shores, CpG island shelves, or genomic

“open sea.” To do so, we obtained functional genomic
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annotation information from the UCSC Genome

Browser for the baboon genome, Panu2.0, and relied

on the same criterion as [86] to annotate genomic re-

gions (details in the “Materials and methods” section).

For each annotated category, we then computed the

proportion of mCpG sites in the annotated regions

and contrasted it to the proportion of non-mCpG

sites analyzed in our original mQTL mapping analysis.

We found that mCpG sites are significantly enriched in

open seas compared to non-mCpG sites (69.74% vs

66.08%; Fisher’s exact test, p value = 0.0106) but underrep-

resented in CpG islands (11.16% vs 14.33%; p value

= 1.056 × 10−9). The results are consistent with previ-

ous observations [87, 88], partly because CpG islands

are often enriched in evolutionarily conserved pro-

moter regions [89–91] that harbor fewer regulatory

genetic variants and partly because power to detect

mQTL is lower in hypomethylated regions [92]. The

results are qualitatively consistent across sites with

different mean CpG methylation levels, although do

not reach statistical significance in all bins likely due

to the smaller number of sites and the resulting lower

power in each bin (Additional file 2: Figure S6). Im-

portantly, despite the higher number of mCpG sites

detected by IMAGE, the evidence for both enrich-

ment in open sea and underrepresentation in CpG

islands is also stronger in the IMAGE analysis than

for other methods (Additional file 3: Table S1).

Finally, we counted the percentage of SNP-CpG pairs

for which the SNP directly resides in the CpG se-

quence, abolishing the CpG site and therefore resulting

in an entirely unmethylated alternate allele [69, 93].

Fig. 3 mQTL mapping results in the baboon RRBS data. a IMAGE identified more mQTL than the other five methods across a range of empirical

FDR thresholds. b IMAGE identifies more consistent associations than the other methods in the subset analysis. Here, we randomly split

individuals into two approximately equal-sized subsets and analyzed the two subsets separately using each method. We then counted the

number of overlapping mQTL identified in both subsets. The overlap ratio (y-axis) is plotted against the percentage of top mQTL ranked by

statistical evidence for a SNP-CpG methylation association in each method (x-axis). c Upper panel: log2 odds ratio of detecting associated SNP-

CpG pairs, together with the 95% CI, is computed for CpG sites residing in different annotated genomic regions. CpG sites with IMAGE-identified

mQTL are enriched in open sea regions (p value = 0.0106) and depleted in CpG islands (p value = 1.056 × 10−9). Bottom panel: all analyzed CpG

sites were annotated to genomic regions based on their relation to the nearest CpG island. CpG islands were annotated based on the UCSC

Genome Browser (average length = 672 bp in the data; min = 201 bp; max = 15,960 bp). Shore is the flanking region of CpG islands covering 0–

2000 bp distant from the CpG island. Shelf is the region flanking island shores covering 2000–4000 bp distant from the CpG island. d A higher

percentage of CpG sites are directly disrupted by the SNP in mQTL pairs compared to by chance alone (horizontal dashed line), and more so

than in non-mQTL pairs (p value < 2.2 × 10−16). Such enrichment decays with increased FDR thresholds. *p < 0.05, **p < 0.01
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These sites, by definition, should exhibit mQTL and

ASM. Four hundred three sites in our data set were dis-

rupted by SNPs, and 59.6% of them (n = 240) were in-

deed identified as significant mCpG sites. For 95.70% of

those we did not detect (n = 156), the non-disrupted

CpG was also hypomethylated in our sample (< 10%

methylation level), which would make it impossible to

detect an mQTL (i.e., because both disrupted and non-

disrupted alleles are hypomethylated). CpG sites dis-

rupted by SNPs accounted for 3.72% of significant

mCpG sites (compared to the 0.89% expected by

chance), but only 0.43% of non-mCpG sites, in support

of the accuracy of our mQTL mapping approach (Fish-

er’s exact test p value < 2.2 × 10−16). In addition, as ex-

pected, the percentage of significant mCpG sites

accounted for by CpG sites disrupted by SNPs gradually

decreases with less stringent FDR cutoffs (Fig. 3d). Im-

portantly, IMAGE also outperforms the other five

methods on this metric (Additional file 3: Table S2).

mQTL analysis in wild wolves

Finally, we applied IMAGE to analyze a second RRBS data

set collected on 63 gray wolves from Yellowstone National

Park [46, 94]. We applied the same data processing proced-

ure described above for baboons, followed by mQTL map-

ping. In total, we extracted 279,223 SNP-CpG pairs from

the bisulfite sequencing data, which consists of 77,039

unique SNPs and 242,784 unique CpG sites. IMAGE again

achieved higher power compared with the other methods

(Fig. 4a). At an empirical FDR of 5%, IMAGE detected 34,

779 significantly associated SNP-CpG pairs, which is 50%

more than that detected by the next best method (IMAGE-

A), and 262% more than the other four methods (Fig. 4a

and Additional file 2: Figure S7). As in the baboons, subset

analysis confirmed that IMAGE detects more consistent

SNP-CpG pairs than the other approaches (Fig. 4b). For ex-

ample, among the top 5% (n = 14,091) associated SNP-CpG

pairs based on IMAGE analysis, 53.8% of them are consist-

ent between the two subsets, compared to 20.5–30.7% for

the other four methods tested. Consistent with results from

simulations and the baboon data, we also observed that our

method could detect more associated SNP-CpG pairs with

intermediate methylation levels, increasing MAF, increasing

read depth, and increasing sample size (Additional file 2:

Figure S5).

Finally, consistent with the baboon results, mCpG

sites in the wolves were significantly enriched in open

sea compared to non-mCpG sites (31.77% vs 26.31%; p

value <2.2 × 10−16) and were underrepresented in CpG

islands (30.17% vs 37.43%; p value < 2.2 × 10−16)

(Fig. 4c). In the wolves, we also observed significant (al-

beit much weaker) enrichment of mCpG sites in shelf

regions (12.49% vs 11.63%; p value = 9.001 × 10−5) and

shore regions (25.57% vs 24.64%; p value = 5.890 ×

10−3). The higher frequency of mCpG sites in CpG is-

land shelves and shores is consistent with previous

studies [87, 88] and likely reflects greater power to de-

tect enrichment in the wolf data set, which yields a lar-

ger number of analyzable SNP-CpG pairs than in the

baboons (m = 242,784 in wolf vs m = 45,210 in baboon).

The enrichment in open sea and underrepresentation

of mCpG sites in CpG islands are robust regardless of

whether we stratify sites based on mean methylation

levels, although the shelf/shore results are noisier (Add-

itional file 2: Figure S8). Again, we found that enrich-

ment results were stronger in the IMAGE analysis than

when using other methods (Additional file 3: Table S3)

and that mCpG sites were more likely to be disrupted

by their associated SNPs than non-mCpG sites (3.66%

vs 0.18%; p value < 2.2 × 10−16) (Fig. 4d; see also Add-

itional file 3: Table S4).

Discussion
Here, we present IMAGE, a new statistical method with

a scalable computational algorithm, for mQTL mapping

in bisulfite sequencing studies. IMAGE relies on a bino-

mial mixed model to account for the count nature of

over-dispersed bisulfite sequencing data, models mul-

tiple sources of methylation-level variance, and incorpo-

rates allele-specific methylation patterns from

heterozygous individuals into mQTL mapping. Both

simulations and two real data sets support its increased

power over other commonly used methods.

A key feature of our method is its ability to incorporate

allele-specific methylation information into mQTL map-

ping. In RNA sequencing studies, it has been well docu-

mented that incorporating ASE information can greatly

improve the power of eQTL mapping [51, 76–78]. Our re-

sults confirm that this observation generalizes to mQTL

mapping and provides substantial benefits over approaches

that cannot or do not use allele-specific data. Notably, these

benefits are not limited to the RRBS data we examined

here: IMAGE can also be applied to analyze data generated

via whole genome bisulfite sequencing (WGBS) [39] or by

newer approaches that distinguish 5-hmc modifications

from 5-mc modifications [43, 44]. Doing so would greatly

facilitate detection of methylation-associated genetic vari-

ants genome-wide, including variants associated with differ-

ent types of methylation marks.

Notably, although secondary to the methods advance it-

self, our real data applications show that mQTL mapping

can be successfully executed using bisulfite sequencing

data alone, in the absence of independently generated

genotype data. Specifically, we used the same bisulfite se-

quencing data set to both extract methylation measure-

ments and call SNP genotypes. Our approach dovetails

with previous observations that accurate genotyping data

can be obtained from RNA sequencing data [95], bisulfite
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sequencing data [78], or ChIP sequencing data [96], which

simultaneously reduces experimental cost and increases

the utility of different sequencing data types. Because of

these benefits, molecular QTL mapping without separate

DNA sequencing or genotyping is gaining popularity [97].

For example, a recent study performed eQTL mapping

and ASE analysis using RNA sequencing alone and dem-

onstrated that this strategy achieves approximately 50%

power compared to traditional eQTL mapping strategies

that rely on independently derived genotype data, even

though it only uses the 12.66% of SNPs represented in

blood-derived RNA-seq reads [45]. Here, we also show

that genotyping and phenotyping from the same data set

can facilitate well-powered mQTL mapping. Notably,

unlike RNA-seq data, because allele-specific methylation

information is represented as the ratio between methyl-

ated reads and total reads mapped to the same allele, our

approach is also less likely to be affected by allele-specific

mapping biases (mitigating another argument for generat-

ing independent genotype data). Thus, our mQTL map-

ping approach has the potential to both increase the

utility and applicability of functional genomic data types

and improve accessibility of this type of analysis across

species.

Our method is not without limitations. For example,

to enable ASM-assisted mQTL mapping, our method

makes a key modeling assumption that the allelic effect

size estimated from heterozygotes is equivalent to the

Fig. 4 mQTL mapping results in the wolf RRBS data. Methods for analysis include IMAGE (red), IMAGE-I (orange), IMAGE-A (green), MACAU (pink),

GEMMA (brown), and BB (blue). a IMAGE identified more associated SNP-CpG pairs than the other five methods across a range of empirical FDRs

constructed by permutation. b IMAGE identifies more consistent associations than the other methods in the subset analysis. Here, we randomly

split individuals into two approximately equal-sized subsets and applied methods to analyze the two subsets separately. We count the number of

overlapping associations between the top SNP-CpG pairs in the two subsets. The overlap ratio (y-axis) is plotted against the percentage of top

SNP-CpG pairs (x-axis). c Upper panel: log2 odds ratio of detecting associated SNP-CpG pairs, together with the 95% CI, is computed for CpG sites

residing in different annotated genomic regions. CpG sites associated with SNPs identified by IMAGE are enriched in open sea regions (p value <

2.2 × 10−16) and depleted in CpG island regions (p value < 2.2 × 10−16). Shores are defined as the 2000-bp regions flanking CpG islands; shelves are

defined as the 2000-bp regions flanking the island shores (2000–4000 bp from CpG islands). Bottom panel: all analyzed CpG sites were annotated

to genomic regions based on their relation to the nearest CpG island. CpG islands were annotated based on the UCSC Genome Browser (average

length = 830 bp in the data; min = 201 bp; max = 322,257 bp). Shore is the flanking region of CpG islands covering 0–2000 bp distant from the

CpG island. Shelf is the region flanking island shores covering 2000–4000 bp distant from the CpG island. d A higher percentage of CpG sites are

directly disrupted by the SNP in the mQTL pairs compared to by chance alone (horizontal dashed line), and more so than in non-mQTL pairs (p

value < 2.2 × 10−16). Such enrichment decays with increased FDR thresholds. *p < 0.05, **p < 0.01
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genotype effect size estimated from mQTL mapping

across all genotype classes. This assumption is generally

satisfied for cis genetic effects when the SNP is close to

the CpG site [98], and is shared, for gene expression

phenotypes, with ASE-assisted eQTL mapping methods

(e.g., TreCASE and WASP [51, 52]). However, in rare

occasions, the equal effect size assumption may be vio-

lated. For example, if ASM arises because of genomic

imprinting instead of sequence variation, the allelic ef-

fect size may be much smaller than the mQTL effect size

obtained across all individuals. Such a violation would

lead IMAGE to lose power relative to classical mQTL

mapping approaches. Notably, imprinted regions are

quite rare in vertebrate genomes (less than 1% of genes

are imprinted) [99]. However, excluding imprinted loci

prior to IMAGE mapping or substituting the IMAGE-I

approach for these loci may slightly improve perform-

ance. Additionally, in unphased data, an important limi-

tation of IMAGE is that it can only be used to analyze

adjacent SNP-CpG pairs that are covered by the same

sequencing reads. Analyzing only adjacent SNP-CpG

pairs can limit the discovery of mQTLs. Therefore, it

would be important to extend IMAGE to analyze distant

SNP-CpG pairs in unphased data, using, for example,

strategies presented in [100]. Certainly, if SNP data can

be phased, IMAGE can also be applied to analyze SNP-

CpG pairs that are separated by longer distances. In

principle, using phased data could improve mQTL map-

ping power even further, if physically linked CpG sites

display consistent ASM. Because the baboon and wolf

data we analyzed here are not associated with an exten-

sive genetic reference panel, we did not attempt to ex-

tend our analysis to phased data. Nevertheless, exploring

the benefits of phased data or extending IMAGE to ana-

lyzing distant SNP-CpG pairs in unphased data is an im-

portant future direction.

Another limitation of IMAGE is that type I error may

not be well controlled when methylation background

heritability is high (> 0.6, Additional file 3: Table S5),

when the sample size is small (< 100, Additional file 3:

Table S6), or when the genotype minor allele frequency

is low (< 0.1, Additional file 3: Table S7). As a result, we

recommend calibrating the false discovery rate against a

permutation-derived empirical null, as we have done

here (we note that calibrating against permutations has

become an increasingly common approach in functional

genomic mapping studies in any case [101, 102]). Finally,

while our method is reasonably efficient and can be

readily applied to analyze hundreds of individuals and

tens of thousands of SNP-CpG pairs (Table 1), new algo-

rithms will be needed to adapt IMAGE to data sets that

are orders of magnitude larger.

Nevertheless, in its current form, IMAGE is well-

suited to analyzing sequencing-based DNA methylation

data sets of the size and scale typically generated in re-

cent studies [103]. Thus, it can be flexibly deployed to

investigate the genetic architecture of gene regulatory

variation, the relative role of genes and the environ-

ment in shaping the epigenome, or the mediating role

of DNA methylation in linking environmental condi-

tions to downstream phenotypes, including human dis-

ease (e.g., via Mendelian randomization or related

approaches [104, 105]).

Materials and methods
Method overview

Both mQTL mapping and ASM analysis examine one

CpG site-SNP pair at a time to identify SNPs associated

with DNA methylation levels. However, these two ap-

proaches rely on different information to model the

genotype-DNA methylation-level relationship. Specifically,

mQTL mapping focuses on modeling the methylated read

counts and total read counts at the individual level across

all samples, without differentiating between the contribu-

tions from the two alleles contained within each individ-

ual. In contrast, ASM analysis focuses on modeling

methylated read counts and total read counts in an allele-

specific fashion, restricting it to heterozygotes for the SNP

of interest (otherwise, the contributions of each allele can-

not be decoupled). mQTL mapping has the benefit of

using the entire sample, not just heterozygotes. In con-

trast, ASM has the benefit of internal control, since both

Table 1 Computational time for analyzing differently sized data

sets, for count-based mQTL mapping methods. Computing time

is based on analysis of 100,000 SNP-CpG pairs with baseline

simulation parameters and varying sample size, using a single

thread on a Xeon E5-2683 2.00-GHz processor

Method Sample size Time (min)

IMAGE 50 295.87

100 410.10

150 543.48

IMAGE-I 50 81.10

100 63.93

150 108.27

IMAGE-A 50 16.63

100 36.51

150 69.25

MACAU 50 214.85

100 476.58

150 883.60

BB 50 417.63

100 2029.44

150 3967.03
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alleles within each heterozygote experience the same gen-

etic and environmental background.

To take advantage of both approaches, IMAGE inde-

pendently models each CpG-SNP site pair. For each in-

dividual measured at a CpG-SNP pair, we denote yi and

ri as the methylated read count and total read count for

the ith individual (combined across alleles), for i = 1, ⋯,

n. We denote the corresponding methylated and total

read counts mapped to each of the two alleles of the ith

individual as yil and ril, for l = 1 or 2. Thus, yi = yi1 + yi2
and ri = ri1 + ri2. Note that yil and ril are only observed in

heterozygotes, so are treated as missing data in homozy-

gotes (more details below). We then model the methyl-

ated read counts for each allele as a function of the total

read counts for the same allele using a binomial model:

yil � Bin ril;πilð Þ; ð1Þ

where πil is the true methylation level for the lth allele

in the ith individual. We further model the logit-

transformed methylation proportion πil as a function of

allele genotype:

λil ¼ logit πilð Þ ¼ μþ xilβþ g i þ ui þ eil; ð2Þ

where μ is the intercept; xil is the lth allele type for the

ith individual for the SNP of interest (xil = 0 or 1, corre-

sponding to the reference allele and alternative allele, re-

spectively); and β is the corresponding allele/genotype

effect size. In addition to these fixed effects, we model

three random effects to account for different sources of

over-dispersion. Specifically, gi represents the genetic

background/polygenic effect on DNA methylation for

the ith individual and can be used to account for kinship

or other population structure in the sample. We assume

g ¼ ðg1;⋯; gnÞ
T � MVNð0; σ2gKÞ, where K is a known n

by n genetic relatedness matrix that can be estimated ei-

ther from genotype or pedigree data. ui represents

individual-level environmental effects that we assume

are independent across individuals but shared between

the two alleles within the same individual. We assume ui
� Nð0; σ2uÞ . Finally, eil represents the residual error and

is used to account for independent noise that varies

across both individuals and alleles (e.g., stochastic

events). We assume eil � Nð0; σ2eÞ . We standardize the

genetic relatedness matrix K to ensure that the mean of

the diagonal elements of K equals 1, or
trðKÞ
n

¼ 1. When

this is the case, h2 ¼
σ2g

σ2gþσ2uþ
1
2σ

2
e
, and can be interpreted as

the approximate background heritability of DNA methy-

lation levels (details in Additional file 1: Supplementary

Text). Here, the background heritability represents the

proportion of variance in the latent parameter λ ex-

plained by the genetic effects from all SNPs other than

the SNP of focus (i.e., x). Therefore, the background

heritability is the usual heritability minus the genetic ef-

fect of x. Our primary goal is to test the null hypothesis

that genotype is not associated with methylation levels,

or equivalently, H0 : β = 0.

While the above model is fully specified for heterozy-

gous individuals, it is not fully specified in homozygotes,

where yil and ril are not observed. For homozygotes, only

the sums of the reads across both alleles, yi = yi1 + yi2
and ri = ri1 + ri2, are observed. Therefore, for homozy-

gotes, we derive a model for yi and ri based on Eq. (1) by

summing over all possible values of yil and ril:

P yijri;πi1;πi2ð Þ ¼
X

min ri1;yið Þ

yi1¼0

X

ri

ri1¼0

P yi1jri1;πi1ð Þ

P yi−yi1jri−ri1;πi2ð ÞP ri1jrið Þ:

ð3Þ

In Eq. (3), we assume that the model specified in Eq.

(1) for the two alleles are independent of each other;

thus, P(yi1, yi2| ri1, ri2, πi1, πi2) = P(yi1| ri1, πi1)P(yi − yi1| ri
− ri1, πi2). We further assume that P(ri1| ri) follows a bi-

nomial distribution ri1~Bin(ri, 0.5), which reflects the as-

sumption that both alleles are equally likely to be

represented in the sequencing data. Even with these two

assumptions, the probability P(yi| ri, πi1, πi2) in Eq. (3)

does not have an analytic form and can only be evaluated

numerically, which is highly computationally inefficient

for parameter estimation and inference. To enable

scalable computation, we therefore approximate the

distribution in Eq. (3) using a binomial distribution (de-

tails in Additional file 1: Supplementary Text). Numerical

simulations demonstrate the accuracy of this approxima-

tion across a range of settings (Additional file 2: Fig. S9).

The model defined in Eqs. (1), (2) (for heterozygous indi-

viduals), and (3) (for homozygous individuals) allows us to

perform ASM-assisted mQTL mapping to identify SNPs as-

sociated with DNA methylation levels. Due to the random

effects terms in the model, the joint likelihood based on

these equations consists of a high-dimensional integration

that cannot be solved analytically. Here, we rely on the pe-

nalized quasi-likelihood (PQL) algorithm that is commonly

used for fitting generalized linear mixed models [64, 80, 81]

to perform parameter estimation. Based on the parameter

estimates, we further calculate a Wald statistic for testing

the null hypothesis that H0 : β = 0 and obtaining a corre-

sponding p value.

We refer to the above model as IMAGE, which is im-

plemented as a freely available R software package at

www.xzlab.org/software.html.

Simulations

We performed simulations to examine the effectiveness

of our method and compare it with other approaches.
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To do so, we first randomly selected 150 individuals

from the 1958 birth cohort study, which is a part of the

control samples that were used in the Wellcome Trust

Case Control Consortium Study (WTCCC) [82]. We

then obtained genotypes for 394,117 SNPs on chromo-

some 1 for these selected individuals. In the simulations,

we examined the influence of sample size on power by

choosing three different sample sizes: n= 50, 100, or 150.

For n = 150, we used all 150 samples; for n < 150, we

randomly selected the corresponding number of individ-

uals from the 150 samples. For each simulation replicate,

we computed the genetic relatedness matrix K from the

SNP data using GEMMA [83–85]. We examined the in-

fluence of SNP minor allele frequency (MAF) on power

by dividing the 394,117 SNPs into three different MAF

bins: an MAF bin centered on 0.1, which contains SNPs

with an MAF between 0.05 and 0.15 (p = 100,631); an

MAF bin centered on 0.3, which contains SNPs with an

MAF between 0.25 and 0.35 (p = 51,800); and an MAF

bin including 0.5 which contains SNPs with an MAF be-

tween 0.45 and 0.50 (p = 23,619). To simulate SNP-CpG

site pairs, given a combination of sample size and MAF

bin, we randomly selected one SNP from the appropriate

MAF bin and simulated methylation counts and total

read counts based on the following procedure.

For the total read counts, we first used a negative

binomial distribution NB(TR, ϕ) to simulate the total

read count ri for each individual. Here, TR is the

mean parameter and ϕ is the dispersion parameter.

We set TR= 10, 20, or 30, close to the median esti-

mate across all CpG sites from the baboon data (de-

tails of the data are described in the next section;

median estimate in the real data = 23). We set ϕ= 3,

which is close to the median estimates obtained from

the baboon data (median estimate in the real data =

2.80). To obtain the total read count mapped to each

of the two alleles, we further simulated a proportion

parameter qi, which represents the proportion of

reads mapped to one allele out of the two alleles.

Specifically, qi was simulated from a beta distribution

Beta(a, b), where we set the shape parameters a and

b to both be 10, so that the simulated qi is symmetric

around 0.5 and is within the range of (0.3, 0.7) in

93.6% of cases. With ri and qi, we simulated the total

read count mapped to one of the two alleles from

ri1~Bin(ri, qi) and set the total read count mapped to

the other allele as ri2 = ri − ri1.

For the methylated read counts, we performed simula-

tions using a combination of five parameters. These five

parameters include the intercept μ, which characterizes

the baseline methylation level (interpretable as the mean

methylation level within a given population); h2, which

represents background heritability; σ2, which is the over-

dispersion variance; ρ, which characterizes the proportion

of common environmental variance (i.e., for those effects

that are shared between the two alleles in each individual)

with respect to both the common environmental variance

and the independent environmental variance that is

independent between both individuals and alleles within

individuals; and PVE, which represents genotype effect

size in terms of proportion of phenotypic variance ex-

plained (PVE) by genotype. With these four parameters,

we first simulated the genetic random effects g = (g1,⋯,

gn)
T (an n-vector) across all individuals from a multivariate

normal distribution with covariance ð1þρÞh2

2þðρ−1Þh2
σ2K to guar-

antee that the background heritability for our population of

simulated individuals is h2 (details in Additional file 1:

Supplementary Text). For each individual at a time, we then

simulated the environmental random effects (ei1, ei2) and ui
together as a bivariate vector (ui + ei1, ui + ei2)

T from a

bivariate normal distribution with a covariance Σ, where Σ

¼
ð1−pve−h2Þσ2 ρð1−pve−h2Þσ2

ρð1−pve−h2Þσ2 ð1−pve−h2Þσ2

� �

.

For sites where methylation level was not associated

with genotype, the SNP effect β was set to zero and the

background genetic effects, environmental effects, and

an intercept (μ) were then summed together to yield the

latent variable πil through logit(πil) = logit(π0) + gi + ui +

eil for the lth allele in ith individual. For sites with true

mQTL, we used logit(πil) = logit(π0) + xilβ + gi + ui + eil to

yield the latent variable πil, where xil is the allele geno-

type for the lth allele in the ith individual. We randomly

draw β � Nð0; σ2bÞ for each CpG site in turn, where σ2b is

set to ensure that genetic effects explain a fixed PVE in

logit(πil), on average. We set PVE to be 5%, 10%, or 15%

to represent different mean mQTL effect sizes, and we

derive σ2b ¼
PVE σ2

ð1−PVEÞV ðxÞ, where the function V (•) denotes

the sample variance computed across individuals with x

being a genotype vector of size n. Finally, we simulated

the methylated read counts for each allele based on a bi-

nomial distribution with a rate parameter determined by

the total read counts ri and the methylation proportion

πil; that is, yil~Bin(ril, πil) for the lth allele in ith individ-

ual. For heterozygotes, we retained the allele-level data

(yi1, yi2) and (ri1, ri2). For homozygotes, we collapsed the

allele-level data into individual-level data, yi = yi1 + yi2
and ri = ri1 + ri2.

Using the procedure described above, we first simu-

lated data under a baseline simulation scenario of n =

100, h2= 0.3, π0 = 0.5 , MAF = 0.3, ρ = 0, TR = 20, σ2= 0.7,

and PVE = 0.1 for mQTL sites. We then varied one par-

ameter at a time to generate different simulation scenar-

ios to examine the influence of each parameter,

following [40]. Here, we varied the baseline methylation
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level π0 to be either 0.1, 0.5, or 0.9 to represent low,

moderate, or high levels of DNA methylation. We varied

h2= 0.0, 0.3, or 0.6 to represent no, medium, or high

background heritability. We varied σ2= 0.3, 0.5, or 0.7 to

represent different levels of over-dispersion. We varied

ρ= 0, 0.3, or 0.9 to represent different levels of common

environment influence. For each simulated combination

of parameters, we performed 10 simulation replicates

consisting of 10,000 CpG sites each. Among these sites,

DNA methylation levels at 1000 of them were associated

with the SNP genotype (β ≠ 0) while DNA methylation

levels for the remaining 9000 were not (β = 0).

Baboon RRBS data

We applied our method to a bisulfite sequencing data

set from 69 wild baboons from the Amboseli ecosystem

in Kenya [40, 45]. These data were generated using

RRBS on the Illumina HiSeq 2000 platform, with 100-bp

single-end sequencing reads. We obtained the raw fastq

files from NCBI (accession number PRJNA283632), re-

moved adaptor contamination and low-quality bases

using the program Trim Galore (version 0.4.3) [106],

and then mapped reads to the baboon reference genome

(Panu2.0) using BSseeker2 [107] (Additional file 2:

Figure S3; more details in Additional file 1: Supplementary

Text). After removing two samples that had extremely low

sequencing read depths (57,734 and 58,070 reads, respect-

ively), sequencing read depth ranged from 5.00 to 79.78

million reads (median = 24.48 million reads; sd = 13.69

million).

We performed SNP calling in the bisulfite sequencing

data using CGmaptools, a SNP calling program specific-

ally designed for bisulfite sequencing data. CGmaptools

examines one individual at a time using the BayesWC

SNP calling strategy [78]. Following the authors’ recom-

mendations, we used a conservative error rate of 0.01

and a dynamic p value to account for different read

depth per site. Further, we modified the source code to

make CGmaptools output homozygous reference geno-

types as well. After SNP calling, we indexed and merged

variant call files (VCFs) using VCFtools [108]. We then

obtained a common set of SNPs where the position was

called in at least 50% individuals (including homozygous

reference calls). For each individual, we filtered out SNPs

that were called using less than three reads. For each

SNP, we filtered out variants that had an estimated

MAF < 0.05. Finally, we filtered out 989 multiallelic SNPs

to obtain a final call set of 289,103 analysis-ready SNPs

(mean = 203,864 SNPs typed per sample; median = 204,

554; sd = 34,768). We computed the genetic relatedness

matrix K in GEMMA, using this SNP data set.

To validate the SNP genotype data, we compared the

variants identified from the bisulfite sequencing data to

a set of previously identified SNP variants in baboons

[109]. These previously identified SNPs were obtained

from 44 different wild baboons from East Africa, includ-

ing members of the baboon population from which the

RRBS data were generated but also members of baboon

populations outside Amboseli, via low-coverage DNA se-

quencing (range 0.6× to 4.35×; median = 1.91×; sd =

0.77×). This data set identified a total of 24,770,393

SNPs, with an average of 17,725,780 SNPs genotyped

per individual (median = 18,139,340; sd = 4,315,590).

Because of the low sequencing depth in the DNA se-

quencing data set, we expected that variants called from

the bisulfite sequencing data would not completely over-

lap with variants identified from the DNA sequencing

data. Indeed, we found that 50.9% of our called variants

are located at a known variant from the DNA sequencing

study, with the remaining SNPs being novel. Importantly,

among overlapping variants, 99.5% have the same alter-

nate allele, in support of the accuracy of SNP calling from

bisulfite sequencing data. Additionally, we observe more

overlap in called variants with higher alternate allele fre-

quency, reaching 72.5% for variants with an alternate allele

frequency > 0.5 in the RRBS data (Additional file 2: Figure

S10A). The allele frequency estimates from the two data

sets for overlapping variants are reasonably well correlated

(Spearman correlation r = 0.551; p value < 2.2 × 10−16;

Additional file 2: Figure S10B).

In addition to genotyping, we used CGmaptools to ob-

tain CpG-SNP pairs where the SNP and CpG site were

profiled on the same sequencing read. The distance be-

tween the SNP-CpG site pairs ranges from 1 to 104 bp,

with a median distance of 37 bp (mean = 39.75 bp; sd =

26.15 bp; Additional file 2: Figure S10C). We extracted

the methylation-level estimates for each CpG site in the

form of the number of methylated read counts and the

number of total read counts, at the individual level for

homozygotes and for each allele separately for heterozy-

gotes. We obtained a total of 522,965 SNP-CpG pairs,

with 82,217 unique SNPs and 391,137 unique CpG sites.

Following [49], we excluded CpG sites (i) that were mea-

sured in less than 20 individuals, (ii) where methylation

levels fell below 10% or above 90% in at least 90% of

measured individuals, (iii) that had a mean read depth

less than 5, or (iv) that were paired with a SNP with

MAF < 0.05 across individuals for whom DNA methyla-

tion estimates were available. To avoid potential map-

ping bias, we also excluded CpG sites with apparent

differences in methylation levels between reference and

alternate alleles that were larger than 0.6. Note that ex-

cluding these sites is a conservative strategy and may re-

move truly associated SNP-CpG pairs where mQTL are

unusually large effect size. After filtering, our final data

consisted of 49,196 SNP-CpG pairs, with 13,753 unique

SNPs and 45,210 unique CpG sites, and an average of

33,539 SNP-CpG pairs measured per individual.
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For these SNP-CpG pairs, the median number of reads

per SNP across all individuals was 23 (mean = 31.21; sd =

30.08), and the median number of reads per allele was 13

in heterozygous individuals (mean = 18.75; sd = 19.75). To

check the quality of DNA methylation estimates for these

CpG sites, we examined their distribution across individ-

uals. Similar to other RRBS data sets [110], we observed a

bimodal distribution pattern of methylation levels, includ-

ing a large number of hypomethylated and hypermethy-

lated CpG sites (Additional file 2: Figure S10D). Next, we

examined the accuracy of methylation measurements ob-

tained from our pipeline by comparing the mean methyla-

tion at each CpG site obtained here to those estimated in a

previous study that focused on a subset of 61 individuals

but used a different mapping and DNA methylation estima-

tion pipeline [111]. As expected, the overall distribution of

DNA methylation levels is almost identical between our

pipeline and the previous study for the 15,605 overlapping

sites (Additional file 2: Figure S10E). In addition, site-

specific DNA methylation-level estimates are highly corre-

lated (Spearman correlation r = 0.855, p value <2.2 × 10−16;

Additional file 2: Figure S10E). Finally, we checked whether

our data suggest mapping bias in favor of the reference al-

lele. Among the CpG sites we analyzed, we observed no

bias in methylation-level estimates between the reference

and the alternate alleles (Additional file 2: Figure S10F).

We applied five different approaches (details in the

“Results” section), together with our primary IMAGE

method, to analyze the baboon DNA methylation data.

Most of these methods are count based, and algorithms

for count-based models can be computationally unstable

in the presence of covariates. To control for confound-

ing effects from covariates, for each SNP in turn, we

removed the effects of age, sex, and the top two methy-

lation principal components based on M values [112]

and used the genotype residuals for analysis. One

method, IMAGE-A, requires a relatively large number of

heterozygous individuals and was thus only applied to

analyze sites for which we identified at least 5 heterozy-

gotes (38,250 SNP-CpG pairs). All other methods were

applied to all 49,196 SNP-CpG pairs. Because different

methods have different type I error control and one

method (IMAGE-A) analyzes a different number of

SNP-CpG pairs, to ensure fair comparison, we per-

formed permutations to construct empirical null distri-

butions. Specifically, we combined the count data from

the heterozygotes (yi1, yi2), (ri1, ri2) with the count data

from the homozygotes (yi, ri), treated the two alleles of

each heterozygote as two samples and treated each

homozygote as one sample, permuted the sample label

10 times to create null permutations, and applied each

method to analyze the permuted data. We note that an

alternative permutation strategy would be to permute

(yi, ri) along with covariates across individuals. In this

strategy, the number of methylated reads for each allele

(out of total reads for each allele) in heterozygotes could

then be sampled from a binomial distribution with prob-

ability 0.5, conditional on yi and ri − yi respectively. This

alternative strategy is not ideal for small sample sizes,

but is likely to work well for large samples (approxi-

mately n > 150). Therefore, we have also implemented

this alternative permutation strategy in the software and

recommend users to explore both strategies and select

one that performs the best for their data. Regardless of

which permutation strategy one uses, the statistics from

the permuted data allowed us to construct an empirical

null distribution. With the empirical null distribution,

we estimated the empirical false discovery rate (FDR) for

different methods at different p value thresholds. We

then compared the number of associations detected by

different methods at a fixed FDR cutoff.

Finally, following [86], we annotated CpG sites into

four categories based on genomic locations obtained

from the UCSC Genome Browser: island, shore, shelf,

and open sea. CpG islands are defined as short (approxi-

mately 1 kb) regions of high CpG density in an otherwise

CpG-sparse genome [113]. A large proportion of CpG

islands have been shown to be associated with gene pro-

moters [114, 115]. The methylation level at the CpG

islands is often associated with transcription repression

[116, 117]. CpG shores are defined as the 2 kb of se-

quence flanking a CpG island, and CpG shelfs are de-

fined as the 2 kb of sequence further flanking CpG

shores. Both CpG shores and shelfs have been reported

to be more dynamic than the CpG island itself [90, 118,

119]. The methylation variation at shores and shelfs have

been associated with various diseases. Finally, the

remaining regions outside of CpG island/shore/shelf are

denoted as open seas [120]. We downloaded the CpG is-

land annotations for Panu2.0 directly from the UCSC

Genome Browser, annotated the 2-kb region upstream

and downstream of the CpG island boundaries as the

shore, annotated the 2-kb regions upstream and down-

stream of the CpG shores as the CpG shelves, and anno-

tated the remaining regions as open sea (Fig. 3e).

Wolf RRBS data

We also applied our method to analyze a second bisul-

fite sequencing data set, from 63 gray wolves from

Yellowstone National Park in the USA [46, 94]. The wolf

data are RRBS data collected on the Illumina HiSeq

2500 platform using 100-bp single-end sequencing reads.

We obtained bam files for 35 individuals from NCBI (ac-

cession number PRJNA299792) [46] and the fastq files

for the remaining individuals from accession number

PRJNA488382 [94]. We processed all files using the

same procedure described in the previous section, using

Trim Galore and BSseeker2, with the dog genome
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canFam 3.1 [121] as the reference genome. Per-

individual sequencing read depth ranges from 9.53 to

75.18 million reads per individual (median = 31.36 mil-

lion reads; sd = 12.91 million). We used the same SNP

calling procedure described for baboons and applied the

same filtering criteria to obtain a final call set of 518,774

SNPs, with an average of 360,063 SNPs genotyped per

individual (median = 440,898; sd = 103,522). We also

computed the genetic relatedness matrix K with these

SNPs using GEMMA.

To validate variants identified in the wolf data set, we

compared the called variants from the bisulfite sequen-

cing data to an existing SNV data base from the current

Ensembl release for the dog genome canFam 3.1. We

found that 17.9% of variants overlapped with known var-

iants from Ensembl. Importantly, among overlapping

variants, 99.1% of them have the same alternative allele

as reported in Ensembl. In addition, the proportion of

overlapping variants increases with increasing alternate

allele frequency and reaches 41.3% when we focus on

variants that have an alternate allele frequency > 0.5 in

the RRBS data (Additional file 2: Figure S11A).

We followed the same procedure described for ba-

boons to extract methylation measurements on SNP-

CpG pairs. In the wolves, the distance between SNP-

CpG site in each pair ranges from 1 to 103 bp, with a

median of 35 bp (mean = 38.41 bp; sd = 25.63 bp; Add-

itional file 2: Figure S11B). We obtained a total of 861,

474 SNP-CpG pairs, representing 144,670 unique SNPs

and 684,681 unique CpG sites. Following quality control

filtering, we obtained a final set of 279,223 SNP-CpG

pairs, representing 77,039 unique SNPs and 242,784

unique CpG sites, with an average of 179,412 SNP-CpG

pairs measured per individual. In this set, the median

number of reads per SNP across all individuals is 25

(mean = 31.16; sd = 29.33) and the median number of

reads per allele is 14 in heterozygotes (mean = 17.45;

sd = 18.90). Methylation levels across sites display the

expected bimodal distribution pattern (Additional file 2:

Figure S11C), and we observed no bias in methylation-

level estimates between the reference and the alternate

alleles (Additional file 2: Figure S11D).

We applied the same analysis procedure to analyze the

wolf data as we did for the baboon data set. IMAGE-A

was used to analyze 236,092 SNP-CpG pairs where the

data set included at least 5 heterozygotes while the other

methods were applied to all 279,223 SNP-CpG pairs. We

used permutation to construct empirical null distribu-

tions for FDR control and controlled for the effects of

sex and the top two methylation principal components

in the same procedure described in the baboon data. Fi-

nally, we annotated CpG sites into island, shore, shelf,

and open sea categories as described above, based on the

canFam3.1 genome.
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