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High-precision and linear weight updates by
subnanosecond pulses in ferroelectric tunnel
junction for neuro-inspired computing
Zhen Luo1,3, Zijian Wang1,3, Zeyu Guan1,3, Chao Ma1, Letian Zhao1, Chuanchuan Liu1, Haoyang Sun1, He Wang1,

Yue Lin 1, Xi Jin1, Yuewei Yin 1✉ & Xiaoguang Li 1,2✉

The rapid development of neuro-inspired computing demands synaptic devices with ultrafast

speed, low power consumption, and multiple non-volatile states, among other features. Here,

a high-performance synaptic device is designed and established based on a Ag/

PbZr0.52Ti0.48O3 (PZT, (111)-oriented)/Nb:SrTiO3 ferroelectric tunnel junction (FTJ). The

advantages of (111)-oriented PZT (~1.2 nm) include its multiple ferroelectric switching

dynamics, ultrafine ferroelectric domains, and small coercive voltage. The FTJ shows high-

precision (256 states, 8 bits), reproducible (cycle-to-cycle variation, ~2.06%), linear (non-

linearity <1) and symmetric weight updates, with a good endurance of >109 cycles and an

ultralow write energy consumption. In particular, manipulations among 150 states are rea-

lized under subnanosecond (~630 ps) pulse voltages ≤5 V, and the fastest resistance

switching at 300 ps for the FTJs is achieved by voltages <13 V. Based on the experimental

performance, the convolutional neural network simulation achieves a high online learning

accuracy of ~94.7% for recognizing fashion product images, close to the calculated result of

~95.6% by floating-point-based convolutional neural network software. Interestingly, the FTJ-

based neural network is very robust to input image noise, showing potential for practical

applications. This work represents an important improvement in FTJs towards building neuro-

inspired computing systems.
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Neuro-inspired computing shows promise for application
in accomplishing data-centric cognitive tasks, including
real-time image recognition and decision making, which

are very important for edge computing at Internet of Things
(IoT) terminals, such as traffic sign recognition and speed control
for intelligent vehicles1–3. However, the efficiency in terms of
both energy and time has become problematic for executing the
corresponding computations on the conventional von Neumann
computing system because the data have to be calculated by a
processer, stored in a memory, and transferred between the
memory and the processer2,3. It is commonly believed that to
realize an efficient neuro-inspired computing system, it is
necessary to develop high-performance synaptic devices that are
based on memristors and capable of emulating the weight updates
of biological synapses4,5.

To date, various types of memristor-based synapses have been
reported, such as phase-change memristors, magnetic tunnel junction
(MTJ) memristors, and resistive memristors. However, a phase-
change or MTJ memristor needs to be operated with a high-density
current and suffers from high energy consumption6–13, while a
resistive memristor, based on defects, can show undesirable
variations12,13. Therefore, artificial synapses meeting the desired
specifications (summarized in Supplementary S1)14–16 are still scarce,
which limits the performance of corresponding neuro-inspired neural
network computing systems. For example, the basic tasks of recog-
nizing handwritten digits in the Modified National Institute of
Standards and Technology (MNIST) database and more complicated
fashion product images in the Fashion-MNIST (F-MNIST) database
have been widely used to test the capability of neural network
computing systems17,18. Memristor-based neural networks in simu-
lations and experiments typically show degraded recognition fidelity
because of the imperfection of conductance manipulation in these
devices14. The situation is even more serious when noisy images have
to be classified, which is especially important in practical applications,
such as speed sign recognition in bad weather (e.g., rain or snow).
Thus, it is necessary to develop a high-performance memristor that
meets the desired performance criteria.

As a recently developed memristor strategy, the ferroelectric
tunnel junction (FTJ) is in principle a promising candidate for
building high-performance artificial synapses. This is because the
FTJ stores data non-volatilely and intrinsically as ferroelectric
polarization states in its ultrathin ferroelectric barrier. Thus, the
conductance can be continuously manipulated by ferroelectric
domain switching with less variation and low current
densities19–23. Recently, Pt/BaTiO3 (001)/Nb:SrTiO3 (NSTO)-
based FTJs with 200 states in a conductance dynamic range of
10× have been reported with an operation speed of 50 ns and an
endurance of >1.1 × 104 cycles24. However, the reported FTJ
synapses still do not meet the target specifications listed in Sup-
plementary S1, and the following aspects need to be improved.

First, more conductance states in a sizable range are required
for an FTJ synapse to realize precise weight updates14. It has been
proposed that to train a relatively large neural network, each
synaptic device of the network should have a precision of at least
8 equivalent bits25. Based on the principle of the FTJ, multiple
conductance states are related to multiple ferroelectric domains.
The successive switching process of multiple domains will lead to
a gradual manipulation of conductance26. Thus, shrinking the
lateral size of the ferroelectric domain will be beneficial for
achieving more conductance states, and two strategies could be
utilized. (i) Reducing the thickness of the ferroelectric barrier is
generally conducive to forming ferroelectric polydomains due to
the higher depolarization electric field27. (ii) The crystalline
orientation can also influence the domain structure and its
switching dynamics. For example, it has been reported that the
(111)-oriented ferroelectric titanate film is promising for

constructing polymorphic nanodomains28 and multistep switch-
ing processes29,30. Therefore, compared with typically reported
(001)-oriented FTJs, FTJs with ultrathin (111)-oriented ferro-
electric titanate films would be capable of realizing more con-
ductance states but have not yet been reported.

Second, an ultrafast operating speed under an affordable vol-
tage is important for building a high-performance neuro-inspired
computing system. In particular, considering that synaptic devi-
ces are updated frequently during online training, a sub-
nanosecond operating speed that is comparable to that of a
central processing unit (CPU) would be beneficial for con-
structing a high-speed neuromorphic computing system14.
However, most reported artificial synapses have been manipu-
lated using voltages with pulse durations ≥10 ns14,31. Very
recently, we produced a Ag/BaTiO3 (001)/NSTO-based FTJ
memristor with a subnanosecond operating speed (600 ps) and a
low current density (4 × 103A/cm2)32, but the operation voltage
was above 10 V, limiting its practical applications. To solve this
problem, decreasing the ferroelectric film thickness and especially
choosing a material with a lower coercive field to reduce the
ferroelectric coercive voltage may be viable. Ferroelectric mate-
rials near morphotropic phase boundaries (MPBs), such as
PbZr0.52Ti0.48O3 (PZT), typically have low coercive fields33, and
(111)-oriented PZT has an even smaller coercive field than (001)-
oriented PZT34. Thus, in addition to the potential for achieving
more conductance states, FTJs with ultrathin (111)-oriented PZT
barriers have the potential to yield subnanosecond switching
speeds at low voltages (≤5 V).

In this work, according to the above discussion, we designed and
constructed a high-performance FTJ synapse based on a Ag/PZT
((111)-oriented, ~1.2 nm)/NSTO (Nb: 0.7 wt%) heterostructure. By
selecting the ultrathin (111)-oriented PZT that is near the MPB as the
ferroelectric barrier, the analog manipulation of 150 conductance
states can be achieved by applying voltage pulses with a duration (td)
as fast as 630 ps and a low Vp ≤ 5V. Resistance switching speed of
300 ps is achieved by voltages <13V, which is the fastest switching
speed among reported FTJs32,35,36. Notably, the target specifications
for the artificial synapse listed in Table S1 are achieved, including
numerous states (256), a sufficient conductance dynamic range
(~100×), high switching endurance (109), low energy consumption
per programming step (~5.3 fJ for a 50-nm-diameter FTJ), low cycle-
to-cycle variation (2.06%) and linear (nonlinearity <1) conductance
manipulation. Based on the performance of the experimental device,
the simulated convolutional neural network (CNN) can achieve a
high online learning accuracy ~94.7% for recognizing F-MNIST
images, which is close to the result of ~95.6% obtained by floating-
point-based CNN software. High recognition accuracy of >90% can
still be realized for recognizing noisy F-MNIST images with a certain
salt & pepper or Gaussian noise, suggesting its practical potential for
neuromorphic computing.

Results
Structural and ferroelectric characterizations. The device
structure of the FTJ with a (111)-oriented PZT barrier is sche-
matically illustrated in Fig. 1a. The (111)-oriented PZT was epi-
taxially grown on the (111)-oriented NSTO substrate (see
Methods for details). The voltage was applied to the top silver
electrode with a diameter of ~100 µm. The NSTO substrate was
always grounded during the application of voltage. Figure 1b
depicts the high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images selected from 4
different areas viewed along the ½01�1� direction. It is shown that
the thickness of the ferroelectric barrier is ~1.2 nm. As indicated
by the ferroelectric atomic displacements in the magnified images
shown in the insets of Fig. 1b, different atomic polarization
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directions are observed for these domains in the (111)-oriented
PZT ferroelectric film because of the preferred [100], [010] or
[001] ferroelectric polarizations of PZT in principle37.

The ferroelectric properties and domain structures were
probed by piezo-response force microscopy (PFM)38 and
scanning Kelvin probe microscopy (SKPM)39. Fig 1c, d and e
show the PFM phase, amplitude and associated SKPM potential
images, respectively. These mappings were carefully tested after
the box-in-box ferroelectric domain patterning by reversed tip
biases of −6 V and +5 V. As the PFM phase mapping shown in
Fig. 1c, the phase contrast between poled-up and poled-down
regions reaches 180 degree. And the domain boundaries can be
clearly seen in the PFM amplitude image. These evidence the
reversible switching of ferroelectric domains in the PZT
ultrathin film. The SKPM mapping in Fig. 1e shows that the

surface potential in the poled-up region is lower than that of the
poled-down region, because the polarization charges are over-
compensated by screening charges injected from the tips,
consistent with previous SKPM results on BiFeO3 and PZT
ferroelectric films39–41. As shown in Fig. 1f and g, the PFM
phase and amplitude hysteresis loops were characterized with
different AC voltages. The deformed loops with increasing AC
voltage further evidence the robust ferroelectricity of the
ultrathin PZT film36,42.

The evolution of the ferroelectric polydomains for PZT films
with reducing thickness (d) was verified by PFM, as shown in
Fig. 2a. Consistent with earlier reports43, the domain sizes
decrease with decreasing ferroelectric film thickness, and the
spontaneous ferroelectric domain size for d= 1.2 nm PZT thin
film can be estimated to be ~12 nm. It should be noted that the

Fig. 1 Structural and ferroelectric properties. a Schematic illustration of Ag/PZT/NSTO FTJ devices. b Cross-sectional HAADF-STEM images of the PZT/
NSTO heterostructure at four different areas, with the insets showing the ferroelectric atomic displacements in the PZT. The orange and green spheres
denote Pb and Zr/Ti ions, respectively. The arrows in the insets indicate the polarization directions. c PFM phase, d PFM amplitude, and e SKPM surface
potential images recorded after writing an area of 3 × 3 μm2 with −6 V and the central area of 1.5 × 1.5 μm2 with +5 V on the (111)-oriented PZT (1.2 nm)/
NSTO. f PFM phase and g amplitude loops collected with various AC voltages.
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real domain size may be even smaller because the measurement
resolution is limited by the diameter of the conductive PFM
tips44. Interestingly, as shown in Fig. 2b, c, the domain width (W)
as a function of PZT thickness can be fitted by a power law:

W ¼ Adγ ð1Þ
with a scaling exponent γ = 0.54 and 0.53 for the out-of-plane

and in-plane domains, respectively. This follows the famous
Landau-Lifshitz-Kittel scaling law43 with γ = 0.5. These results
demonstrate the important role of reducing film thickness in
obtaining ultrafine ferroelectric domains which are beneficial for
realizing multilevel resistances in FTJ devices.

Two-step ferroelectric domain switching dynamics. Due to the
multidomain structure and complex domain reversal dynamics in
(111)-oriented PZT29, the corresponding FTJs will show continuous
resistance switching characteristics as a result. The hysteresis I-V
curve in Supplementary Fig. S1a indicates the obvious memristive
behavior in the FTJ. To realize the relationship between ferroelectric
reversal and resistance switching, it is necessary to analyse the
ferroelectricity-affected band structures. Thus, the I-V curves at dif-
ferent temperatures from 150 to 270 K were measured at ON and
OFF states, and the thermally assisted tunneling model was used to fit
the data, as shown in Supplementary Fig. S1b–e. When the ferro-
electric polarization points to the NSTO, a lower Schottky barrier
height with a narrower depleted region is obtained in the ON state,
consistent with the ferroelectric field effect mechanism in a metal/
ferroelectric/ semiconductor FTJ36.

Because of the ferroelectricity-affected band structure of the
FTJ, the resistive switching can be directly linked with ferroelectric
polarization switching. Thus, in turn, the ferroelectric switching
dynamics can be investigated by measuring the evolution of
resistance under voltage pulses35. For the measurement, the FTJ
was first set to the lowest resistance state (ON state, downward
polarization) by a voltage pulse Vset = 2 V (duration td = 1 µs),
and then pulsed voltages with varying amplitudes (Vp) and
durations (td) were applied before the resistance measurements by
a read voltage Vread of 0.05 V, as schematically shown in Fig. 3a.
The relationship between the resistance of the FTJs and the pulse
duration at different amplitudes is shown in Fig. 3b. The resistance
evolves slowly at a small |Vp | value of 1.5 V but increases sharply
with increasing |Vp | . Interestingly, there are two switching steps
in the resistance dynamic curves for |Vp | ≤ 2.8 V, as indicated by
the kinks denoted by the arrows in Fig. 3b. With increasing |Vp | ,
the kink appears at a smaller td with a higher resistance and finally
disappears when applying |Vp | ≥ 3.2 V. Importantly, a significant
resistance switching of 500% from the ON state can be realized by
a 630 ps ultrafast pulse voltage as small as−4 V. This pulse voltage
is much smaller than that in a previous report (~10 V)32 because
of the low coercive voltage in the ultrathin (111)-oriented PZT
ferroelectric layer. This resistance evolution process is similar to
that of the ferroelectric polarization dynamics reported in (111)-
oriented PbZr0.2Ti0.8O3 (80 nm thickness) films, which was
attributed to the multiple ferroelectric switching processes29,30.

The ferroelectric domain switching dynamics can be obtained
directly from the resistance switching dynamics by considering

d = 1.2 nm d = 10 nm d = 36 nm d = 100 nm
180

0
180

0
400

-400

Fig. 2 Ferroelectric domain structures of (111)-oriented PZT films with different thicknesses. a PFM out-of-plane and in-plane phases and topographies
of PZT films with different thicknesses. b, c Domain width versus film thickness (d) for out-of-plane and in-plane, respectively. The solid lines are the fitting
results by a power law.
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the FTJ as a parallel circuit of upward and downward polarization
domains35. The relationship between the area fraction s for
upward polarization domains and the junction resistance can be
expressed as 1/R =(1 − s)/RL+ s/RH

35,45. Fig 3c shows that the
pulse duration dependence of s at different Vp has a plateau,
suggesting the multistep ferroelectric switching process. Accord-
ing to Martin et al.’s report30, in (111)-oriented PZT under an
external electric field, some fraction of domains undergoes a one-
step 180° switching process, while the other fraction of domains
undergoes a two-step 90° switching process. The 90° switching
process occurs at the plateau where the out-of-plane component
of polarization is invariable. For FTJs with a (001)-oriented PZT
barrier, there is no plateau during switching (see Supplementary
Fig. S2), and only a one-step switching process occurs. The two-
step switching dynamics in FTJs with (111)-oriented PZT will be
beneficial for achieving multiple and stable intermediate ferro-
electric domain states. In addition, to describe the switching
dynamics for (111)-oriented PZT, the nucleation-limited-
switching (NLS) model35,46 containing two steps (see Methods
for details) was used to fit the results in Fig. 3c, and the mean
switching time τmean was extracted accordingly. The relationships
between τmean and the inverse of the applied electric field 1/|E| for
the two-step switching processes are shown in Fig. 3d. The two
activation electric fields of 2.37 V/nm and 3.91 V/nm, corre-
sponding to the first and second switching steps, respectively,
were obtained according to Merz’s law τ ∝ exp(−Ea/E)23.

FTJ-based analog memristors. To further reveal the character-
istics of the memristive behavior, the loops of resistance (Vread =
0.05 V) versus Vp were investigated. The representative results
measured at td = 10 ns and 630 ps are shown in Fig. 4a, b,
respectively. The resistance can be manipulated continuously to
various intermediate resistances by varying the negative max-
imum voltage Vp

max−. As shown in Fig. 4c, d, the stable resis-
tance switchings among different states can be established by

changing the applied voltage. A high ON/OFF ratio of ~200 can
be realized by applying 3.6 V/−4.0 V at td = 10 ns or 8.0 V/
−8.5 V at td = 630 ps. Even voltages as low as 3.6 V/−3.6 V,
much lower than previously reported voltages32, are sufficient to
achieve a distinguishable resistance switching repeatedly at such a
high switching speed of ~630 ps. The subnanosecond switching
speed under a small operating voltage is conducive to saving a
significant amount of time and energy in training a neural net-
work computing system because the synaptic device conductance
would be updated frequently during online training47.

For our FTJs, the lower operation voltages than those of
previous report on BaTiO3-based FTJ32 should be attributed to
the relatively lower coercive field for the (111)-orientated PZT
near MPB34 as well as its ultrathin thickness. Supplementary
Fig. S3 shows the resistance vs. Vp loops of FTJs with different
PZT thicknesses d from 6.0 nm to 1.2 nm under voltage pulses of
td = 10 ns and 630 ps. It is revealed that the coercive voltages (Vc)
of our FTJs decrease with reducing the thickness of PZT, and
their relationship can be described by the Kay-Dunn law Vc ∝ d1/
3 for ferroelectric thin films34. Interestingly, it is noted that with
decreasing ferroelectric film thickness, the FTJ resistance
decreases exponentially, indicating the tunneling effect in FTJs48.
In addition, the utilization of metal electrode with low work
function, such as Ag ~4.26 eV, is also beneficial to reduce the
operation voltage. To investigate the effect of electrode on the FTJ
performance, FTJ devices with other electrodes including Cu
(CMOS-compatible49) and Pt were studied, as shown in
Supplementary Fig. S4 and Table S2. With increasing work
functions of electrodes from Ag to Pt, the ON/OFF ratio
increases, but the operation voltages increase obviously. Because
of the low operation voltage, the Ag electrode FTJ shows more
robust switching endurance, as shown in Supplementary Fig. S4.
In addition, it is worth mentioning that although Ag migration
may cause resistance switching in diffusive memristors50,51

or conductive bridge memories52, the experimental results

Fig. 3 Ferroelectric domain switching dynamics for the (111)-oriented PZT in FTJs. a Schematic illustration of the applied voltage pulse sequence.
b Resistance measured at 0.05 V versus pulse duration. The kinks are denoted by arrows. c Relative area fraction of the ferroelectric poled-up domain versus
pulse duration. The solid curves are the results of fitting by the nucleation-limited-switching (NLS) model. d Evolution of the mean switching time (τmean)
as a function of the inverse of electric field (1/|E|). The solid lines are the fitting results by Merz’s law.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28303-x ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:699 | https://doi.org/10.1038/s41467-022-28303-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


confirm that the resistance switching of our FTJ is caused by
ferroelectric polarization switching rather than the formation and
rupture of Ag conductive bridge (see detailed descriptions in the
Supplementary S6).

With the decreased operation voltage, the current density of
FTJ can be reduced further to ~1.3 × 103 A/cm2 compared with
earlier FTJs32, and this is much lower than the values for phase-
change memristors and MTJ memristors6,9. As a result, the
energy consumptions of ~440 pJ per positive operating pulse
and ~520 pJ per negative operating pulse were obtained in the
FTJ with diameter of 100 μm, as shown in Supplementary S7.
To further decrease the energy consumption, nanoscale FTJ
devices with a top electrode diameter of ~50 nm were prepared,
with an energy consumption as low as 5.3 fJ/bit, as shown in
Supplementary S8.

Fig 4e shows that the higher the applied amplitude of Vp is,
the quicker the resistance switching is achieved, consistent
with the dynamics shown in Fig. 3. In particular, an operation

speed of 300 ps (the fastest resistance switching speed for FTJs)
was achieved by voltages <13 V, as the R–Vp loops and multi
resistance state switchings shown in Fig. 4e and Supplementary
Fig. S8. The threshold electric fields Eth (defined as the electric
field where the resistance is 50% higher (or lower) than that at
the lowest (or highest) resistance state) of resistance switching
at different td were extracted and plotted, as shown in Fig. 4f
fitted by Merz’s law53. The activation field Ea are 1.40 V/nm
for negative voltages and 1.38 V/nm for positive voltages,
respectively.

Retention and endurance characteristics are two critical
parameters for electronic synapses. Fig 5a shows the retention
up to 104 s for representative 4-bit resistance states. Fig 5b shows
the good endurance up to 109 cycles for the FTJ with a (111)-
oriented PZT barrier, meeting the endurance requirement for
neural network training (see Table S1)14. Although during each
iteration of online learning, the device conductance only needs to
be modified by an incremental amount and not every synapse is

Fig. 4 Ultrafast memristive switching of the FTJ with a (111)-oriented PZT barrier. a, b Resistance measured at 0.05 V as a function of Vp with a pulse
duration of td = 10 ns and td = 630 ps. c, d Resistance switchings among different resistance states by applying different Vp with td = 10 ns and td =
630 ps. e Resistances as a function of Vp with various td values from 300 ps to 40 ns. f Pulse duration versus inverse of threshold field 1/|Eth|. The solid lines
are the results of fitting by Mertz’s law. The arrows in a, b and e indicate the voltage sweeping direction.
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updated, synaptic devices with an endurance of up to 109 cycles
are highly desired for more complex tasks, such as reinforcement
learning16,54. In addition, it is worth mentioning that in Fig. 5b,
after applying 109 cycles of voltage pulses, another 5 cycles of
resistance switching were measured as shown in Fig. 5c. It can be
seen that the FTJ was not damaged but fatigued with the ON/OFF
ratio decreasing from ~300 to ~140. The high endurance of our
FTJ should be related to the high quality of epitaxial ferroelectric
film with less grain boundaries (see Supplementary Fig. S10)55.

Subnanosecond weight manipulation of the FTJ synapse with
pulsed voltages ≤5 V. Based on the gradual manipulation of the
conductance, the FTJ memristor can be harnessed to construct an
artificial synapse. As shown in Fig. 6a, both potentiation and
depression with 256 conductance states (the highest number of
states among reported FTJs) in a dynamic range of 100× were
demonstrated by applying a series of 10 ns pulse voltages with
incremental amplitudes (from 1.35 V to 2 V for potentiation, and
from −1.4 V to −3.5 V for depression), and the operation speed
is comparable to that of DRAM56. Here, the variable voltage
scheme was used to tune the conductance, because it is beneficial
for improving the linearity of conductance manipulation (non-
linearity ~0.77 for potentiation, ~−0.94 for depression), as dis-
cussed in Supplementary S11. In addition, the measurements
were repeated by 20 times for one FTJ sample, and due to the
intrinsic stability of ferroelectricity, the FTJ shows a low cycle-to-
cycle variation of ~2.06% (see Supplementary Fig. S11 for the
mean value and standard deviation of each conductance state).
When the pulse is as fast as 630 ps (close to CPU speed), as shown
in Fig. 6b, 150 conductance states with a cycle-to-cycle variation
of 3.65% can be demonstrated by applying a series of operation
pulsed voltages ≤5 V (from 3.5 V to 4.5 V for potentiation, and
from −3.2 V to −5 V for depression). The subnanosecond

operation speed and low operation voltage of ≤5 V show great
advantages in saving training time, which is significant for
developing high-speed neuromorphic computing systems.

Discussion
Convolutional neural network simulations based on the
experimental performance of FTJ synapse. To further illustrate
the capability of the FTJ with a (111)-oriented PZT barrier as a
high-performance synapse, the neural network simulations were
carried out based on the experimentally obtained behaviors
including 256 states with 10 ns pulse duration or 150 states with
630 ps pulse duration57. As shown in Fig. 7a, the convolutional
neural network ResNet-18 was established to recognize fashion
product images in F-MNIST dataset17,58. The device behavioral
models for CNN simulations were constructed based on the
experimental conductance manipulations in Fig. 6a, b with con-
sidering the experimental cycle-to-cycle variation and nonlinearity
summarized in Table S3. The more detailed simulation processes
are discussed in Methods and Supplementary S12. The simulation
results are shown in Fig. 7b. The CNN simulation based on
256 states shows a high recognition accuracy of 94.7% for F-
MNIST, which is close to that ~95.6% achieved by floating-point-
based software, demonstrating the excellent performance of our
FTJ synapses. When the simulation is performed based on
150 states, the recognition accuracy decreases, but is still higher
than 90.0%. In addition, the CNN simulations on recognizing
handwritten digits in the MNIST dataset were also carried out (see
Supplementary S12). The high accuracies of 99.7%, 99.5% and
99.1% for the simple MNIST dataset were achieved based on
floating point, 256 and 150 states, respectively. These simulation
results further evidence the advantages of FTJs for neural network.

It is worth mentioning that instead of recognizing clear images
in the F-MNIST or MNIST database, a practical neuromorphic
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Fig. 5 Retention and endurance measurements of the FTJ with a (111)-oriented PZT barrier. a Retention time of representative 4-bit resistance states.
b Endurance by applying +2 V/−3 V with pulses of td = 100 ns. c 5 resistance switching cycles after the 109 cycles.

Fig. 6 Artificial synapse analog based on the FTJ with a (111)-oriented PZT. a, b Potentiation and depression processes measured for 20 times from one
FTJ sample with pulse durations of td = 10 ns and td = 630 ps, respectively.
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system has to deal with more serious situations when classifying
noisy images, such as the speed sign recognition for intelligent
vehicles in bad weather (e.g., rain or snow)59. It is very
interesting to verify the noise tolerance of the FTJ-based CNN
system, and thus, the neural network was further trained by
the F-MNIST database with different levels of salt & pepper
noises and Gaussian noises. For salt & pepper noise, the

grayscales of some randomly chosen pixels were set to be white
or black, and the ratio β of chosen pixel number to the total pixel
number is defined as noise level. While for Gaussian noise,
noises that obey a Gaussian distribution with zero mean and
standard deviation values ζ (ratio to the maximum pixel
intensity, defined as noise level) were added to the images
(see Supplementary S12)60–62.

Fig. 7 Neural network simulation. a Schematic diagram of the ResNet-18 neural network. b Simulation results on learning F-MNIST images based on the
experimental results of 256 (in Fig. 6a) and 150 (in Fig. 6b) conductance states as well as floating-point-based software. c, d Training results on F-MNIST
images with different levels of salt & pepper noise and Gaussian noise, respectively. e Recognition accuracy of F-MNIST images with different levels of salt
& pepper noise and Gaussian noise.
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It can be seen from Fig. 7e that with increasing noise level, the
recognition accuracy decreases. Interestingly, for the noisy
F-MNIST dataset, the recognition accuracy still keeps >90%
when salt & pepper noise level is 0.3 and Gaussian noise level is
0.2. And for the noisy MNIST dataset, the recognition accuracies
can exceed 99% even when salt & pepper noise is 0.3 and
Gaussian noise is 0.4, as shown in Supplementary Fig. S12. The
robust fidelity in recognizing noisy images highlights the
improvement in ferroelectric domain dynamics in the FTJ for
practical applications in neuromorphic computing.

Our results provide an interesting strategy to reveal a prototype
FTJ device with target performances for artificial synapses
(Table S1)14. While for applications, the CMOS compatibility,
such as the ease of fabrication of PZT on Si substrate, should be
considered. Fortunately, according to the earlier reports63,64, PZT
films with a remnant polarization of 10 µC/cm2 can be grown on
Si at a low temperature of 400 oC. Besides, a transfer technique
has been put forward to obtain PZT-based FTJ on Si
substrate65,66. Especially, the HfO2-based ferroelectric materials
that can be grown on the Si substrate may be important to
construct CMOS-compatible FTJs67,68.

In summary, subnanosecond switching and numerous states
were demonstrated in the FTJ with a (111)-oriented PZT barrier
due to the ultrafine polydomain structure, the multiple ferro-
electric switching dynamics and the low coercive voltages. As an
artificial synapse, under a pulsed voltage of 10 ns, the FTJ shows
high performance in terms of conductance manipulation with
multiple states (256), low cycle-to-cycle variation (2.06%),
sufficient dynamic range (~100×), long retention (104 s), good
endurance (109) and linear (nonlinearity ~1) conductance
manipulation, meeting the target specifications for synaptic
devices. When the pulse duration decreases to 630 ps, as many
as 150 states with a small cycle-to-cycle variation of 3.65% can
still be achieved by applying voltage pulses ≤5 V. The fastest
resistance switching speed in FTJs of 300 ps is achieved by
voltages <13 V. Furthermore, the 50-nm-diameter FTJ shows an
ultralow energy consumption of 5.3 fJ/bit. The CNN simulations
based on the measured data of the FTJ device demonstrate a high
recognition accuracy of 94.7% for F-MNIST images, close to that
(~95.6%) of floating-point-based CNN software. The recognition
accuracy higher than 90% for F-MNIST images can still be
achieved even with 0.3 of salt & pepper noise or 0.2 of Gaussian
noise. These results show the potential of (111)-oriented FTJs for
constructing neuro-inspired computing systems.

Methods
Sample preparation. Epitaxial PZT thin films (1.2 nm) were grown on (111)-
oriented NSTO (0.7 wt% Nb) single-crystalline substrates by pulsed laser deposi-
tion (PLD) at a growth temperature of 525 °C under 200 mTorr in an O2 atmo-
sphere. The laser repetition rate and laser fluence were 1 Hz and 0.8 J/cm2. After
growth, the samples were cooled to 20 °C at a rate of 5 °C/min under 250 Torr in an
O2 atmosphere. The Pt, Ag and Cu top electrodes with a diameter of 100 μm were
grown using magnetron sputtering with a shadow mask. For the nanoscale devices,
50-nm-diameter Pt top electrodes were patterned by electron-beam lithography
and lift-off processes.

Structural and ferroelectric characterizations. A STEM system (JEM-ARM200F,
JEOL, Japan) with a probe-forming spherical aberration corrector was utilized to
investigate the cross-sectional structure of the PZT/NSTO. PFM studies were
performed in scanning probe microscope (MFP-3D, Asylum Research, USA) using
conductive tips (PPP-efm, Nanosensor, Switzerland).

Real-time electrical measurements. To ensure that the ultrafast voltage pulses
can be delivered to the FTJ successfully, the high frequency circuit with a micro-
strip waveguide was utilized (see detailed descriptions in Supplementary S13). And
real-time measurements of subnanosecond pulse voltages were conducted to verify
that the subnanosecond pulse voltages were successfully applied onto the FTJ
devices (see in Supplementary S7). Subnanosecond pulse voltages were delivered by
pulse generators (PSPL10300B, Tektronix, USA, or GZ1118GN-01EV/GZ1118GP-

01EV, Geozondas, Lithuania) to induce FTJ resistance switching. The FTJ resis-
tance was read by an amperemeter (2410 SourceMeter, Keithley, USA) after
operation voltage pulses were applied. The waveforms that passed through the
device were monitored by an oscilloscope (DSA70804, Tektronix, USA). The DC
and RF signals were separated by a switch matrix (RC-4SPDT-A18, 0–18 GHz,
Mini-circuits, USA). Attenuators were connected before the oscilloscope to avoid
overrange conditions. The scattering (S)-parameter were recorded by a vector
network analyzer (AV3656A, CETC 41, China).

Ferroelectric domain dynamics model. The junction area is divided into two
zones. One zone, s1, undergoes a one-step switching process, while the other zone,
s2, undergoes a two-step switching process. The ferroelectric switching in each zone
obeys a nucleation-limited-switching (NLS) model. The logarithm of the switching
time of each zone, log(τsw), obeys a Lorentzian distribution46.

Fðlog τswÞ ¼
si
π

w

ðlog τsw � log τmeanÞ2 þ w2

� �
ð2Þ

Here, τmean is the mean switching time, and w and log(τmean) are the width and
center of the distribution, respectively. The normalized summed switched area s is
as follows:

s ¼ ∑
2

i¼1
si

1
2
þ 1

π
arctan

log td � log τimean

wi

� �
ð3Þ

Neural network simulations. ResNet-18 CNN simulation based on the experi-
mental device behavioral models were carried out to recognize F-MNIST and
MNIST images. Noisy patterns were generated by adding Gaussian noise or salt &
pepper noise to the pixels of the images. More details can be found in
Supplementary S12.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the article and the
Supplementary Information file. All data are available on request from the corresponding
authors.

Code availability
The software code used for this study are available on request from the corresponding
authors.
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