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Abstract—There is a need in modern neuroscience for accurate
and automated image processing techniques for analyzing the
large volume of neuroanatomical imaging data. Even at light
microscopic levels, imaging mouse brains produces individual
data volumes in the TerraByte range. A fundamental task involves
the detection and quantification of objects of a given type, e.g.
neuronal nuclei or somata, in brain scan dataset. Traditionally
this quantification has been performed by human visual inspec-
tion with high accuracy, that is not scalable. When modern
automated CNN and SVM-based methods are used to solve this
classification problem, they achieve accuracy levels that range
between 85− 92%. However, higher rates of precision and recall
that are close to that of human performance are necessary. In this
paper, we describe an unsupervised, iterative algorithm, which
provides a high performance for a specific problem of detecting
Green Fluorescent Protein labeled nuclei in 2D scans of mouse
brains. The algorithm judiciously combines classical computer
vision techniques and is focused on the complex problem of
decomposing strong overlapped objects of interest. Our proposed
technique uses feature detection methods on ridge lines over
distance transformation of the image and an arc based iterative
spatial-filling method to solve the problem. We demonstrate
our results on mouse brain dataset of Gigabyte resolution and
compare it with manual annotation of the brains. Our results
show that an aptly designed CV algorithm with classical feature
extractors when tailored to this problem of interest achieves
near-ideal human-like performance. Quantitative comparative
analysis, using manually annotated ground truth, reveals that
our approach performs better on mouse brain scans than general
purpose machine learning (including deep CNN) methods.

Index Terms—GFP, cell detection, convex arc, mouse brain,
distance transformation, ridge.

I. INTRODUCTION

Understanding the cytoarchitecture of the brain is an impor-

tant goal in the field of neuroscience [26], [52]. In particular, the

identification of locations and quantification of neurons across

the brain is a vital task. To achieve this goal, modern imaging

methods have allowed users to produce images at very high

resolution for further analysis. Entire mouse brains can now be

imaged using light microscopy at sub-micron resolution from

entire mouse brains (∼ 1cm3 volume), with individual data

volumes in the terrabyte range. Optical microscopic techniques

applied at such high resolutions, help to study the brain at a

single neuron resolution [37], [43] but the large data volumes

make it a significant computational and data analytics challenge.

In addition to the advancements in imaging techniques,

advanced methods such as the expression of the Green

Fluorescent Protein (GFP) [12] have ensured that specific types

of neurons can be tagged and studied in great detail [55]. A

successful implementation of GFP tagging in the identifica-

tion and quantification of interneurons is described in [55].

Manually studying the distribution of these GFP expressing

neurons across the entire brain is often time consuming and is

susceptible to human errors over large datasets. To overcome

this, an automated process of detection and quantification of

neurons [5], [28] must be designed based on well grounded

image processing (or computer vision) algorithms. However,

the level of sophistication in the analysis techniques has not

yet caught up with the significant improvements in microscopic

imaging methods. In this work, we have sought to develop an

automated method of detection for GFP tagged interneurons

across mouse brain datasets that is made up of high resolution

image scans of brain sections. Thus, the aim of our work,

proposed in this paper, is to detect and count GFP tagged

specific cell types from entire mouse brains.

Automated algorithms are often resource consuming and

have been deployed in studying the brains of lower species

such as Candida elegans [56]. Computer vision algorithms

have also played a vital role in the segmentation of large-scale

electron microscopy data. Kaynig et al. [27] have proposed

a pipeline that provides state-of-the-art reconstruction perfor-

mance while scaling to data sets in the GB-TB range. Such high

performance was achieved by training a random forest classifier

on interactive sparse user annotations. This classifier output

was then combined with an anisotropic smoothing prior in a

Conditional Random Field (CRF) framework to generate mul-

tiple segmentation hypotheses per image. These segmentations

were then combined into geometrically consistent 3D objects by

segmentation fusion. A more recent work in automatic neural

reconstruction from petavoxel of Electron Microscopy data [53]

suggested a dense Automatic Neural Annotation framework

(RhoANA) to automatically align, segment and reconstruct a
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1mm3 brain tissue (∼ 2 peta-pixels), using a web-based tool

to manually proofread the output, and ensure reconstruction

correctness. The pipeline performs membrane classification

and 2D segmentation using state-of-the-art deep learning (DL)

techniques in order to generate membrane probability maps.

Deep learning methods have been used in the detection of

cells in cancer biology. One method for mitosis detection [4]

is based on deep learning which performs data aggregation

using convolutional neural networks (CNN) via additional

crowdsourcing layer (AggNet). Mualla et al. [39] propose a

method for automatic cell detection on polypropylene substrate,

suitable for microbeam irradiation. A Harris corner detector was

employed to detect apparent cellular features. These feature-

corners were grouped based on a dual-clustering technique

according to the density of their distribution across the image.

Weighted centroids were then extracted from the clusters of

corners and constituted the targets for irradiation. Quelhas

et al. [46] introduce a new approach for cell detection and

shape estimation to detect overall convex shapes in multivariate

images based on a sliding band filter (SBF). Furthermore,

the parameters involved are intuitive as they are directly

related to the expected cell size. Using the SBF filter, cell

nuclei, the cytoplasm location and shapes were detected. In

the remainder of the paper, we will refer to the terms cells

and GFP nuclei interchangeably (as our target objects for

detection/segmentation).

(a) (b)

Fig. 1: (a) Example of a high resolution image of an individual

brain section highlighting the distribution of GFP expressing

interneurons. This brain section image along with ∼ 240

separate images constitutes one complete brain dataset. (b)

shows the extracted Green channel data from (a).

An example of a high resolution image (2D) of a brain

section is given in Figure 1. This brain section along with

240 brain sections form a complete brain imaged dataset

of one particular mouse brain (Mouse Brain Hua-167 [1]).

The dataset consists of images with a 18K × 24K resolution

at 0.46 micron per pixel scale. The given example shows

the distribution of the GFP expressing nuclei with higher

distribution densities clearly visible in the colliculi. Figure

1b shows the extracted image of the green channel alone for

the same brain section. Figure 2a shows a zoomed in example

of a small cropped region from the example section (figure 1).

Centers of the GFP nuclei were marked manually by human

annotators for the entire brain and this ground truth has been

shown in Figure 2b. Results of the object-detection methods

based on Faster R-CNN [50] and SVM [16], [40] have also been

shown. As demonstrated in figures 2(c) and 2(d), although these

methods yield fairly accurate results, however produce a few

false alarms (detections) and misses, especially when detecting

strong overlapping objects (Section V discusses performance

using quantitative measures). As a scientific and diagnostic

tool, there is a need for a higher level of accuracy and higher

rates of precision and recall. The major reason for the moderate

accuracy given by these supervised methods is that, they do not

capture the various non-unique patterns of spatial layouts and

structures that are formed by clusters of neurons, specifically

with strong overlap. Machine learning algorithms [7], [20] have

been designed to produce high accuracy invariant to pose, scale

(size), background and texture of the object. However, they

are not immune to conditions where large amount of overlap

(dense crowd, large clutter/pile of objects, say) occur and fail

to inadequately capture the required objects of interest due

to occlusion and camouflage. Deep-CNNs have yielded rich

dividends in example cases, ranging from IMAGNET [19],

PASCAL [21] image datasets, to HMDB [29], Hollywood-

II [34], MS-COCO [30] video datasets, where considerable

inter-class variability exists in the data, unlike in our dataset.

Moreover, none of these publicly available datasets contain

objects with large amount of clutter and strong overlap, which

is the case in some scans of our brain dataset.

(a) (b)

(c) (d)

Fig. 2: Applications of Support Vector Machines (SVM) and

Faster R-CNN for the detection of GFP tagged nuclei on a

mouse brain section; For clarity purposes, (a) cropped sample

of the high resolution image is shown from brain section in

figure 1(a); Manually annotated ground truth of cell centers

for the sample shown in (a) (marked in magenta dots); Results

of cell center detection using: (c) SVM [16] (Gaussian kernel)

& (d) Faster R-CNN [50] on (a). Figure best viewed in color.

Compared with the ground truth, the true positives are shown

in blue, the false alarms in red and the false negatives in white

crosses (consistently followed henceforth).

Detection of cell centers in cases of strong overlap of

objects of interest is a difficult problem, as the overlapping
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objects result in complex 2D structures that do not exhibit a

unique appearance pattern of shape, size and overlap formation

(layout). This results in loss of accuracy in the training of

any shallow or deep learning (DL) methods. However, human

observations can intuitively sort these overlapping objects

and it becomes necessary for any automated algorithm to

achieve high accuracy close to that of human annotators

but over a large scale (≃ 400 GB size images) with lesser

computational time (few minutes on a single high-end CPU

machine). With this aim, we have proposed an improved and

efficient algorithm for the unsupervised classification of GFP

tagged GABAergic interneurons across the mouse brain [8]. Our

proposed method is designed suitably as a congruence of image

analysis algorithms, such as Distance Transformation (DT) and

edge detection to quantify the boundaries of the detected cells,

followed by the extraction of features along ridge lines for

detecting the candidate centers of neurons. The algorithm is

further enhanced by an iterative approach of region filling by

circular blobs of adaptive size, using convex arcs on the edge

maps for detecting overlapped cell areas. Using this method, we

have obtained a high precision of 0.972 and a recall of 0.961,

over one complete brain section image set and a significant part

of another (∼ 240 scans in first set and ∼ 158 in the other).

A comparative performance analysis shows that our proposed

algorithm surpasses two existing deep learning CNN models

[50], as well as two popular shallow learning object detection

algorithms. Shallow and deep models, used in this study, are

not tailor-made for a structure decomposition problem which

is an essential component necessary for detecting overlapping

objects (GFP tagged nuclei in our case).

II. OVERVIEW OF THE PROPOSED METHOD

Individual sections of the mouse brain are obtained as

gigapixel resolution (RGB 18K × 24K pixels at 12-bits per

channel) images, from the mouse brain of the wild type

mouse (C57BL6), with green fluorescent protein (GFP) tagging

of GABAergic neurons (PV+) [1]. This data is part of the

mouse brain architecture project [1] at the Cold Spring Harbor

Laboratory (CSHL), which aims to quantify the connections

of different parts of the brain using tracer injections and cell

tagging techniques at a mesoscopic scale [8]. The CRE cell

lines that tag interneurons were developed by Josh Huang’s

Laboratory and have been described in [55]. The histological

and imaging preparation of the brain has been previously

described in [45]. Manual annotation of one complete set

of a brain and a selected portion of another set was performed

by researchers from the Indian Institute of Technology (IIT),

Madras, India, making the comparison and evaluation of

algorithms feasible on the scan data. Details of the manual

annotation is described later in Section V.

Figure 3 shows two examples of zoomed in sections with

GFP tagged neurons with different cell distributions (as density

of occurrence) - minimal overlap and strong overlap. Objects

of interest (nuclei), which are visible in the green spectrum, in

the strong overlapping regions appear as a dense 2D packed

structure with no well formed/defined shape and size, where

more than 3 cells overlap (figure 3(b)). In addition, individual

nuclei also appear with varying sizes within the regions

of interest. This arbitrary spatial arrangement of cells with

significant overlap makes it a challenging task to detect each

one of them accurately. The unsupervised computer vision

(CV) approach of cell detection proposed in this paper has

been designed and formulated for precisely dealing with this

scenario of detecting individual cells within a packed set of

strongly overlapping nuclei. Geometric constraints of the cell

layout have been used to decompose a structure into overlapping

circular units.

(a) (b)

(c) (d)

Fig. 3: Examples of distributions of GFP tagged interneurons

in a mouse brain, for (a) Minimal overlap, (b) Strong overlap;

(c), (d) Extracted salient foreground region (FGR) obtained

by enhancing the contrast of (a) and (b) respectively (best

viewed in color). Other non-green channels are suppressed.

See Supplementary section S.1 for details and illustration of

the process of contrast enhancement.

A. Basis and Justification of the algorithm designed

For our problem scenario, the task involves detecting centers

of the GFP tagged nuclei. Our solution is achieved by using

Distance Transformation and edge detection followed by Ridge

estimation as default processes of Stage I of our pipeline. This

part of the designed process accurately detects cells in cases

of sparse (isolated) distribution or minimal overlap of objects

of interest. In the complex case of strong overlap of multiple

cells (as seen in figure 3(b)), an additional process (Stage

II) is required for accurate identification of the nuclei. This
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Fig. 4: Flowchart detailing the algorithmic flow of the proposed method for the detection of centers of GFP tagged nuclei in

mouse brains. Phase I: Method based on Distance Transform and ridge based features; Phase II: the arc based iterative method

of area-filling. A more detailed outline of Phase II is given in algorithm 1 (and figure S.2).

solution is where our algorithm considerably outperforms the

state of the art machine learning models (like Faster R-CNN

[50], SVM [16]). The process we have designed uses geometric

constraints with the foreground area filling to decompose a

2-D area of overlapping cells into partly occluded cell bodies.

The complexity in the data lies in the degree of overlap of

objects within the image and is dependent on the type of

object, the microscopic and sample preparation techniques. The

deep learning models, although well suited for multiple object

detection are not well suited to the overlap-decomposition

problem which we have implicitly addressed in our pipeline.

The simplicity of method when combined with close to human

performance, makes it advantageous to use over other methods

including CNNs for solving this problem.

B. Brief Description of the proposed algorithm

As the GFP tagged neurons have relatively higher irradiance

in green channel compared to the background neuropil, we have

enhanced the 12-bit green channel using contrast enhancement

as a pre-processing step to produce the salient foreground

region (FGR) as shown in figures 3(c) and 3(d).

It was observed that modern machine learning (ML) and deep

learning (DL) based supervised object detection algorithms fail

to reach the desired level of high accuracy in the case of strong

overlapping (figure 3(b)) arrangement of cells (results illustrated

in supplementary section S.6). This task is analogous to the

problem of packing circles of varying (but within a limited

range) sizes within an arbitrary polygonal shape. Simpler

versions of this problem have been addressed in the fields

of Computational Geometry and Operational Research [32],

[48], [25], [35], [15], [11], [58], [33], [17]. This is an NP-hard

problem [14] and no prior work exists to give a direct solution

for such a task, specifically in cases of overlap of circles.

Hence, one has to resort to either an iterative method based

on optimization with certain constraints for an approximate

solution, or use image features first to initially place few cells

suitably at locations with high feasibility and then fill residual

gaps in an iterative manner. We chose the latter path for our

method, as the FGR map (in figure 3(d)) provides rich clues

to initially detect a few cells with high level of accuracy.

Our proposed method consists of two sub-processes (figure

4): Phase-I sub-process consists of steps, which enhance the

foreground areas (FGR) followed by feature extraction, using

the Distance Transform (DT) from edge map of FGR and ridge

lines from the modulated DT (mDT) map. Peaks of mDT map

and features on ridge lines correspond to candidate centers

of detected objects of interest. Phase-II sub-process fills the

cell areas (detected centers with edges) detected in Phase-I

with the background color on FGR to obtain a residual map

(RFM). Significant areas of the RFM are then iteratively filled

using Hough Transforms on convex arc segments that were

identified on the outer boundary edges of the objects in the

RFM. The output of the cell center locations provided by the

two phases are eventually merged using a union operation

(spatial locations of very nearby cell centers are averaged) to

create the final set of detected cell centers. Both these phases

of the pipeline (unsupervised) process are described below.

III. PHASE-I: DT AND RIDGE BASED METHOD FOR CELL

CENTER DETECTION

Salient regions of the green channel correspond to the nuclei

of interneurons. Since these are our main objects of interest,

we have used the green channel alone for further processing.

Steps used in Phase-I of our algorithm (see figure 4) are:

• Normalization of the green channel

• Contrast enhancement to get FGR

• Edge detection on binary image of the FGR map

• Distance Transform (DT) on edge map

• Compute mDT map using DT and FGR

• Ridge line detection (computed only for large areas of

FGR) on DT map

• Identify peaks on Ridge lines using mDT map

• Detect Bifurcation Points (BF) on the ridge lines
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• Clustering of the peaks and BF to yield the list of putative

centers of cell nuclei.

As a first step, the green channel has been enhanced using

contrast enhancement (detailed in supplementary section S.1)

to obtain the FGR. Figure 5(a) shows the FGR with the Ground

Truth (manually annotated cell centers). The green channel

has alone been thresholded to produce the binary image of

FGR (also shown in figure S.1(e)). We then applied a Canny

edge detection method [10] on this binary image of FGR to

obtain an edge map. A distance transformation (DT) [36] on

the edge map is then used as an intermediate feature which

will eventually help to locate candidate positions of cells in

FGR. The DT values corresponding to the background region

of FGR are then suppressed to zero, leaving only the DT-map

on pixels of FGR . Figure 5(b) shows binary (thresholded)

map of FGR in figure 5(a), with the edge map overlayed and

represented by the Magenta borders. Figure 5(c) shows the DT

map extracted from the edge map of figure 5(b).

(a) (b)

(c) (d)

Fig. 5: (a) Ground truth as manually annotated cell centers, on

the green channel (only used in the figure) of the FGR shown

in figure 3(d); (b) Edges marked in magenta over binary image

(figure S.1(e)); (c) Distance Transform (DT) applied on image

in figure S.1(e). DT is suppressed in the background region of

FGR; (d) Modulated DT (mDT) map, obtained using equation

(1) with FGR and DT map

The DT map [44] results in producing an intensity peak

which corresponds to the centers of detected nuclei, and this

intensity decreases the further we get away from the centers

and thus the minimum intensity represent the edges. However,

in cases of mild overlap, where several GFP nuclei overlap, DT

map does not always exhibit sharp peaks, making it difficult to

detect cells using only a local maxima. Hence we have used a

modulated DT (mDT) map (figure 5(d)) obtained as:

g(x, y) = (0.9 ∗ d(x, y)) + (0.1 ∗ f(x, y)), ∀(x, y) (1)

where, g, d and f represent mDT-map, DT value and FGR

respectively, x, y represent integer pixel coordinates. The mDT

map exhibits better localization of peaks as cell centers (as

shown in figure 6(a)). Regional maxima in mDT map are

thus detected and represent the putative centers of the GFP

nuclei (figure 6(a)). The process described so far though works

(a) (b)

(c) (d)

Fig. 6: (a) Peaks detected on the mDT map as shown in

figure 5(d); (b) the Ridge lines extracted from 5(d) using

the “vessel” filter [23] algorithm; (c) Landmarks identified

as Bifurcation points (BF) (in blue) and Ridge Endings (RE)

(in green) detected on the Ridge lines as shown in (b); (d)

Combination of peaks detected on mDT map (as in (a) but

marked as green dots) and Bifurcation points (BF) (as in (c)

marked as blue asterisk) marked on the Ridge lines in (b),

detected as potential centers of the cell nuclei.

well in cases where the GFP nuclei are isolated and spatially

distributed with mild overlap, however produces unsatisfactory
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results when few cells have strong (large) overlap in arbitrary

spatial arrangements. As closely packed clusters of cells do not

follow any well-defined structure or geometrical arrangement,

expecting the center-line (as in MAT [13]) to be the loci of

peaks would be an erroneous assumption. In such cases, the

maxima in mDT map may be falsely detected to signify a

single center when there are actually two or more cells present

in the FGR (figure 5(a)) for that location. This process of

detecting peaks in mDT, thus results in “misses” of cell centers

for the complex cases of strong overlap of cells.

To overcome this problem, we have designed an algorithm

that detects features within the ridge lines from mDT map (as

shown in figure 6(b)) of only those putative cells whose area is

greater than 1.5 times the average cell area (i.e., minimal and

no overlap cells are not considered) and assigns the centers

of the nuclei based on the location of these features on Ridge

lines. This ridge detection process is similar to the “Vessels”

Algorithm [23], that has been used earlier to detect blood

vessels from magnetic resonance imaging (MRI) data. The

features used in our analysis are the Bifurcation (BF) points

and Ridge Endings (RE). RE appear near the border of the cells

and only the Bifurcation Points (BF) correspond to potential

cell centers. The BF were obtained as landmark features by

traversing along the ridge lines (as in [49]). An example of

those feature points detected on ridge lines is shown in figure

6(c). Traversing along the ridge lines, as shown in figure 6(c),

produces an additional list of centers. These centers estimated

on the ridge lines and those obtained from the peaks on mDT

(as shown in figure 6(d)), are combined together (as a union

of two sets, and merger of nearby peaks) to yield the final set

of cell centers at end of Phase-I of processing. Figure 7(a)

shows the results of intermediate level processing at the end

of Phase-I (DT + Ridge-based method).

(a) (b)

Fig. 7: (a) Results as in figure 6(d) after merging and clustering

the detected cell centers; (b) Evaluation of Phase-I results in

(a), using true positives, false alarms and false negatives (best

viewed in color).

IV. PHASE-II: CONVEX-ARC BASED ITERATIVE METHOD

FOR MISSING CELL DETECTION

Results of Phase-I, though fairly accurate, did not yield

satisfactory results in cases of strong (large) overlap of cells.

An example of this failure is highlighted by figure 7(b) where

true detections, misses and false alarms of Phase-I are shown

alongside true centers as annotated by a master annotator.

To further enhance the efficiency of the algorithm, we have

introduced an iterative process (algorithm 1) of cell filling

using boundary arcs on a residual foreground layer (FGR

in figure 5(a)). This process is based on the hypothesis of

topological/geometric constraint: in case of strong overlap,

cells at the periphery of the region of overlap produce the

boundary (edge) layer of FGR. Those in the inner cordon fill

up the gap to produce prominent green fluorescence within the

FGR. To efficiently detect the overlapping cells, an iterative

process is designed to detect overlapping cells in FGR, starting

with boundary layer, which is described below as algorithm 1.

Algorithm 1: Detecting Overlapping cells at Phase-II.

Input: The background suppressed attenuated FGR map

(figure 5(a)); mDT map (figure 5(d)); and the

detected nuclei from Phase-I.

Output: Detected Overlapping cells.

1 while Significant foreground area left in RFM do

2 Segregate the connected components which are greater

than the average size of cells

3 Suppress the regions of detected cells with

background color to produce/update residual map

(termed as Residual Foreground Map, RFM)

4 Filter RFM by eliminating small connected

components with an area less than a threshold A (30
pixels), leaving a few significant components in the

RFM

5 Segregate edge maps of these significant areas of

RFM, based on convexity/concavity of edges, as:

Inner Boundary (IBC) and Outer Boundary

Contours (OBC)

6 Ignore IBCs and select the OBCs

7 Fit circles using Hough transform [47] on every

convex arc between an adjacent pair of

zero-crossings (ZCs) on the edge contours of RFM
8 end

This unsupervised process iteratively identifies undetected

cells over strong overlapped regions; specifically over signifi-

cant RFM areas, which are missed at the Phase-I of processing.

A flowchart describing algorithm 1 along with a synthetic

example is discussed in detail in the Supplementary section

S.2.

Figure 8 demonstrates the application of the iterative arc

based method for missing cell detection in the given example

from figure 5(a). Figure 8(a) shows the peaks detected at

Phase-I. Figure 8(b) gives residual map (RFM) obtained after

suppressing the detected cell regions in figure 8(a) with the

background color. Figure 8(c) shows Inner boundary contours

(IBCs) in green and Outer boundary contours (OBCs) in blue

on the significant RFM after filtering out the small connected

components from that in figure 8(b). IBCs are eliminated and

convex arcs are fitted (using Hough Transform) with circles

on convex OBCs. Figure 8(d) shows the centers of the new
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cells detected at Phase-II of processing. The final list of cell

centers is obtained by a merging process of the two lists of cell

centers detected from Phase I: DT + Ridge-based peak feature

detection (e.g. figure 8(a)) and Phase II: Arc based iterative

filling (e.g. figure 8(d)) methods. If two or more distinct cell

centers detected at Phase-I and Phase-II stages fall within a

small neighborhood (dc < 2 ∗RC, RC= average radius of a

cell), they are merged and the average of the locations of the

cell centers replaces the set of nearby cells. Figure 9 gives

an illustration of the results of this process of merging and

detecting new cells in residual foreground layer. Supplementary

section S.3 contains the sequence of intermediate results of

different steps of processing in sub-processes Phase-I and

Phase-II. This section also contains the table of all heuristic

parameters used in our model for cell detection.

(a) (b)

(c) (d)

Fig. 8: Results of application of Phase II process on the

example section used in figures 3(d), 7 containing strong

overlap of GFP nuclei; (a) Centers detected by Phase-I of

processing on FGR, as given in figure 7(a); (b) RFM (Residual

foreground map) obtained after first iteration, from (a); (c) IBC

in green and OBC in blue with the missed cells marked on the

binarized RFM in (b). Contours are obtained from (b) using

Canny’s [10] edge detection algorithm; and (d) cell centers

detected by fitting circles using Hough Transform only on

convex OBCs (figure best viewed in color).

(a) (b)

(c) (d)

Fig. 9: (a) RGB image of FGR (with non-green channels

suppressed) as shown in figure 3(d); (b) The ground truth

obtained by manual annotation on (a); (c) Cell centers (GFP

nuclei) obtained after merging centers obtained from Phases

I and II of processing on (a), shown in blue and red dots

respectively; and (d) gives true positives, false alarms and false

negatives (best viewed in color).

V. RESULTS AND PERFORMANCE ANALYSIS

We have evaluated our algorithm on gigapixel resolution

brain section images of two mouse brains. The data [1] was

manually annotated by a set of annotators (n = 12; 10 naive and

2 master annotators) to obtain the groundtruth. Each gigapixel

resolution image was split into tiles of 500 × 500 pixels for

easier quantification by the human annotators. Each annotator

was also given the classification results of the DT and ridge

based method (Phase-I), and then allowed to modify, insert or

delete the existing cell centers. The output of the Phase-I was

provided to reduce the burden of identifying all isolated cell

locations by visual search. This did not bias their judgment

in the complex regions of overlapped cells. Annotators easily

modified (delete, insert, change location) the detected cells

using a GUI (see snapshots in section S.7 of the Supplementary

Document). Providing manual annotators the output of a first-

pass algorithm is “industry standard” in related problems (e.g.
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in EM for image segmentation). The annotation labels were

cross-verified by a master annotator, which gave us confidence

of its accuracy levels.

Figure 10 shows typical examples of cell detection for

selected parts of mouse brain scans obtained using our proposed

method. The proposed algorithm takes the cell centers detected

from two phases, Phase-I: DT + Ridge-based; and Phase-

II: Arc-based methods, and combines them using an iterative

combination strategy. True positives, false alarms and false

negatives are marked with blue, red and white color markers

respectively in the outputs. Phase-I sub-process is sufficient to

detect all cells accurately in sparse and minimal overlap regions.

The Phase II sub-process requires 2− 3 iterations to converge,

typically in cases of strong overlapped cells. The details of

training the supervised architectures are given in the next sub-

section, and are elaborately discussed in the Supplementary

section S.4.

(a) (b)

(c) (d)

Fig. 10: Result of cell detection process using proposed method

(figure 4); (a) and (c) show two different regions with strong and

minimal overlap from Hua-166 and Hua-167 scans respectively

with ground truth; (b) and (d) are results evaluated from

our proposed method corresponding to scans in (a) and (c)

respectively (best viewed in color).

A. Evaluation of the proposed algorithm

The manually annotated samples were used as groundtruth

to evaluate the performance of the algorithm. In addition, the

performance of our proposed method was compared with other

methods that can potentially be applied to solve the same

problem. These are two supervised shallow learning methods:

(a) SVM [16], [41] (using Gaussian Kernel); and (b) HAAR +

Adaboost [57]; (c) cell detection based on the method used by

Al-kofahi et al. [3]; two DL techniques: (d) Faster R-CNN [50]

and (e) SegNet [6] and (f) Phase-I of our proposed approach

(for comparing with Phase-II). For the supervised approaches,

we have used half of the annotated data for training and the

remainder of the data for testing. A Precision-Recall metric

was used as the performance criteria [42]. The cell-centers that

were detected within a certain distance (DR < 5 pixels) of

true location in groundtruth were considered as to belonging

to the same cell. Cell-centers of positively classified windows

are considered as detected cell centers. The details of training

the supervised architectures are elaborately discussed in the

Supplementary document (section S.4 for Faster R-CNN and

SegNet).

Algorithms for cell detec-

tion

Hua 166 Hua 167

Pr Rcl Pr Rcl

SVM based detection [16],
[41]

0.862 0.887 0.901 0.885

HAAR + Adaboost [57] 0.886 0.895 0.872 0.891
Faster R-CNN [50] 0.893 0.905 0.898 0.913
SegNet [6] 0.853 0.831 0.869 0.886
Al-kofahi et al. [3] 0.856 0.899 0.875 0.882
Phase I: DT based method
(figure 4)

0.960 0.923 0.940 0.961

Overall proposed method
(figure 4)

0.979 0.952 0.964 0.970

TABLE I: Performance of our algorithm averaged over two sets

of mouse brains (selected 158 scans of Hua-166 and all 244
scans of Hua-167, with 18K×24K pixels each). Our approach

provides the best precision and recall over supervised machine

learning (shallow learning with 5-fold validation and deep

learning methods) approaches. Pr - Precision ; Rcl - Recall.

We have used a tensor flow based implementation of Faster

R-CNN [50] for our experiments. Faster R-CNN [50] performs

a bounding box regression on the objects in an image for

detection. We have used equal number of samples for training

and testing. Since we have only one object of interest i.e. GFP

labeled neuron in our data, we provide a bounding box of size

25× 25 pixels (derived empirically) around each cell. Faster

R-CNN [50] uses the co-ordinates of the positive samples as

the anchor boxes. Centroids of the bounding boxes obtained as

output are considered as detected cell centers. We have utilized

a SegNet [6] model that has been trained as per the code

provided by the authors. Training samples (only positive ones)

in SegNet were generated by delineating circular patches around

manually annotated cell centers. The inputs for training were

circular patches of 4 pixels radii around the manually annotated

cell-centers. The trained SegNet map produces outputs as

circular patches (sometimes overlapping with each other) on

the test image, whose centers can be considered as putative

cell-centers. Details of training are given in Supplementary

section S.4. Our method has also been compared with that

of Al-kofahi et al. [3], which, like our proposed model, is

also an unsupervised method used for cell nuclei detection and

segmentation. It initially extracts the foreground region using

graph-cuts-based binarization, following which a multiscale

Laplacian-of-Gaussian filtering combined with distance-map-

based adaptive scale selection is used to detect the seed points
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for segmentation. It then detects nuclei through graph-cuts-

based segmentation along with alpha expansions and graph

coloring.

Performance our proposed

method on Cell distributions in

Mouse brain scans

Hua-166 Hua-167

Pr Rcl Pr Rcl

Strong Overlap of multiple cells, in
parts of ∼ 5 scans/brain (Overall)

0.95 0.94 0.96 0.968

Strong Overlap of multiple cells, in
parts of ∼ 5 scans/brain (Phase-I)

0.92 0.89 0.90 0.88

Minimal overlapped Cells, in parts
of ∼ 20 scans/brain (Overall)

0.96 0.95 0.97 0.97

Minimal overlapped Cells, in parts
of ∼ 20 scans/brain (Phase-I)

0.93 0.87 0.90 0.88

Sparse Cells, in abundance ∼ 100
scans/brain (overall/Phase-II)

0.978 0.96 0.98 0.98

TABLE II: Performance of proposed unsupervised method

evaluated separately on the different sections of the brain, with

strong overlap and minimal overlap of cells, for the proposed

method; Pr - Precision ; Rcl - Recall.

Comparative analysis of our algorithm with the other models

are tabulated in table I. Our iterative approach exhibits high

precision and recall values of 0.972 and 0.961 (average over

complete dataset of one mouse brain and a selected portion of

another) when evaluated using the manually annotated ground

truth, indicating the close to human efficiency of the algorithm.

The supervised methods of cell detection based on SVM and

Faster R-CNN based deep learning did not perform better than

our proposed unsupervised approach. Details and justification

of using a Non-Maximum Suppression (NMS) to obtain the

results of all supervised methods are given in Supplementary

section S.5.

Regions of

Brain

Proposed SVM [16] Faster R-CNN [50]
Pr Rcl Pr Rcl Pr Rcl

Strong Over-
lap

0.951 0.953 0.778 0.724 0.809 0.794

Minimal
overlap

0.963 0.954 0.887 0.872 0.839 0.826

TABLE III: Comparative Performance over the strong and

minimal overlap regions of cells (from ≃ 400 scans of two

mouse brains), for the proposed, SVM and Faster R-CNN

methods.

Our proposed unsupervised iterative method of cell detection,

provide near-ideal performance in most of the cases, with

exceptions that can be attributed to the presence of noise

in the dataset. In order to demonstrate the effectiveness of

the algorithm over wide distribution of cell nuclei throughout

the brain, we have separated the results over strong overlap

and minimal overlap and sparse regions within cells of the

brain, and results for both sub-processes are given in table II.

As expected, the algorithm performs the best in the sparse

regions with marginal degradation in performance in the

minimal overlap and strong overlapping areas. Table III shows

the comparative performance, on the separated data sets of

overlapped, sparse and minimal overlap regions of the brain,

of our proposed method compared to that of SVM [16] and

Faster R-CNN [50]. Additional results (with examples) of

cell detection of the competing supervised methods used for

performance analysis are given in Supplementary section S.6.

The proposed iterative approach (Phase II) converges in

typically 2− 3 iterations for the complex overlap cases. For

the example shown in figure 9, the algorithm took 1327

ms for complete evaluation compared with 795 ms for the

Phase-I stage on an Intel core-i7 4820K processor, with 64

GB RAM. The average time taken by the proposed method

for a single brain section of 18K × 24K pixels on an Intel

core-i7 4820K processor based CPU with 64 GB RAM is

4 − 5 mins. Despite having doubled the number of training

samples, the competing supervised methods did not exhibit

better performance, indicating that evaluation of the model is

sound. A 5-fold study has been performed for shallow ML

models (5 different combinations of randomly selected sample

sets to form the training and test partitions). For deep-CNN we

have done a 2-fold study; and our unsupervised method does

not require training samples; all samples are used for testing,

a few are used to empirically obtain the optimal parameter

values.

VI. DISCUSSION

Our approach allows for robust and efficient estimation of the

centers of GFP tagged cell nuclei with relatively high precision

and recall. Our unsupervised and iterative algorithm based on

Ridges and distance transform [44] combined with arc-based

region filling provides the best precision value amongst the

different approaches used to solve the detection problem. It is

important to note that all the methods (including shallow and

deep learning methods) also perform well in cases where there

is marginal or no overlap (sparse distribution) between the

GFP tagged interneurons. Our algorithm approaches near ideal

performances in these cases, with the precision-recall values

≃ 0.97 and ≃ 0.96 respectively. The cases where the other

models fail are the complex case of strong overlap of cells,

where our method gave the best result with a overall precision

of 0.972 and recall of 0.961. The drawback with our algorithm

is the relatively longer evaluation time frame which is directly

proportional to the complexity of the image to be evaluated. Our

proposed algorithm is completely automated and unsupervised

in its application. We have applied this algorithm to analyze

brains and a web implementation of the iterative algorithm has

been implemented at the mouse brain architecture portal at the

Cold Spring Harbor Lab (CSHL) [1] for analyzing cell type

data.

It was surprising to note that standard supervised classifiers,

e.g. SVM, ADABOOST, etc. and state-of-the-art DL based

detection techniques (Faster R-CNN and SegNET) did not

perform satisfactorily when compared to our method. We

believe that this may be because of our method of treating

strong overlap decomposition explicitly which improves our

performance to ∼ 97%, the precision levels needed for real

world application. The performance of the ML models using

our method is comparable with a previous study on brains

[28] where similar methodology of GFP tagging in mice were

used and the detection was performed with CNN in order to

achieve 90% performance. The difficulties for the network may

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2019. ; https://doi.org/10.1101/252247doi: bioRxiv preprint 

https://doi.org/10.1101/252247
http://creativecommons.org/licenses/by-nd/4.0/


10

have been due to the degree of overlap of objects in the image,

which, in turn, depends on cell densities as well as microscopic

methodology.

VII. CONCLUSION

We have developed an iterative approach (unsupervised) for

efficiently detecting GFP tagged cell centers of GABAergic

neurons in the mouse brain. Our results demonstrate that our

algorithm, which is based on classical machine vision methods

substantially outperform published CNN-based methods. The

detection problem that we have solved is of practical interest

to neuroscientists. The classical Machine Vision based method

we have designed, directly solves the overlap decomposition

problem with high precision and recall values. Recent methods

of supervised object detection do not provide the level of

performance required particularly in cases of strong overlap

of cells, as the foreground blobs appear with a wide variety

of non-unique two-dimensional patterns that are of different

shapes, sizes and structures (due to varied spatial arrangements

of cells in strong overlap), making the training data unreliable

for efficient learning. Our unsupervised approach provides

a much superior performance than recent supervised object

detection algorithms such as ADABOOST [57], SVM [16],

[41], SegNet [6] and Faster R-CNN [50]. Previously published

results [28] on similar problems only reach 90% performance

level (in contrast with > 97% of ours). The failure of both

the deep and shallow nets to reach > 90% accuracy levels, is

mainly attributable to the difficulties of accurately detecting

overlapped nuclei. While our method may not generalize to

other unrelated problems, it addresses an important problem

in the growing field of computational neuroanatomy of brains.

CNNs and SVMS are very powerful ML architectures but

need further refinements to solve every real-world problem. In

our use case the structure of the problem demands a different

architecture.

With an ever increasing dataset and information about the

neurons and their connectivity, it becomes important to develop

automated unsupervised algorithms for efficient data analysis

of relevant information [5]. We have provided one approach

towards this goal which helps neuroscientists to achieve few

targets with greater confidence.
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S.1. DESCRIPTION OF CONTRAST ENHANCEMENT SUB-PROCESS IN Phase-I

This section explains the process of obtaining foreground region (FGR) from a brain section. Let SG denote the green

channel of a brain section S. As a first step, the green channel SG has been normalized to get the normalized green channel

IG (as shown in figure S.1(b)). If L is the number of gray levels in SG, then the normalization operation can be expressed as :

IG(x, y) =
(SG(x, y)−min(SG))

(max(SG)−min(SG))
(L− 1) (1)

where min(SG) and max(SG) denote the smallest and the largest intensity values in SG respectively and x and y denote the

pixel coordinate values. To enhance the perceptibility and improve the contrast of IG, a simple contrast stretching is performed

(a) (b) (c) (d) (e)

Fig. S.1: (a) Ground truth (marked as magenta dots) shown on the sample in figure 3(b) (in the main manuscript); (b) the

green channel of figure 3(b); (c) Contrast enhanced image (FGR) of (b) obtained using equations 1-5; (d) Ground Truth on

RGB image of (c) (same as figure 3(d)) with non-green channels suppressed; (e) Binary image of (c), also used in figure 5(b).

(Figure best viewed in color)

resulting in a visually enhanced and a better contrast image ICE (as shown in figure S.1(c)):

ICE(x, y) = β
(IG(x, y)− γ)

(δ − γ)
(2)

where β = L− 1. γ and δ represent the lowest and highest pixel intensity parameters of IG that need to be mapped to the new

range in ICE . Since any real world image is susceptible to noise, choosing γ and δ as the lowest and highest pixel intensities

of IG might have a horrendous impact on the stretching. So the bottom and top 1% (denoted as thl = 0.01 and thh = 0.99) of

the brightest and darkest pixels have not been taken into consideration. Also, the intensity values in the image IG are clamped

to get a new image J which is used for contrast enhancement to obtain ICE as follows:

J(x, y) = min(max(IG(x, y)), 0),K − 1) (3)

1
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where K = 256. This can also be expressed as:

J(x, y) =

{

IG(x, y) if IG(x, y) ≤ K − 1

K − 1 otherwise

Let Pc denote the cumulative distribution function (CDF) obtained from the histogram of J . γ and δ are now obtained as:

γ =
(low − 1)

(K − 1)
and δ =

(high− 1)

(K − 1)
(4)

where

low = min
k

(Pc(k) > thl)

high = min
k

(Pc(k) ≥ thh)
(5)

where k = 0, 1, ...,K − 1.

S.2. DESCRIPTION OF PHASE-II SUB-PROCESS USING A SYNTHETIC EXAMPLE

Various stages of the iterative process within the Phase-II sub-process (as described in algorithm 1 in the main manuscript)

are elaborated further in this section. Figure S.2 is a flowchart describing the same. Figure S.3(a) shows a synthetic example

Fig. S.2: Iterative arc based method for cell detection. This phase uses results from Phase-I of the algorithm as inputs and the

final result of nuclei centers is the combination of the output from this phase and that from Phase-I.

of 4 overlapping cells, given as input to Phase-I of processing. Results of various intermediate stages of the entire process of

cell detection are shown in the rest of the figure S.3. The detail steps of the iterative process (Phase-II) to detect strong overlap

of cells, using the synthetic example (as shown in figure S.3) are detailed below figure S.3.
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Fig. S.3: A synthetic example to illustrate the processing steps of Phase II of the algorithm: (a) Simulated overlapping cell

regions, (b) Edge map of the overlapping cell regions with FGR shaded; (c) detected cell center (using mDT Peak) and cell

region, (d) Residual area, RFM, after suppressing the cell regions (detected in (c)); also, Inner Boundary Contour (IBC) marked

in green and Outer Boundary Contour (OBC) marked in blue, (e) Circle fitted on the convex arcs or OBC using Hough

Transform (HT), followed by extension to the rest of the circles shown in dashed curves and centers; (f) new cells detected

in red along with center detected in green from (c); and (g) final set of detected centers on the synthetic example of strong

overlap of cells in (a).

Detail of iterative steps in sub-process Phase-II

Input: FGR, DT-map of FGR and list of candidate cell centers (obtained at Phase I).

• Phase-I estimates the edge map of the FGR (shown as the shaded area in figure S.3(b)) and a peak estimated in mDT (figure S.3(c)) is
marked as a red dot.

• This detected cell (as peak in mDT) is preserved and a circle representing that cell is fitted (radius derived from mDT value, with an
upper-bound) using the detected peak, as shown in figure S.3(c).

• START LOOP: The detected cell region is suppressed using the background color and a residual foreground map (RFM) map is obtained,
as shown by the shaded area in figure S.3(d). Note that, the visual example in figure S.3 is a simple synthetic case, used solely for
illustration/explanation, and hence devoid of any such small patches to be eliminated.

1) Edges are detected on the residual map (RFM) and segregated into two parts:

– Inner boundary contour (IBC) of detected cells - shown by a green color circle in figure S.3(d); and
– Outer Boundary Contours (OBC) - shown in blue in figure S.3(d).

2) IBC is removed. Three circular convex arcs are detected on the OBC, using zero crossing curvature (ZCC) [38].
3) Hough Transform [47] is used to fit three circular blobs on the convex segments (arcs) on OBC to fit three new cells.
4) Centers of these circles fitted (using the Hough Transform [47] process) on the prominent OBCs are considered as the new cell

centers (figure S.3(f)) and is updated to the list.
5) Suppress cell area in RFM using background color.
6) With no significant area left in RFM, terminate and break the loop; else continue.

• END LOOP: This process repeats till no uncovered significant connected components in residual layer (RFM) are left to process; else
go back to step (1) to iterate the process.

• The final list of new cell centers is merged with the earlier list of cell centers detected from Phase I: DT + Ridge based method; final set
of detected cells is shown in figure S.3(g).

S.3. INTERMEDIATE RESULTS OF THE DIFFERENT STEPS IN THE SUB-PROCESSES: Phase-I AND Phase-II

This supplementary section shows the intermediate results of both the sub-processes in the proposed pipeline (figure 4) for

cell detection. It also illustrates the optimal parameter values used in the algorithm as a table. Figure S.4 illustrates the results

of the intermediate steps in Phase-I sub-process, for the example given in figure 3(d) in main manuscript. Following the steps

given in section III of manuscript, results of eight intermediate steps are shown.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. S.4: (a) binary image (of the example given in S.1(a)) overlayed with the edge map (in magenta) obtained using Canny

edge detection algorithm (same as in figure 5(b)); (b) Distance Transform (DT) on edge obtained from S.1(e); (c) Modulated DT

(mDT) map, obtained using equation (1) (in the main manuscript) with FGR and DT map; (d) Intensity peaks (red dots) marked

on mDT map in (c); (e) the Ridge lines extracted from (c) using the “vessel” filter [23] algorithm; (f) Landmarks identified as

Bifurcation points (BF) (in blue) and Ridge Endings (RE) (in green) marked on the Ridge lines as shown in (e); (g) Final set

of Cell Centers obtained by merging (union and clustering) nearby cell center positions obtained in (d) and Bifurcation points

(BF) in (f); (h) Evaluation of the results of Phase-I sub-process compared with the ground truth, showing the true positives,

false alarms and false negatives marked on enhanced image in figure 3(d) (of main manuscript) (figure best viewed in color).

A. Heuristic parameters used in the model for cell detection

TABLE S.1: Values of heuristic parameters used in the proposed algorithm (refer sections III & IV of the main manuscript).

All values are obtained empirically to be optimal.

Params Phase Details & Remarks Value

th I Threshold used for binarizing FGR 0.25

ar I Area threshold for ignoring smaller connected com-
ponents of FGR for Ridge estimation

54 pixels

dc I Minimal distance for Merging Centers of cells 12 pixels

CD II Average Diameter of cells (exact value obtained using
DT)

4−7 pixels

A II Area threshold for detecting significant connected
components in RFM; Phase II - Arc Based Iteration
stage

30 pixels

DR I & II Evaluation Process 5 pixels

W - Window size for NMS (suppression of non-maximas
based on confidence values) of Faster R-CNN, SVM
& ADABOOST methods

11 pixels

Figure S.5 shows the results of the intermediate steps in Phase-II sub-process, for the example given in figure 3(d) of the

main manuscript. Following the steps given in section IV of manuscript, results of eight intermediate steps are shown.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. S.5: Illustration of the results of the intermediate steps in Phase-II sub-processing stage (see algorithm 1 in main manuscript)

for the example of strong overlap of GFP nuclei. (a) Centers detected by Phase-I of processing on FGR, as given in S.4(g);

which serves as the input of Phase II (b) Manually annotated Ground Truth superimposed on the FGR (see figure 5(a) of

manuscript); (c) RFM (Residual foreground map) obtained after the first iteration, from (a); (d) Cells undetected by the Phase-I

stage of processing, shown superimposed on RFM marked using white crosses; (e) IBC in green and OBC in blue on edges of

RFM in (c); (f) filtered (prominent) convex OBCs with undetected set of cells marked in white; and (g) cell centers detected

by fitting circles using Hough Transform on convex OBCs in (f); (h) Detected cell centers after Phase-II, compared with the

ground truth, showing true positives, false alarms, and false negatives; Figure best viewed in color.

True Positives: denote the cell-centers that are detected correctly by our algorithm and are present in the ground truth.

False Alarms: denote the cell-centers that were missed by our algorithmbut were present in the ground truth.

False Negatives: denote the cell-centers that were detected by our algorithm but were not present in the ground truth.

S.4. DETAILS OF TRAINING THE SUPERVISED ML AND DL MODELS USED FOR CELL DETECTION, AS COMPETING METHODS

A. Support Vector Machines (SVM)

For training the shallow supervised methods of classification, we have used annotated cell centers from the ground truth.

Using this information, template windows of size 25× 25 pixels were created over the marked cell bodies. Each window that

contains an entire cell body was used as the positive samples for training. We also used other windows from the remaining

parts of the brain that contain only partial or no marked cell bodies within the template window which were used as negative

samples. Care was taken so as to avoid those windows whose centers are nearby to the labeled cell centers. Examples of

positive and negative samples used in the SVM are shown in figure S.6(a) and S.6(b) respectively. The training samples were

randomly selected from 3 classified regions as: sparsely distributed, minimal and strong overlap of cells in different parts of

brain regions based on density of occurrence of the GFP tagged nuclei. HOG features were then extracted from the samples

which were used for training the SVM model. SVM [16] with Gaussian kernel was used for training.
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(a) (b)

Fig. S.6: (a) shows the samples consisting of template windows with complete cell nuclei (positive samples) and (b) shows

examples with no complete cell nuclei (negative samples) that were used as the the training sets for the SVM [16].

B. ADABOOST (with HAAR features)

For ADABOOST, we have used features that were extracted from the the mDT map and were used to train the the model.

Figure S.7 shows examples of negative and positive samples used for training the ADABOOST model. It is important to note

the higher fluorescent irradiance at the center of cells in samples of figure S.7, compared to that in figure S.6. Features, such as,

Histogram of Oriented Gradients (HOG) [18] and Multi-Texton Histogram (MTH) [31] are extracted from mDT map (equation

1 in manuscript), for each of the negative and positive mDT samples.

(a) (b)

Fig. S.7: Template samples of mDT obtained from those in figure S.6. These are again used for extracting features, required for

training the ADABOOST (with HAAR feature) classifier; (a) +ve samples, (b) -ve samples.

A total of 25K positive samples and 50K negative samples were used for training. For training the ADABOOST [57]

classifier, Haar features are extracted from the samples. The SVM and ADABOOST implementations of MATLAB are taken

off-the-shelf. Positive classification is considered as an area of a detected cell and centers of positive windows were considered

as detected cell centers.

C. CNN models

Two methods of supervised CNN models, Faster R-CNN and SegNet, were also used for experimentation. Faster R-CNN

[50] performs a bounding box regression on the objects in an image for detection. We have used equal number of samples for
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training and testing the Faster R-CNN model. The training stage takes the 224× 224 pixel images and the coordinates of the

bounding boxes around each cell present in the image. A total of 1,47,800 such images are generated each having 2 or more

cells in them. We then combine samples from sparse, minimal and strong overlap regions for training the model. Traditionally,

Faster-RCNN has been used in literature to detect objects, even when the size varies for each object within an image. Since

we have only one object of interest i.e. GFP tagged nuclei in our data, we provide a bounding box of size 25 × 25 pixels

around each cell, derived empirically. Faster-RCNN [50] uses the coordinates of the positive samples as the anchor boxes. The

negative samples are generated implicitly within the network, i.e. one does not have to provide negative samples to the code as

input. Faster-RCNN takes care of the scale and translation invariance. A large number of such anchor boxes are given as input

to the Faster R-CNN during the training process and as a result any variability of the cell configuration is taken care during the

training. Post training, Faster R-CNN takes an image as input and detects the bounding box around the cell bodies as output.

Centroids of the bounding boxes obtained as Faster R-CNN output were considered as detected cell centers. A Tensorflow

based implementation of Faster R-CNN [50] is taken of-the-shelf for our experimentation. Samples used as training the Faster

R-CNN model is shown in figure S.8. The magenta boxes show the anchor boxes that are fed into the Faster R-CNN network

during the training. These anchors are drawn based on the manually annotated data of cell-centers. These square boxes are

positioned at these cell-centers with a side length of 11 pixels. Faster-RCNN [24], [50] was trained using a Tensorflow based

implementation for 70K epochs. We have used ∼ 106 positive training samples for Faster R-CNN (compared to [50], which

reports using 105 samples). The anchor boxes are equivalent to those in PASCAL-VOC challenge; where the objects are simple

and different. In our case, each window contains an entire cell body and were labeled as positive samples. The Faster R-CNN

techniques used for COCO (image classification) do not use more than 10K samples per class. Since the problem at hand is a

two-class problem and the training set size was ≃ 106, we aimed to find a trade-off between the training time and the number

of samples. We also found that increasing the samples 3-fold did not significantly increase the performance of the system. Our

Faster R-CNN parameter count is 2.4× 106 [50]. Our model was trained for 7× 106 epochs using the codes provided by the

authors [50].

For the problem at hand, recent literature in the domain of Deep Learning does not have an unsupervised framework for

CNNs, to the best of our knowledge. Hence, we have resorted to comparing our results with the supervised CNN architectures.

(a) (b)

Fig. S.8: Two sample sections of the brain image used for training the Faster R-CNN [50]. Bounding boxes are positioned

using human-annotated groundtruth data. No negative samples needed.

The SegNet [6] model has been trained as per the code provided by the authors. It’s a supervised (CNN) method used

previously for detecting cells in blood. Training samples (positive ones only needed) for SegNet were generated by delineating

circular patches around manually annotated cell centers. In this case, we used a circular patch with the radius of 6 pixels

around the manually annotated cell-centers, as inputs for training. The trained SegNet map produces outputs as circular patches

(sometimes overlapping with each other) on the test image, whose centers are detected as cell-centers. The SegNet [6] is a

torch based implementation that is used previously for segmentation in computer vision. The SegNet model is a Variational

auto-encoder based model, which inputs RGB image at one end and its binary segmented map on the other end. Based on the

annotated cell-centers, circular patches with radius (r = 6 pixels) are inpainted to create virtual segmented maps of the original

image, for training the SegNet model.
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(a) (b)

Fig. S.9: Two sample sections of the brain image used for training the SegNet [6]. Circular patches are drawn using human-

annotated ground truth data. No negative samples needed.

TABLE S.2: Number of samples used for training and testing (each tile is a cropped section of brain scan of size 512× 512
pixels).

Technique Training samples Testing Samples

+ve -ve

SVM 25K 50K 350K

Haar + ADABOOST 25K 50K 350K

Faster R-CNN 149K - 64K tiles

SegNET 150K - 25K tiles

Al-kofahi et al. [3] - - 400 sections

Proposed - - 400 sections

S.5. USE OF NMS TO GENERATE FINAL CELL LOCATIONS USING SUPERVISED MODELS

Implementations of Faster R-CNN and ADABOOST (using HAAR features) classifiers produce multiple bounding boxes,

while SVM produces multiple candidate locations as target outputs during the testing phase. These positive responses (output

candidates) obtained from the trained machines, typically appear as clusters (of strong overlapping boxes in cases of Faster

R-CNN and ADABOOST). SVM implementation, on the other hand, produces clusters of positive responses with varying

confidence levels. The same is true for the other two methods, where each output appears with a confidence score along with a

scale of the bounding box.

Most implementations of Faster R-CNN, ADABOOST and SVM use a method of post-processing (based on local averaging)

on these nearby candidates, to obtain the final target position. These implementations did not produce satisfactory results and

have thus been modified by us. The primary reason for this failure is that, in general their design does not deal with our

scenario of minimal and strong overlapping presence of multiple identical objects (e.g. thin crowd, swarm of bees, ant colony

etc.) as targets [51].

To obtain a better result for finalization of the target (cell) locations, we have used a Non-maximal Suppression (NMS)

[54], [9] strategy. The solution demands the detection of a maximal (local) response from a 2-dimensional clutter of close-by

responses with varying confidence scores. We have used a minor modification of the post-processing from the implementation

of [22], as a greedy method of NMS. The modification involves: Within a large neighborhood, W, instead of averaging the

overlapping window responses, we consider a rank-ordered list of candidates sorted by the confidence scores. While doing

so we eliminate outliers of extremely small and large scales (range learned using responses from GT data). Lastly, choose

the topmost confidence scores as winner (max) within the local window (W), and update the list to apply this last step of

NMS iteratively till there are no further significant peaks of confidence score left as a candidate response. This method works

reasonably well for our specific scenario of minimally and strongly overlapping objects (brain cells). The qualitative (visual)

results of the supervised processes: SVM, HAAR+ADABOOST and Faster R-CNN, along with their evaluation studies given in

tables 1-3, are all hence reported using the outputs of this NMS-based process.

The outputs obtained from the software implementation of Faster R-CNN [24], [50] are available as bounding boxes on the
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test images. The centers are calculated for each of these square boxes to get the cell-centers. A similar strategy is used for

the output of SegNet, which produces the segmented maps as circular blobs, where the center for each blob is taken as the

detected cell-center. The next section gives qualitative comparison of the results of all unsupervised and supervised methods

using two strong overlap and one minimal overlap regions.

S.6. ADDITIONAL RESULTS AND EXTENDED DISCUSSIONS

This section exhibits a few additional results of different (competing) methods used to get the cell-centers. The following

figures show the output of competing methods (see table S.2) on two overlap and one minimal overlap regions of cells in the

mouse brain scan. Results of the proposed method appear in main manuscript (figures 9 and 10).

SVM ADABOOST Faster R-CNN SegNet Al-kofahi et al. [3]

Detected Cell Centers

SVM ADABOOST Faster R-CNN SegNet Al-kofahi et al. [3]

Detection evaluated with groundtruth

Fig. S.10: Strong Overlap Region: Visual illustrations for qualitative comparative study of performance of different competing

methods, for the image given in figure 3(d) in main manuscript (best viewed in color).

Section II-A in main manuscript gives the basis and justifies the design of our proposed unsupervised pipeline. Other

alternative strategies (for Phase-II) which we had pondered and partly explored for the solution to the problem of cell detection

are: (i) 2-D bin packing problem; (ii) Minimize an optimization function for placement of cells, with suitable scores and cost

criteria; and (iii) image saliency based on superpixels [2]. A few trials did not give us encouraging results (e.g., trapped in a

false minima while minimizing), which were worse than even those produced by the simplest Gaussian convolution (see table

1, section VI-A in manuscript) operation. We are certain that this dataset will throw theoretical and analytical challenges in

overlapping fields of image processing (and CV), computational geometry and variational optimization.

One may have an impression that the inter-neuron somata are easier to detect than pyramidal cell somata. This is not

necessarily true: the difficulties here have to do with the degree of overlap of objects in the image, which depends on cell

densities as well as microscopic methodology. The previous results, published in [28], only reach 90% performance level (in

contrast with our performance levels of > 97%), something that is easily seen on visual examination of brain images from [28]

(not shown here). The proposed algorithm is completely automated and unsupervised in its application.
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Image Image with GT (as magenta dots)

Strong Overlap Region

Detected cell centers Evaluation with groundtruth

Phase-I output

Detected cell centers Evaluation with groundtruth

SVM

Detected cell centers Evaluation with groundtruth

Adaboost

Detected cell centers Evaluation with groundtruth

Faster R-CNN

Detected cell centers Evaluation with groundtruth

Segnet

Detected cell centers Evaluation with groundtruth

Al-Kofahi et al. [3]

Detected cell centers Evaluation with groundtruth

Our Proposed method

Fig. S.11: Strong Overlap Region: Visual illustration for qualitative comparative study of performance of different competing

methods, for the image given in figure 10(c) in main manuscript (best viewed in color).
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Image Image with GT (as magenta dots)

Minimal Overlap Region

Detected cell centers Evaluation with groundtruth

Phase-I output

Detected cell centers Evaluation with groundtruth

SVM

Detected cell centers Evaluation with groundtruth

Adaboost

Detected cell centers Evaluation with groundtruth

Faster R-CNN

Detected cell centers Evaluation with groundtruth

Segnet

Detected cell centers Evaluation with groundtruth

Al-Kofahi et al. [3]

Detected cell centers Evaluation with groundtruth

Our Proposed method

Fig. S.12: Minimal Overlap Region: Visual illustration for qualitative comparative study of performance of different competing

methods, for the image given in figure 10(a) in main manuscript (best viewed in color).
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S.7. SAMPLES OF GUI INTERFACE IN THE TOOL USED FOR MANUAL ANNOTATION

Figures S.13 and S.14 show the screenshots of the GUI for the manual annotation tool, used to obtain ground-truth.

Fig. S.13: Illustration of the manual annotation tool over a minimal overlap region of the brain scan.

Fig. S.14: Illustration of the manual annotation tool over a region of cell overlap in the brain scan.
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