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Abstract: 
Reconstruction  of neural  circuits from volume  electron  microscopy data  requires the  tracing  of 
complete  cells including  all  their neurites. Automated  approaches have  been  developed  to 
perform the  tracing, but without costly human  proofreading  their error rates are  too  high  to 
obtain  reliable  circuit diagrams. We  present a  method  for automated  segmentation  that, like the 
majority of previous efforts, employs convolutional  neural  networks, but contains in  addition  a 
recurrent pathway that allows the  iterative  optimization  and  extension  of the  reconstructed 
shape  of individual  neural  processes. We  used  this technique, which we call  flood-filling 
networks, to  trace  neurons in  a  data  set obtained  by serial  block-face  electron  microscopy from 
a  male  zebra  finch  brain. Our method  achieved  a  mean  error-free  neurite  path  length  of 1.1  mm, 
an  order of magnitude  better than  previously published  approaches applied  to  the  same  dataset. 
Only 4  mergers were  observed  in  a  neurite  test set of 97  mm path  length. 
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Introduction : 
Computers have  been  employed  for the  reconstruction  of neural  ‘wires’  since  the  1970s 1 mainly 
to  capture  and  display the  annotation  decisions made  by human  tracers 2–4. The  use  of 
computers to  make  those  decisions based  on  algorithms designed  to  detect the  boundaries of 
cells began  in  earnest after new and  improved  approaches to  the  acquisition  of volume  EM data 
5 started  producing  datasets for which  the  complete  analysis by human  annotation  would  be 
prohibitively expensive. It quickly became  clear that machine  learning  approaches, now mostly 
based  on  convolutional  neural  networks (CNNs), are  the  method  of choice  6. While  those 
algorithms find  most cell  boundaries, the  remaining  error rates required  the  use  of human 
proofreading, which could  either take  the  form of inspecting  the  fragments (supervoxels) of an 
oversegmentation  generated  by the  algorithm 7 or by creating  skeleton  tracings, which then  are 
used  to  gather the  fragments belonging  to  the  same  cell  8–10.  
 
Unfortunately, human  proofreading  is prohibitively expensive  for larger datasets. The  estimated 
human  labor required  to  reconstruct a  100 3 µm3 volume  exceeds 100,000  hours, even  when 
using  an  optimized  pipeline  that combines automated  neural  network inference  and  manual 
skeletonization  11. Current manual  annotation  workflows could  be  made  more  efficient still  but 
are  ultimately limited  by the  need  to  view all  the  data. A reduction  of the  proof-reading  time by 
multiple  orders of magnitude  requires algorithms that are  not only substantially more  accurate 
but also  “know  their own limits” and  provide  a  list of potentially erroneous segmentation 
decisions. Humans would  then  have  to  inspect only those  locations 12.  
 
State-of-the-art automated  neurite  reconstruction  generally is performed  in  two stages. First a 
convolutional  network infers for each  image  location  the  likelihood  of there  being  a  boundary, 
using  the  intensities of the  voxels at and  near that location  13,14. A separate  algorithm (e.g., 
watershed, connected  components, or a  graph  cut approach) subsequently uses the  boundary 
map  to  cluster all  non-boundary voxels into  distinct segments 11,15–18. We  merged  the  two steps 
by adding  to  the  boundary classifier a  second  input channel, which carries the  predicted  object 
map, leading  to  a  recurrent model. Why is this helpful?  While  the  cost function  we used  to  train 
the  network is still  based  purely on  a  voxel-wise  comparison  with  the  training  set, the  network 
can  now learn  to  make  use  of the  fact that certain  voxels in  its field  of view (FoV) have  already 
been  classified  with high  certainty in  an  earlier iteration. Classification  decisions can  be  based 
on, for example, whether those  predictions result in  a  more  or less plausible  shape  for the 
neural  process. Shape  information  is thus incorporated  in  as much  as it helps the  network to 
improve  its ability to  predict the  boundary map. Note  that this is conceptually quite  different from 
other approaches that use  cost functions that depend  directly on  segmentation  performance 
19,20. Here  we present a  realization  of this concept, which we call  Flood-Filling  Networks (FFNs).  
 
FFNs are  trained  to  distinguish  a  single  object (the  foreground) from all  other objects (the 
background). In  contrast to  prior machine  learning-based  segmentation  methods 11,16,21–23, FFNs 
segment one  object at a  time. With  each  iteration  the  feedback pathway carries past 
segmentation  decisions forward  in  time  and  spreads them in  space. This enables the  FFN, 
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which has a  relatively small  direct FoV, to  integrate  information  from far beyond  its direct FoV. It 
also  transforms the  problem of single-shot classification  into  classification  conditioned  on  prior 
predictions (i.e., classification  results from nearby locations), which we believe  to  be  a  simpler 
problem (see  Supplementary for experimental  data  confirming  this intuition). This makes it 
possible  for results in  "easy", unambiguous areas to  inform segmentation  in  "hard", more 
ambiguous regions.  
 
In  the  following, we describe  the  core  FFN algorithm, how FFNs can  be  used  to  reconstruct a 
large-scale  EM volume, compare  accuracy to  previously published  alternatives, and  analyze  the 
errors of the  FFN reconstruction  in  detail. The  quality of the  fully automated  segmentation 
obtained  with FFNs is shown  to  far exceed  previous approaches, and  opens up  the  possibility of 
efficient analysis of volumes that have  so  far been  intractable  due  to  their size. 
 
Results:  
Flood-filling network  architecture, inference, and training  
An  FFN has two input channels, one  for the  3D image  data  and  another one  for the  current state 
of the  “predicted  object map” (POM). Using values between  0  and  1, the  POM encodes for each 
voxel  the  algorithm’s estimate  of whether the  voxel  belongs to  the  object currently being 
segmented. At each  iteration  of the  network’s recurrent dynamics the  POM is updated  for all 
voxels in  the  network’s current FoV.  
 
We  generated  single-voxel  seeds at locations well  away from the  cell’s putative  boundaries as 
detected  by a  simple  edge  filter, because  we had  observed  that  seeds placed  near cell 
boundaries often  cause  neighboring  objects to  erroneously merge  (Fig. 1a). When  starting 
segmentation  of a  new object, the  networks FoV is centered  on  the  seed  and  the  seed  location’s 
POMs value  is set to  0.95, with  all  other voxels set to  0.05. The  values are  offset from 1  and  0  to 
prevent the  network from learning  large  internal  weights and  overfitting  24.  
 
The  direct FoV (i.e  those  voxels that are  directly affect the  current FFN inference  step) is 
relatively small  (33x33x17  voxels, or 297  x 297  x 340  nm). Based  on  the  inference  results, the 
FoV may move  to  a  new location  or, alternatively, inference  may terminate  and  generate  a  fixed 
segment from the  POM (see  Methods for details). Once  a  segment is completely fixed  all  seeds 
overlapping  this segment are  discarded  and  segmentation  starts anew  at one  of the  remaining 
seeds until  none  remain. 
 
We  applied  FFNs to  a  96x98x114  µm  (10624  x 10880  x 5700  voxels) sized  region  of zebra 
finch  brain  that had  been  imaged  with  Serial  Block-face  Electron  Microscopy 25 at a  resolution  of 
9  x 9  x 20  nm. A small  fraction  (0.02%, 148M voxels, contained  in  35  subvolumes of varying 
size  that were  distributed  throughout the  volume) of the  data  set was manually segmented  by 
human  annotators and  used  as ground  truth  to  train  the  FFN. 
 
At the  core  of the  FFN is a  multi-layer CNN. During  each  iteration  step  the  POM values for 
multiple  voxels are  updated, in  our case  all  voxels of the  current FoV. During  training  the  POM 
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is first initialized  by seeding  a  single-voxel  in  the  center of the  49x49x25  voxel  training  example. 
A single  iteration  is then  executed  and  its result is used  to  update  the  POM (Fig. 1b). The 
network weights are  then  adjusted  via  stochastic gradient descent using  a  per-voxel 
cross-entropy (logistic) loss 24. This procedure  is repeated  with  the  FoV position  at a  number of 
locations offset from the  center by  +/- 8  voxels (72  nm) laterally and   +/- 4  voxels (80  nm) in  z 
direction. In  order to  optimize  the  training  procedure  and  remain  consistent with the  inference 
procedure, a  FoV position  was used  only if the  POM value  of the  new center voxel  exceeded 
0.9  immediately before  the  move. The  order of moves was randomized. 
 
Irregularity detection and automated tissue  classification to prevent segmentation errors  
Many of the  FFN’s errors occur at data  irregularities, such  as cutting  artifacts or alignment 
mistakes. While  frequent enough  to  affect the  overall  error rate, such  irregularities are  too  rare 
(affecting  fewer than  one  voxel  in  a  hundred) for the  network to  learn  how to  avoid  them. Rather 
than  enriching  them in  the  training  set, we decided  to  instead  detect such  irregularities in  a 
separate  process. When  an  irregularity was found  we partitioned  the  neural  process. While  such 
partitions were  mostly splits (errors in  which two processes are  erroneously disconnected  from 
one  another), many of those  splits were  later corrected  at the  agglomeration  stage. Objects that 
were  not reconnected  in  this way could  be  candidates for later human  proofreading. 
 
We  also  observed  that the  segmentation  quality often  declined  near objects, such  as somata  or 
blood  vessels, that were  significantly larger than  the  cross sections of typical  axons, dendrites 
and  the  FFN’s FoV. To  address this we trained  a  separate  CNN to  detect blood  vessel, cell 
body, neuropil, myelin, or out of bounds voxels and  used  these  classifications to  prevent the 
FFN from extending  objects beyond  the  neuropil. 
 
Hysteresis and approximate  scale  invariance in FFNs 
FFN segmentation  results were  dependent on  the  placement of the  initial  seed  and  on  the  order 
in  which objects were  segmented. There  were, for example, cases where  a  merger (two or more 
processes are  erroneously connected  to  one  another) was only created  between  two objects (A 
and  B) when  the  segmentation  order was A-B but not when  it was B-A ("unidirectional 
mergers"). 
 
This can  be  exploited  to  eliminate  mergers while  increasing  the  number of splits by only a  small 
amount. Specifically, we compared  a  forward  segmentation  of the  data  with its backward 
segmentation, for which the  the  order of seeds was reversed  and  accepted  all  splits as real 
(which  we call  the  oversegmentation-consensus), which means that only those  mergers 
remained  that occurred  in  both  segmentations (Fig. 1c). Just as we used  different initial  seeds to 
build  consensus analyses, we were  similarly able  to  use  analyses carried  out on  subsampled 
raw images, despite  the  FFNs not being  explicitly trained  to  do  so. Bidirectional  mergers at full 
resolution  often  disappear completely or become  unidirectional  when  inference  is run  at a 
reduced  resolution, which we confirmed  for data  that were  downsampled  in-plane  by factors of 2 
or 4  and  two-fold  in  the  axial  direction. Note  that downsampling  increases the  FoV in  physical 
space  in  these  cases to, respectively, 594  x 594  x 340  and  1188  x 1188  x 680  nm.  
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We  finally generated  an  oversegmentation-consensus using  forward  and  reverse  segmentations 
at the  original  and  at down-sampled  resolutions (see  Fig. 1c,d  and  Online  Methods for details). 
These  procedures are  conceptually similar to  the  process of ensembling  in  machine  learning, 
i.e. combining  the  decisions of multiple  different classifiers. Others have  used  the  averaged 
predictions of the  same  classifier applied  to  modified  versions of the  raw image  18,26. In  our case, 
the  classifier was also  kept constant, and  variance  was generated  by changing  the  initial 
conditions and  the  scale  of the  image. These  procedures increased  the  number of splits by a 
factor of only 2, but reduced  the  number of mergers by a  factor of 82  (see  also  Fig. 3b,c for path 
length  statistics). 
 
FFN agglomeration 
In  order to  reduce  the  number of splits, we agglomerated  segments throughout the  volume. 
Unlike  previous automated  agglomeration  approaches, which involve  training  a  classifier to 
score  pairwise  merge  decisions 27 or predict a  compatibility score  between  an  agglomerated 
segmentation  and  the  raw image  28, we instead  used  the  FFN model  itself to  perform 
agglomeration.  
 
To  determine  whether a  pair of segments in  spatial  proximity are  part of the  same  neurite, we 
extracted  a  small  subvolume  (about 1  µm3 in  size) around  the  point of their closest approach. 
We  then  placed  seeds in  parts of the  two objects inside  the  subvolume, at locations maximally 
distant from object boundaries, and  performed  two independent FFN inference  runs, one  for 
each  of these  seeds, while keeping  the  remaining  objects fixed  (Fig. 1e). If the  resulting  POMs 
overlapped  to  a  high  degree  (using  the  intersection-over-union  Jaccard  index as a  criterion), the 
objects were  merged. This procedure  takes advantage  of the  sensitivity of the  FFN to  the  seed 
location  and  allows calibration  of merge  decisions by varying  the  threshold  applied  to  the 
intersection-over-union  value.  
 
Large-scale FFN segmentation pipeline 
We  combined  tissue  masking, FFN inference, oversegmentation-consensus, and  FFN 
agglomeration  into  a  three-stage  pipeline  that was used  to  segment the  entire  volume.  
 
1.  Alignment. The  sections within  the  volumetric dataset were  precisely registered  using  elastic 
alignment 29, which, compared  to  a  translation-only alignment, reduced  the  number of partitions 
introduced  by the  irregularity-detection  procedure.  
 
2. Cell-body segmentation. The  parts of the  volume  corresponding  to  the  interiors of cells bodies 
were  segmented  by running  a  FFN restricted  to  voxels labeled  as being  part of a  cell  body by 
the  tissue-type  classification, using  seeds manually placed  into  all  454  somas in  the  volume  (1 
human  hour was required  for manual  annotation, but this task could  also  be  automated  with 
0.97  precision  and  0.96  recall  30). Explicit handling  of cell  bodies was necessary due  to  the 
dramatically different spatial  scale  of cell  bodies (average  diameter 9  µm) and  neuropil, which 
comprised  the  majority of training  data  for the  FFN (average  diameter 0.19  µm).  
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3. Neuropil  segmentation  and  agglomeration. FFN inference  was restricted  to  voxels labeled  as 
neuropil  by the  tissue  classifier, and  five  separate  segmentations were  generated  and 
reconciled  with oversegmentation-consensus. FFN agglomeration  was used  to  merge  neurites 
in  the  segmentation, which reduced  the  total  rate  of splits by 44% and  increased  the  run  length 
by 1149%. 
 
Evaluation of large-scale  segmentation accuracy 
The  most popular datasets for comparison  and  evaluation  of computational  methods for EM 
reconstruction  are  relatively small  subvolumes of tissue  that have  been  completely segmented 
by hand, i.e. each  pixel  in  the  subvolume  has been  assigned  to  an  object 18,31. First we 
evaluated  FFN and  comparison  methods on  a  5  × 5  × 5  µm subvolume  but found  that the 
accuracy of the  methods on  this subvolume  did  not predict a  method's performance  on  the 
5000-times larger complete  volume  (for example, the  fraction  of ground  truth  neurite  annotations 
containing  a  merger in  the  CNN+GALA baseline  segmentation   method  increased  from 7.3% to 
46.3%; see  supplementary for details).  
 
Thus in  order to  measure  the  accuracy of segmentation  results over length  scales comparable 
to  the  path  length  of neurons in  the  complete  volume, we “skeletonized” individual  neurons 8. 
Human  annotators used  KNOSSOS software  (https://knossostool.org/) to  manually annotate 
individual  neuron  structure  as a  set of nodes and  edges forming  an  undirected  tree. We  created 
two non-overlapping  sets of skeletons. The  tuning  set, which was used  to  optimize  the 
hyper-parameters of the  segmentation  pipelines, contained  13.5  mm total  neurite  path  length  (of 
which 27% was axonal) distributed  among  12  neurites with  a  0.8  mm median  path  length. The 
test set, which was used  solely for evaluation  purposes, contained  97  mm total  path  length 
(34% axonal) across 50  neurons (2  mm median  path  length). We  found  that the  skeletons 
contained  eight mergers and  66  splits (mostly missed  dendritic spines), even  after human 
consensus generation  based  on  multiple  independent tracings. We  corrected  this by having  two 
human  experts (M.J., J.K.) examine  every putative  merger in  the  automated  segmentations, and 
then  fix the  manual  skeletons when  they were  deemed  erroneous. 
 
Based  on  overlap  with the  automated  segmentation, each  edge  of the  ground  truth  skeletons 
was classified  as either correctly reconstructed  in  the  segmentation, omitted, split, or part of a 
merged  segment11,32. For example, if a  segment within  the  automated  reconstruction  overlapped 
nodes from two different skeletons, then  all  edges overlapping  that segment were  counted  as 
“merged.”  
 
Only about 1.4% of the  total  path  length  in  the  imaged  volume  has been  manually skeletonized. 
This allowed  us to  automatically detect all  splits that occurred  in  the  skeletonized  neurites, but 
only those  mergers that were  with  with  other skeletonized  neurites. This severely 
underestimates the  number of mergers per cell. To correctly estimate  the  merger rate, we also 
(in  addition  to  all  automatically produced  segments that contained  nodes from more  than  one 
skeleton) classified  a  segment as containing  a  merger if it contained  at least two skeleton  nodes 
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and  if any part of the  segment extended  farther than  2.2  µm away from the  skeleton  to  which 
that node  belonged.  
 
Finally, we calculated  an  “expected  run  length” (ERL) that measures the  average  error-free  path 
length  of neurites in  the  automated  reconstruction. Even  a  single  omission  or split terminates 
the  accumulation  of run  length; segments containing  mergers do  not contribute  any run  length  at 
all. Note  that such  severe  penalization  of mergers is useful  when  optimizing  an  automated 
segmentation  method  since  it reflects the  difficulty involved  in  manually finding  and  correcting 
mergers when  proofreading. However, when  evaluating  a  proofread  segmentation, which when 
combined  with synaptic annotations 30 will  yield  the  connections matrix, a  different metric that 
more  equally weights split and  mergers will  reflect the  usefulness of the  segmentation  better. 
See  Supplementary for full  details of manual  skeletonization, edge  classifications, and  run 
length  calculation. 
 
Our final  reconstruction  (FFN-c in  Fig. 3) reached  an  ERL of 1.1  mm and  contained  only 4 
mergers (Fig. 2). None  of these  mergers were  between  the  ground  truth  skeletons, and  we 
detected  them with the  heuristic procedure  described  above. 
 
To  compare  the  performance  of FFNs to  alternative  approaches to  connectomic reconstruction, 
we implemented  two of those  approaches. The  first approach, which we refer to  as the 
“baseline,” combines a  3d  convolutional  neural  network trained  to  produce  long-range  affinity 
graphs 21, affinity graph  watershed  segmentation  33, and  random-forest object agglomeration 
using  “GALA” 17,27. The  convolutional  network used  an  input FoV of 35x35x9  voxels and  was 
trained  to  produce  a  long-range  affinity graph  that for every voxel  predicted  its binary 
connectivity to  all  its neighbors within  a  3x3x1  radius. We  also  evaluated  a  recursive  boundary 
prediction  network 30 with a  larger 201x201x21  FoV (for details of all  network architectures see 
Supplementary), but found  that it performed  worse  than  the  baseline  network. The  parameters 
for the  affinity-graph  watershed  procedure  were  optimized  by grid  search, and  GALA 
agglomeration  was performed  with  a  random forest classifier trained  on  the  subvolumes of 
labeled  data. Finally, we evaluated  “SegEM” 11, in  which 3d  convolutional  neural  network 
boundary predictions are  over-segmented  with  watershed. The  same  3d  convolutional  network 
as the  baseline  was used, and  we optimized  the  parameters by grid  search  over full  volume 
segmentations. Among  these  alternative  approaches, the  baseline  method  achieved  the  highest 
ERL (112 microns; see  Fig. 3  and  Supplementary Table  5).  
 
 
Analysis of errors  by neurite  type 
We  manually classified  fragments of neurites in  ground  truth  skeletons as axons or dendrites, 
and  annotated  the  locations of the  base  and  the  head  of 182  dendritic spines. We  then  used  this 
data  to  measure  error rates of the  FFN-c segmentation  for the  different neurite  categories (see 
Supplementary for details). We  observed  that the  automated  reconstruction  is better than 
human  annotators in  identifying  dendritic spines (95% and  91% recall, respectively). While 
precision  remained  close  to  100% and  was slightly higher for the  automated  results (99.7%, 
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100% automated  vs 98%, 99% human-generated  for dendrites and  axons, respectively), recall 
for both  axons and  dendrites was still  inferior to  human  performance  (68%, 48% automated  vs 
89%, 85% human-generated  for dendrites and  axons, respectively).  
 
Many of the  remaining  splits could  be  attributed  to  data  artifacts, which affects all  types of 
neurites, or low contrast (Fig. 2c), which affects only low-diameter processes such  as axons. We 
attempted  to  correct for misalignment and  single-slice  artifacts in  the  agglomeration  procedure 
(see  Methods), but there  remain  difficult cases that, while  unambiguous to  humans, require 
further improvement in  automated  techniques. 
 
Discussion : 
Flood-filling  networks differ from other machine  learning-based  segmentation  approaches in 
several  ways: a  recurrent network architecture, the  direct generation  of segments (rather than 
having  to  rely on  a  separate  clustering  step), and  an  inference  procedure  that segments objects 
one  at a  time. We  also  exploited  several  additional  capabilities of FFNs, such  as the  ability to 
reduce  mergers by ensembling  multiple  segmentations generated  by varying  seed  point 
location. Applying  these  techniques to  a  roughly 1  million  cubic micron  volume  of songbird 
tissue  yielded  automatically segmented  neurons with  an  average  error-free  run  length  of 1.1 
mm. 
 
The  main  disadvantage  of FFNs is the  high  computational  cost. For example, performing  a 
single  pass of the  fully-convolutional  FFN network over the  whole  volume  is 14.4x more 
expensive  than  the  more  traditional  3d  convolution-pooling  architecture  in  the  baseline. This is 
because  multiple  and  partially overlapping  inference  computations are  required  to  segment both 
a  single  object as well  as implement the  sequential  nature  of multiple  object segmentation. On 
average, every voxel  of the  volume  was processed  by the  FFN 59  times in  a  segmentation  run. 
Ensembling  segmentations from multiple  seed  points further multiplies FFN inference  cost by 
2.38x, and  agglomeration  introduces another factor of 2.16x. In  total, the  FFN pipeline  required 
14.4  x 2.38  x 2.16  = 74x greater computation  compared  to  the  baseline  CNN (see 
Supplementary for details). 
 
However, the  benefits of FFN segmentation  are  likely to  outweigh  the  increase  in  
computational  cost, given  the  vast saving  of human  proofreading  time  that follows from 
order-of-magnitude  improvements in  reconstruction  accuracy, as well  as the  continuously 
decreasing  cost of computational  power and  potential  for algorithmically derived  improvements 
in  efficiency 34. The  very low rate  of mergers in  the  FFN reconstruction  would  greatly reduce  the 
need  for manually splitting  of undersegmented  3d  objects, one  of the  most costly parts of 
proofreading. The  large  size  of the  automatically generated  segments should  make  the 
shape-based  prediction  of potential  splits more  reliable  and  thus make  a  replacement of the 
laborious manual  segmentation  step  by focussed  annotation  feasible. As the  error-free  path 
length  increases it becomes more  and  more  likely that a  segment that contains an  error also 
violates one  of the  known  topological  properties common  to  all  neurites, such  as the  expectation 
that all  neurites either connect to  a  cell  body or extend  to  the  border of (and thus beyond) the 
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imaged  volume, and  such  violations could  become  an  efficient way to  guide  the  proofreading 
process and  to  provide  a  measure  for the  residual  error rate  in  the  segmentation. 
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Main  Text Figures: 
 

 
Figure 1. The  segmentation  pipeline. (a) Segmentation  of a  subvolume  with an  FFN. Top  row 
(left to  right): EM image  data, local  intensity gradient magnitude  estimated  with the 
Sobel-Feldman  operator, Euclidean  distance  transform of the  gradient magnitude  with local 
peaks highlighted  with white dots. The  peaks are  used  as seed  points for FFN inference. Bottom 
row: sequential  segmentation  of the  subvolume  with  an  FFN. The  yellow  cross-hair symbol 
indicates the  seed  point. (b) The  flood-filling  inference  process for a  single  object. The  red 
square  indicates the  location  of the  FoV in  the  EM data  (left column) and  the  POM. Red lines 
with arrows indicate  the  flow of information  to  the  inputs.  Each  iteration  (row) consists of one 
forward  pass of a  convolutional  network that receives as input both  the  image  and  the  current 
state  of the  predicted  object mask (POM). In  the  first row, the  initialization  of the  POM is shown 
as specified  by a  single  pixel  (white  square) within  the  network's FoV (red  square). Successive 
rows show successive  iterations of FFN inference  that incrementally contribute  inference  values 
to  the  POM while the  network's FoV moves throughout the  image  space. (c) Multi-seed 
consensus procedure. Top  row: cross section  through  the  data  with  the  FFN segment seeded 
by A (left) and  seeded  by B (right). Note  the  merger between  a  glial  fragment and  a  dendritic 
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branch  in  the  left panel. Bottom row: surface  renderings of the  segmentation  after 
oversegmentation-consensus. (d) Multi-scale  oversegmentation-consensus. Top  row: 
segmentation  from full  resolution  data  (left) contains a  merger between  an  axon  and  glial 
fragment, and  the  segmentation  from data  downsampled  2x in-plane  (right) contains a  merger 
between  the  same  glial  fragment and  a  dendritic branch. Bottom row: segmentation  and  surface 
rendering  of multi-scale  oversegmentation-consensus results in  which both  mergers are  fixed. 
(e) Flood-filling  agglomeration. Top  row: (left) a  split dendritic branch; the  white square  shows 
area of zoomed  insets (right) in  which  FFN segmentation  is started  from points A (top) and  B 
(bottom) sequentially. Bottom row: rendering  of containing  objects of points A and  B, which are 
agglomerated  due  to  satisfying  mutual  consistency criteria  of FFN agglomeration  (see  text for 
details). The  scale  bars correspond  to  1  μm. 
 

 
Figure 2. Qualitative  analysis of segmentation  accuracy. Different colors indicate  different 
segments. Neurons reconstructed  with  the  full  pipeline  (FFN-c) with  (a) the  largest (1.5  mm) 
and  (b) shortest (0.3  mm) run  lengths. (c) Zoomed  views of splits caused  by low contrast (top) 
and  a  slice  misalignment (bottom) . (d) Both  rows show a  set of pre-agglomeration  segments 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2017. ; https://doi.org/10.1101/200675doi: bioRxiv preprint 

https://doi.org/10.1101/200675
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(segments in  FFN-b) that were  erroneously merged  during  FFN agglomeration  (segments in 
FFN-c). Top: dendrite-axon  merger caused  by small  spillout of the  dendrite  segmentation. 
Bottom: cell  body-glia  merger caused  by inaccurate  cell  body segmentation. 
 
 

 
Figure 3. Segmentation  method  accuracies measured  by comparison  with 50  manually traced 
and  verified  skeletons (97  mm path  length). SegEM: seeded  watershed  applied  to  convolutional 
neural  network (CNN) boundary prediction  11, CNN: watershed  over affinity graph  predicted  by a 
CNN, CNN+GALA: affinity graph  watershed  output agglomerated  with  a  random forest classifier 
27, FNN-a: single-pass FFN segmentation, FFN-b: FFN segmentation  after multi-seed  and 
multi-resolution  consensus (note  that the  ERL decreased, but the  merge  rate  is also  decreased 
to  almost 0), FFN-c: result of the  entire  FFN pipeline, including  FFN agglomeration. (a) 
Expected  run  length. The  end  of the  x-axis scale  (at 2.1  mm) indicates the  maximum ERL 
attainable  for this dataset and  set of ground  truth  skeletons. (b) Merger and  split counts 11. (c) 
Fraction  of ground  truth  skeleton  edges classified  as either split or merged. (d) Merge-free 
segment length  distributions for the  different segmentations. Error bars represent 95% 
confidence  intervals and  were  calculated  using  the  bootstrap  method  with 10,000  resamples. 
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Online  methods 

Tissue  irregularity detection: 
We  used  cross-correlation  in  order to  detect irregularities in  the  input EM data  caused  by 
artifacts in  the  image  acquisition  process or by imprecise  alignment of the  images. For every 
pair of neighboring  sections, 160  x 160  pixel  patches were  extracted, centered  at every node  of 
a  2d  grid  with step  size  40  pixels. We  then  computed  the  normalized  cross-correlation  of the  two 
patches corresponding  to  every grid  node  using  FFT convolution  in  FULL mode  (i.e., 
convolution  results were  computed  at every point of overlap, even  if partial, by padding  with 
zeros). The  peak in  the  correlation  image  was identified, and  its offset from the  center of the 
image  was taken  as an  estimate  of the  local  lateral  section-to-section  motion, forming  a  sparse 
2d  vector field  over the  whole  volume. Based  on  experiments with  FFN inference  in  areas 
affected  by data  irregularities, we recorded  an  irregularity when  either component of the  vector 
field  exceeded  a  value  of 4  . 
 
 
Tissue  type  classifier: 
We  trained  a  convolutional  network to  predict whether a  voxel  belonged  to  one  of six categories 
that represented  general  structural  features of the  image  volume. First, we manually labeled 
26.7  million  voxels (0.016% of the  volume) at 2x reduced  lateral  resolution  as either blood 
vessel  (4.4M voxels), cell  body (11.5M voxels), myelin  (1.5M voxels), neuropil  (7.4M voxels), or 
an  “out-of-bounds” (1.8M voxels) category defined  for those  voxels in  the  embedding  substrate 
that were  outside  the  bounds of the  actual  songbird  tissue. Manual  annotation  were  sparsely 
created  on  every 500th  slice  by two authors (V. J., M.J.) using  a  custom web-based  tool 
(“Armitage”) that enabled  manual  painting  of voxels with  a  modifiable  brush  size  (see  Fig. 4); in 
total, annotation  required  5  hours of human  time.  
 
We  then  used  TensorFlow  35 to  train  a  3d  convolutional  network to  classify a  65x65x65  patch 
centered  on  each  manually labeled  voxel. The  network contained  three  “convolution-pooling” 
modules 36 consisting  of convolution  (3x3x3  kernel  size, 64  feature  maps, VALID mode  where 
convolution  results are  only computed  where  the  image  and  filter overlap  completely) and  max 
pooling  (2x2x2  kernel  size, 2x2x2  stride, VALID mode), followed  by one  additional  convolution 
(3x3x3  kernel  size, 16  feature  maps, VALID), a  fully connected  layer (512 nodes, expressed  as 
a  point-wise  convolution), and  a  six-class softmax output layer 24. We  trained  the  network by 
stochastic gradient descent with  a  minibatch  size  of 16  and  4  replicas 37. During  training, each  of 
the  six classes was sampled  equally often. Training  was terminated  after 1  million  updates.  
 
Inference  with the  trained  network was applied  to  all  voxels in  the  image  volume  using  dilated 
convolutions, which is several  orders of magnitude  more  efficient than  a  naive  sliding-window 
inference  strategy 38. Finally, the  analog  [0,1]-valued  network predictions were  thresholded  and 
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used  to  prevent certain  image  regions from being  segmented, as detailed  in  section 
"Large-scale  FFN segmentation  pipeline".  
 

 
Figure 4. Manual  annotations (left) and  convolutional  network inference  (right) of a  subset of the 
labeled  voxel  classes: blood  vessel  (red), myelin  (blue), and  cell  body (green). False  positive 
identifications of cell  body voxels are  visible  in  the  automated  inference  (inside  the  myelinated 
area).  
 
 
Flood-filling  Networks (Architecture, Training, Inference): 
Architecture 
The  FFN comprised  a  stack of 3d  convolutions in  SAME mode  (input and  output of every layer 
of equal  size, with input implicitly padded  with  zeros to  achieve  this) with skip  connections, 
rectified  linear (ReLU) nonlinearities 24, 3x3x3  kernel  sizes, and  32  feature  maps in  every layer 
but the  the  last layer. The  network consisted  of 19  convolutional  layers containing  a  total  of 
472,353  trainable  weights (see  Fig. 5). The  input module  consisted  of a  sequence  of a  3d 
convolution, ReLU nonlinearity, and  another 3d  convolution. This was followed  by eight residual 
modules that performed  a  ReLU nonlinearity, 3d  convolution, ReLU nonlinearity, and  3d 
convolution. The  last layer performed  a  voxel-wise  convolution  that combined  input from all 
feature  maps (1x1x1  kernel  size  with  a  single  output feature  map). The  input and  output of the 
network were  equal  in  spatial  size  -- 33x33x17  voxels. The  input was formed  by a  2-channel 
image, containing  EM data  in  channel  1  (normalized  to  0  mean  and  unit standard  deviation) and 
the  current state  of the  predicted  object mask in  logit form in  channel  2. The  output of the 
network was the  updated  state  of the  predicted  object mask in  logit form. 
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Figure 5. Architecture  of the  FFN. 
 
The  internal  modular architecture  used  here corresponds to  "full  pre-activation  residual 
modules" 39. The  architecture  was chosen  because  in  our experiments it showed  better 
convergence  than  alternatives (no  skip  connections, or other proposed  variants of skip 
connections 40). We  note  that our network contains significantly fewer weights than  those  used 
in  many recent works (e.g. 74x times fewer than  18). 
 
The  FFN was implemented  in  TensorFlow  35 and  trained  with  voxelwise  cross-entropy loss: 

 
where  p i  is the  predicted  voxel  value  and  g i  is the  ground  truth  label  after smoothing. Training 
proceeded  for 7  days using  asynchronous stochastic gradient descent at a  learning  rate  of 
0.001, in  a  distributed  setting  with  32  NVIDIA Tesla  K40  GPUs and  batches of 4  examples.  
 
Training example sampling 
The  initial  set of training  examples was formed  by extracting  all  subvolumes 49  × 49  × 25  voxel 
in  size  and  fully contained  within  one  of the  33  regions densely segmented  by human 
annotators. The  size  of the  subvolume  was chosen  to  allow  FoV movement by one  8-voxel  step 
in  every direction. 
 
The  ground  truth  segmentation  within  every subvolume  was binarized  by setting  voxels 
belonging  to  the  same  object as that of the  central  voxel  of the  subvolume  to  0.95, and  the  rest 
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of the  voxels to  0.05. These  soft labels 24 provided  the  desired  object mask probability map  that 
the  FFN was trained  to  predict. 
 
For every one  of the  initial  training  examples, the  fraction  (fa) of active  mask voxels was 
calculated. The  training  examples were  then  partitioned  into  17  classes, such  that an  example 
was assigned  to  class i  if ti−1  ≤ fa < ti  , and  t = (0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.075, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). For example, a  training  example  with fa = 0.5  would  be 
assigned  to  class 12. During  training, each  of the  17  classes was sampled  equally often.  
 
Seed selection 
The  seed  points for FFN inference  were  selected  as follows: all  pixels where  the  3d 
Sobel-filtered  EM image  was larger than  the  same  image  filtered  with  a  Gaussian  with σ  = 49/6 
was set to  1, and  0  otherwise. We  then  computed  the  Euclidean  distance  transform of the 
resulting  binary image  and  selected  local  peaks of that transform as the  initial  FFN seeds. 
 
These  seeds were  then  consumed  serially in  raster order. All  seeds found  to  be  within 3  voxels 
or less from an  existing  segment at the  time  of the  inference  start were  discarded. 
 
Field of View movement procedure 
The  FoV of the  FFN was moved  using  the  following  procedure. A list (Q) of positions to  be 
visited  was initialized  with a  location  obtained  from the  seed  policy. In  the  segmentation  loop, a 
location  (x, y, z) was extracted  from the  head  of Q, and  the  FoV was moved  to  that position, 
which was then  marked  as visited. Visited  locations were  stored  in  order to  ensure  that every 
location  was visited  at most once  during  segmentation  of an  object; locations were  stored  at 8x 
reduced  resolution  in  the  XY directions and  4x reduced  resolution  in  the  Z direction. This 
reduced  resolution  effectively determines the  minimum step  size  by which the  FoV can  be 
moved, and  was used  to  control  the  efficiency of inference. 
 
After an  inference  call, all  POM voxels within  the  FoV were  updated, except those  that were 
previously updated  by the  FFN, had  a  prior value  < 0.5, and  a  new value  larger than  the  prior 
value  (this biased  the  network towards splits in  areas where  predictions of 
background/foreground  were  not consistent between  iterations). A cuboid  of POM values (x - Δx 
<= x <= x + Δx)  (y - Δy <= y <= y + Δy)  (z - Δz <= z <= z + Δz) was then  extracted, and  the 
maximum value  was then  identified  on  every one  of its faces. Whenever this value  matched  or 
exceeded  the  movement threshold  of 0.9, the  corresponding  location  was appended  to  Q unless 
it was visited  before. 
 
The  inference  loop  was terminated  when  Q was empty. At that point, if the  number of voxels 
with POM values >= 0.6  was >= 1000, a  new segment was created  consisting  of those  voxels, 
otherwise  the  POM values were  reset to  0.05  without creating  a  segment. Segmentation  was 
terminated  when  no  more  seeds were  available  to  start new inference  runs. We  used  Δx = Δy = 
8, Δz = 4  which were  the  largest values that did  not result in  an  increased  number of errors in 
our tests, while remaining  computationally tractable. 
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Criterion for  model evaluation and selection 
In  addition  to  the  densely labeled  ground  truth  data, a  560x560x250-voxel  region  of the  J0126 
volume  was exhaustively skeletonized  by human  annotators using  Knossos, resulting  in  221 
skeleton  fragments within the  subvolume. We  used  this subvolume  to  optimize  the  FFN 
performance. 
 
During  training, a  snapshot of the  network weights ("checkpoint") was saved  every hour. After 
training  was completed, we ran  FFN inference  over the  densely skeletonized  subvolume  with 
every available  checkpoint, and  evaluated  the  resulting  segmentation  with skeleton  metrics. We 
selected  the  checkpoint that had  the  highest expected  run  length  among  the  set of checkpoints 
with the  least number of mergers (in  our case  this corresponded  to  the  set of checkpoints with 
zero  mergers). 
 
Distributed inference 
In  order to  perform FFN inference  efficiently over the  whole  663  GB dataset, we split it into 
overlapping  500x500x500-voxel  subvolumes. The  subvolume  corners were  located  on  a  regular 
grid  with a  step  size  of 436  pixels, so  that neighboring  subvolumes overlapped  by 64  voxels in 
every direction. We  ran  FFN inference  as described  above  for every subvolume  independently, 
distributing  the  computational  load  over a  cluster of machines that contained  GPUs. 
 
The  global  segmentation  was built using  these  partial  segmentations. A "core" segmentation 
was extracted  from every subvolume  by discarding  a  32-voxel  wide envelope  (a  subset of the 
overlap  area) and  computing  connected  components of the  remaining  segmentation. For every 
face  of a  subvolume  A, a  1-voxel  thick plane  parallel  to  this face  was extracted  from the  middle 
of the  overlap  area. A corresponding  plane  was extracted  from the  neighboring  subvolume  B 
sharing  the  given  face. For every segment sA in  the  A plane, the  maximally overlapping  (by 
number of shared  voxels) segment sB-A was identified, and  vice-versa. Segments for which sA-B = 
sB-A, i.e. which were  mutually maximally overlapping, were  then  merged. This conservative 
merging  procedure  was used  in  order to  avoid  spurious mergers (-84%) when  creating  the 
global  segmentation, at a  cost of increased  splits (+28%).  
 
Multiresolution  oversegmentation  consensus: 
The  oversegmentation-consensus procedure  relies on  intersecting  objects in  voxel-space. In  the 
case  of consensus between  segmentations at different resolutions, we upsampled  the  lower 
resolution  segmentation  with  nearest neighbors interpolation. We  then  applied  seeded 
watershed  segmentation  to  the  Euclidean  distance  transform of the  higher resolution 
segmentation  as the  height map  using  the  upsampled  segmentation  as seeds. This did  not 
change  the  topology of the  upsampled  segmentation, but prevented  voxel-level  differences 
between  the  two segmentations from generating  new segments in  the 
oversegmentation-consensus procedure. 
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To  reduce  the  number of splits in  the  multi-resolution  oversegmentation-consensus procedure, 
the  lower resolution  segmentation  was filtered  by eliminating  all  objects containing  fewer than 
100,000  voxels before  upsampling. Any object consisting  of fewer than  1000  voxels was also 
removed  after consensus. 
 
 
Cell  body segmentation: 
We  created  a  separate  segmentation  containing  only cell  bodies, and  used  it as a  starting  point 
for all  subsequent FFN inference. To  do  so, we performed  three  FFN inference  runs at 
resolutions of 9x9x20  nm (original), 18x18x20  nm and  36x36x40  nm, with areas of the  volume 
not classified  as a  cell  body by the  tissue  type  classifier masked  out. We  then  applied 
multi-resolution  oversegmentation-consensus, and  removed  all  objects with fewer than  10M 
voxels. The  segmentation  was resampled  at an  isotropic resolution  of 160  nm. At this resolution, 
we computed  the  Euclidean  distance  transform within  the  cell  body segments, and  used  seeded 
watershed  with manually placed  seeds (cell  body center annotations) to  separate  adjacent cell 
bodies. The  corrected  segmentation  was upsampled  back to  the  original  resolution  of the 
dataset, and  the  separated  cell  bodies were  used  as seeds for a  watershed  transform. 
Background  voxels of the  full-resolution  uncorrected  cell  body segmentation  were  masked  out 
so  that no  new voxels were  labeled  by watershed. 
 
 
Flood-Filling  Network Agglomeration: 
Candidate  object pair  generation 
A subset of all  possible  supervoxel  pairs were  considered  for automated  agglomeration. 
Specifically, we computed  agglomeration  scores (see  below  for details) for any pair of objects 
where  both  supervoxels contained  at least one  voxel  within  the  same  5x5x5  cuboid  radius. For 
each  such  supervoxel  pair, we also  computed  a  "decision  point" defined  as the  midpoint of the 
shortest line  that connects any two points of the  supervoxels.  
 
For every such  decision  point involving  two objects, A and  B, both  containing  at least 10,000 
voxels, we extracted  a  (101x101x51)-voxel  subvolume  of EM data  and  segmentation, centered 
at the  decision  point. We  then  removed  the  segments A and  B from the  subvolume, and  ran 
FFN inference  within it twice -- once  starting  from a  voxel  originally labeled  as A, and  once 
starting  from a  voxel  originally labeled  as B. To identify the  starting  voxel, we computed  the 
Euclidean  distance  transform of the  segment A or B, and  chose  the  voxel  with maximum 
distance  as the  FFN seed  point. In  case  the  inference  run  failed  to  generate  an  object covering 
at least 60% of the  voxels of the  original  object (A or B), a  cuboid  area of radius (8, 8, 4) voxels 
around  the  seed  point was zeroed-out in  the  distance  transform, and  FFN inference  was 
attempted  again  from a  new location  selected  as described  above. This procedure  was 
repeated  up  to  16  times. 
 
Agglomeration scoring 
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We  analyzed  the  FFN inference  results for every candidate  object pair as follows. The  POMs 
were  thresholded  at 0.5  to  generate  a  binary segmentation. We  computed  the  number of voxels 
in  the  generated  segments (NA, NB -- starting  from the  original  segment A, and  B, respectively), 
the  fraction  of voxels of the  original  segments within  the  analysis subvolume  reconstructed  in 
the  generated  segment (fAA, fAB, fBA, fBB), , the  Jaccard  index JAB  between  the  two segments 
(defined  as the  size  of the  intersection  of the  two sets of object mask voxels divided  by the  size 
of the  union  of the  two sets of object mask voxels), and  the  number of "deleted" voxels d A, d B, 
where  a  voxel  in  the  POM was considered  "deleted" if during  inference  it was updated  by the 
FFN from a  value  >= 0.8  to  a  value  <= 0.5. 
 
Agglomeration steps 
We  performed  three  runs of FFN agglomeration. The  first run  covered  all  decision  points. The 
second  run  was limited  to  decision  points affected  by tissue  irregularities. Specifically, we 
computed  the  cross-correlation  of neighboring  (z + 1) and  next-neighboring  (z + 2) sections 
within the  agglomeration  subvolume  and  computed  local  shift vectors as described  in  "Tissue 
irregularity detection", yielding  mz and  mz+1. If mz satisfied  the  tissue  irregularity criteria, but mz+1 
did  not, then  we assumed  that a  single-slice  imaging  artifact had  been  identified  and  replaced 
section  z + 1  with image  data  from section  z + 2. The  subvolume  was then  realigned  with 
translation-only alignment utilizing  the  neighboring  slice  shift vectors, and  FFN inference  was 
performed  without shift masking. The  third  run  was performed  with  a  subvolume  of larger size  -- 
(201x201x101) voxels, and  was limited  to  decision  points that in  the  first run  resulted  in  fA*  or fB* 

< 0.4.  
 
We  then  merged  segments A and  B if fAA, fAB, fBA, fBB >= 0.6  (at least 60% of the  voxels of both 
original  segments were  reconstructed  in  both  runs), d A/NA < 0.02  or d B/NB < 0.02  (only a  small 
fraction  of the  object mask voxels got "deleted" during  inference, in  at least one  of the  runs), and 
JAB >= 0.8  (segmentations starting  from A and  B were  mutually consistent in  voxel  space). We 
then  treated  the  merged  segments as a  weighted  graph, with  the  segments as nodes and  JAB as 
edge  weights, computed  the  connected  components of this graph, and  checked  if any of the 
components contained  more  than  one  segment associated  with  a  cell  body (a  cell  body - cell 
body merger). If it did, we identified  the  shortest path  between  two such  cell  body segments, 
and  removed  the  edge  with the  lowest weight along  that path. This procedure  was repeated  until 
all  mergers were  resolved. All  parameters used  above  were  optimized  using  the  "validation" set 
of 12  ground  truth  skeletons.  
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Supplementary 
Elastic alignment of the  EM stack: 
The  raw EM sections were  first translationally aligned. Cross-correlation  of neighboring  sections 
was computed  to  find  a  globally optimal  shift correction  for every section. This formed  the  initial 
EM stack, which was then  elastically aligned  using  the  method  of reference  29.  
 
We  modified  the  method  in  several  ways. First, block matching  locations were  decoupled  from 
the  elastic mesh  vertices (block matches were  searched  for on  a  200-pixel  grid  and  mesh  with 
500-pixel  edges was used). Second, for each  block match, a  spiral  of offsets around  each  grid 
location  was analyzed  until  the  identification  of an  acceptable  match, which we found  to  improve 
results in  regions with poor or ambiguous texture. Finally, a  conjugate  gradient solver was used 
to  relax the  mesh, which we found  to  be  less sensitive  to  integration  step  size  and  spring 
stiffness than  Euler's method, and  which resulted  in  overall  faster convergence. 
 
Elastic alignment used  12  million  patch  match  correspondences (i.e., tiepoints) between 
adjacent sections, and  an  additional  12  million  between  pairs of sections that were  separated  by 
an  intervening  section. 
 
In  the  translationally aligned  volume  provided  as input to  elastic alignment, the  tiepoints 
between  adjacent sections had  a  mean  residual  error of 1.8  pixels; the  95th  percentile  error was 
3.0  pixels. For the  12  million  tiepoints across non-adjacent sections, the  means and  95th  %ile 
errors were  2.8  and  6.0  pixels. 
 
After elastic alignment, these  stats were  1.6  pixels (mean) and  2.0  pixels (95th  %ile) between 
adjacent sections, and  2.6  and  5.0  pixels between  non-adjacent sections. The  mean  of the 
magnitude  of the  displacement of the  3.3  million  nodes of the  elastic meshes used  to  model 
each  section  was 0.6  pixels. 
 
 
Precision/recall  estimation: 
To  estimate  recall  and  precision  of a  single  human  annotator and  the  automated  reconstruction 
(FFN-c) we used  manually generated  and  proofread  skeletons after (see  "Ground  truth 
verification" below  for details) and  dendritic spine  head/base  location  annotations. The  skeletons 
were  manually separated  and  classified  as axons or dendritic branches. 
 
Dendritic spine  recall  was measured  by comparing  the  segmentation  at two manually placed 
locations, one  at the  base, the  other at the  head  of a  spine. If the  segmentation  labels at base 
and  head  were  different, a  false  negative  was counted. A spine  was counted  as found  by a 
human  skeleton  if a  skeleton  node  was within  250  nm of the  base  and  head  location. A match  of 
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only one  of these  locations was counted  as false  negative, and  no  match  ignored, which means 
that the  entire  branch  was missed. 
 
For dendrites and  axons, single-annotator skeleton  nodes were  matched  to  the  nodes of the 
ground  truth  skeletons within a  radius of 800  nm. The  matched  path  length  was counted  as true 
positive, the  unmatched  path  length  in  the  ground  truth  skeleton  as false  negative, and  the 
unmatched  path  length  in  the  single-annotator skeleton  as false  positive. For segmentation, we 
computed  precision  and  recall  for every segment overlapping  the  ground  truth  skeletons, with 
the  path  length  of the  fragment of the  ground  truth  skeleton  overlapping  the  segment as true 
positive, and  the  path  length  of the  automatically generated  skeleton  of a  segment detected  as 
merged  and  not matched  with  the  ground  truth  skeleton  as false  positive. We  computed  recall 
and  precision  as a  weighted  sum of the  per-segment recall  and  precision, with a  weight of (path 
length  of the  fragment of the  ground  truth  skeleton  overlapping  the  segment) / (total  path  length 
of the  ground  truth  skeleton). This provides the  expected  value  of precision/recall  provided  that 
segmentation  is started  from a  random location  on  the  ground  truth  skeleton. 
 
 
Skeleton  edge  accuracy classification: 
Segmentation  quality is often  evaluated  with  respect to  ground  truth  pixel-wise labels or object 
masks 22, but creating  such  ground  truth  for large-scale  EM datasets that span  billions or trillions 
of voxels is highly laborious. A more  efficient way to  generate  ground  truth  representations of 
large-scale  neuron  topology is to  “skeletonize” neurons into  a  collection  of points that typically 
constitute  an  undirected  tree  8. 
 
We  propose  a  set of metrics to  evaluate  a  segmentation  using  such  ground  truth  skeletons. 
Similar to  previous approaches, we classify individual  edges in  skeletons as correctly or 
incorrectly reconstructed  based  on  the  presence  of mergers or splits that affect nodes attached 
to  an  edge  (11,32). We  assume: 

● a  ground-truth  skeleton   Si  consists of edges {e 1 , e 2, …, e |S|}, 
● an  edge  e  is defined  by two 3-d  node  coordinates A(e)  and  B(e), 
● S(e) denotes the  ID of the  ground-truth  skeleton  containing  edge  e , 
● R denotes a  predicted  segmentation  to  be  evaluated, and  R(p)  returns the  value  (object 

ID) at point p . R(e) denotes either R(A(e)) or R(B(e)) where  this is unambiguous. 
 
An  edge  e  is defined  as correctly reconstructed  if both  of its nodes belong  to  the  same  object in 
the  reconstruction  and  if that object does not contain  any nodes from different skeletons. More 
formally, we classified  every edge  e  into  one  of four categories (see  Sup. Fig. 1): 

● omitted if R(e) = 0 
● split if R(A(e)) ≠ R(B(e)), 
● merged if there  exists an  edge  e m such  that R(e) = R(em) but S(e) ≠ S(em), 
● correct if none  of the  above  is true. 
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The  edge  accuracy is the  percentage  of correctly reconstructed  edges over all  the  ground  truth 
skeletons, and  incorrect edges can  be  further subdivided  into  the  percentage  of edges which 
have  a  merge, split, or omitted  errors. 
 
The  definition  of a  merged  node  assumes that there  is a  skeleton  for every object in  the  volume 
of interest. Some  mergers could  remain  undetected  when  this assumption  is violated, which is 
the  case  for large  volumes where  it is impractical  to  skeletonize  every object manually. To 
mitigate  this, we apply an  additional  merge  detection  heuristic. We  call  a  segment T merged  if 
there  exists a  point p  where  R(p) = T and  p  is more  than  2.2  µm away from any skeleton  node 
lying  within T. The  distance  threshold  was chosen  based  on  the  size  of the  neurites in  the  J0126 
dataset and  edge  lengths in  the  ground  truth  skeletons. The  merge  detection  heuristic was not 
applied  in  the  vicinity of the  cell  body associated  with  the  ground  truth  skeleton  (when  present in 
the  dataset). 
 

 
Supplementary  Figure 1. Edge  classes for skeleton  accuracy computation. Colors correspond 
to  segment IDs. From top  to  bottom: correct edge  (both  nodes have  the  same  ID), split edge 
(nodes assigned  to  different segments), omitted  edge  (one or two nodes do  not have  an 
associated  ID), merged  edge  (node  assigned  to  a  segment that covers more  than  one  skeleton).  
 
 
Expected  Run Length: 
In  order to  evaluate  automated  segmentation  results, a  metric is needed  that compares 
volumetric 3d  components to  ground  truth  skeletons and  computes a  single  score  or run  length. 
We  used  the  "expected  run  length" (ERL), which is defined  as follows. 
 
For a  given  skeleton  S, let CE(S) denote  the  set of correct edges (as defined  above). We  would 
like  to  partition  this set into  "correctly reconstructed  components" (CRCs) -- subsets of edges 
corresponding  to  valid  (without a  merger) segments in  R . By definition  the  set {R(e): e  ∈ CE(S)} 
contains only such  segments. 
 
We  therefore  partition  CE(S) by the  segment label  L  and  define  a  correct component as: 

 
CRC(S, L) = {e: e ∈ CE(S) and  R(e) = L}. 
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The  expected  run  length  (ERL) is the  expected  size  of the  segment that contains a  randomly 
selected  skeleton  node, assuming  tracing  starts from a  random node  of the  skeleton: 

  RL(S) |CRC(S, L)|| E =  ∑
 

L
|  · ||S||

||CRC(S, L)||  

where  the  skeleton  size  is |S|| |e||.| = ∑
 

e ∈S
|  

 
Note  in  particular that under this definition  starting  from a  point which belongs to  an  incorrect 
edge  (i.e. omitted, split, or merged) does not allow  us to  trace  any correct path  length  and 
therefore  does not contribute  to  the  ERL. The  ERL corresponds to  the  average  segment length 
if the  average  is taken  with the  number of skeleton  nodes in  each  segment as its weight.  
 
The  ERL for a  set of skeletons {Sk} is defined  as: 
 

RL({S }) RL(S )E k = ∑
 

k
wk · E k  

.|S || / |S ||wk = | k ∑
 

i
| i  

 
 
Expected  Run Length  compared  to  other metrics: 
In  contrast to  prior approaches, the  ERL takes into  account the  spatial  distribution  of errors. 
Previously proposed  metrics, such  as the  total  error-free  path  length  (TEFPL) 11,32 and  inter-error 
distance  (IED) 11 are  defined  as simple  averages and  are  thus insensitive  to  the  distribution  of 
lengths of the  correctly reconstructed  fragments (see  Sup. Fig. 2  for an  illustration). 
 
Berning  et al. define  the  number of splits and  mergers in  a  predicted  dense  segmentation  with 
respect to  a  set of ground  truth  skeletons as follows 11: 

1. An  individual  skeleton  is said  to  correspond  to  a  predicted  segment if at least k nodes 
within the  skeleton  are  contained  within  the  predicted  segment, for k  = 1  or 2. Larger 
values of k provide  robustness to  the  imprecise  placement of skeleton  nodes. 

2. For each  skeleton, the  number of splits is determined  as max(0, number of 
corresponding  predicted  segments - 1). 

3. For each  predicted  segment, the  number of mergers is determined  as max(0, number of 
corresponding  skeletons - 1). 
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Supplementary  Figure 2. A) An  idealized  skeleton  fragment representing  8x  µm length  of 
neuropil  where  alternating  edges (red) have  been  identified  as incorrectly reconstructed  in  some 
candidate  segmentation. Total  error free  path  length  (TEFPL) proposed  by Pallotto  et al 
computes an  accuracy of 50% by dividing  correct edge  path  length  by total  path  length  (4µm / 
8µm), whereas the  expected  run  length  (ERL) for this fragment is x µm. The  inter-error distance 
(IED) of Berning  et al. is also  x µm.   B) An idealized  skeleton  fragment with “spines” of length  𝛜; 
as 𝛜→0, the  ERL and  TEFPL  converge  to  8x , while  the  IED converges to   2  µm (8  µm / 4)  C) 
Single  split dividing  the  process into  two segments of unequal  length. TEFPL  is 7  µm, IED is 4 
µm and  ERL is 3.625  µm. 
 
Berning  et al’s definitions result in  a  metric with  different properties from the  one  we propose: 

● In  their metric, erroneously connecting  two segments can  decrease the  total  number of 
mergers; in  the  limit case  of a  single  predicted  component encompassing  the  entire 
volume, the  number of mergers is (number of skeletons - 1). 

● In  their metric, the  spatial  distribution  of splits and  mergers is not taken  into  account: 
splitting  off a  single  synapse  is a  single  error, as is splitting  a  neuron  in  half. 

 
In  addition  to  being  sensitive  to  the  spatial  distribution  of errors, the  ERL penalizes mergers very 
heavily since  all  edges covering  the  merged  segments are  considered  erroneous, and  edges 
marked  incorrect do  not contribute  to  expected  run  length. We  argue  that this a  desired  property 
of the  metric, reflecting  the  significantly higher effort required  to  fix such  errors manually during 
proofreading  of the  automated  results.  
 
 
Ground  truth  verification: 
We  found  that the  initial  ground  truth  skeletons used  for segmentation  evaluation  contained  a 
substantial  number of errors, despite  being  created  by at least twofold  redundant skeletonization 
(8–10) with manual  resolution  of discrepancies. To mitigate  this, two of the  authors (M.J., J.K.) 
inspected  every discrepancy in  each  of the  segmentations listed  in  Fig. 3, and  when  both 
agreed  that a  mistake  was made  in  the  skeletonization  rather than  by the  FFN segmentation, 
the  skeletons were  updated. The  procedure  was repeated  until  no  more  error cases were 
detected. See  Sup. Table  1  for a  summary of the  changes made. 
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Note  that because  of the  merge  detection  heuristic we use, splits in  the  ground  truth  skeletons 
(e.g. missing  neurite  branches) are  treated  as mergers in  the  segmentation, and  segments 
detected  as merged  do  not contribute  to  the  ERL. The  quality of the  ground  truth  data  becomes 
increasingly more  important as the  path  length  of correctly reconstructed  components improves. 
As an  edge  case, consider a  complete  correctly reconstructed  cell  with  all  its branches, and  a 
single  spine  missing  in  the  corresponding  ground  truth  skeleton. This would  cause  the  whole 
reconstructed  object to  be  considered  merged, and  the  ERL would  be  0  nm. 
 
Because  of the  distance  threshold  used  in  the  merge  heuristic (2.2  µm), a  number of smaller 
spines missing  in  the  skeletons remain  uncorrected. The  number of missing  spines in  Sup. 
Table  1  should  therefore  be  treated  as a  lower bound. 
 

 
Fragment type 

Splits 
(untraced fragments) 

Mergers 
(mistraced fragments) 

Number  of 
errors 

Affected 
skeletons 

Number  of 
errors 

Affected 
skeletons 

dendritic  spine  59 13 0 0 

axon 4 2 5 4 

dendrite 2 1 1 1 

cilium 1 1 0 0 

glia n/a n/a 2 2 

Supplementary  Table 1. Errors identified  in  the  ground  truth  verification  process. In  total, 665 
µm of skeleton  path  length  was added  (to  fix splits), and  166  µm was removed  (to fix mergers). 
Additionally, 5  skeleton  nodes were  moved  due  to  their initial  placement outside  of the  neurite 
represented  by the  skeleton. 
 
 
Segmentation  parameters: 
The  neural  network used  in  the  baseline  CNN method  had  the  following  architecture: 2d 
convolution  (VALID mode, 5x5  filter size, 64  output features), 3d  convolution  (VALID mode, 
5x5x5  filter size, 64  output features), 2d  pooling  (SAME mode, 2x2  stride, 2x2  filter size), 3d 
convolution  (VALID mode, 5x5x5  filter size, 64  output features), 2d  pooling  (SAME mode, 2x2 
stride, 2x2  filter size), 2d  convolution  (VALID mode, 5x5  filter size, 512  output features), 
pointwise  convolution  (147 output features). The  output features of the  last layer were  treated  as 
a  7x7x3  long-range  affinity graph. The  FoV of the  CNN was 35x35x9. 
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To  see  if a  larger FoV could  improve  results, we also  evaluated  a  recursive  CNN 30 that was 
trained  to  predict a  boundary map. The  approach  used  two convolution-pooling  networks: barb 
with a  111x111x13  FoV, and  barbr with  a  91x91x9  FoV (see  Supplementary Table  3  of 30 for the 
detailed  architecture  of both  networks). The  first network (barb) took the  image  as input and 
predicted  a  boundary map. The  second  network (barbr) took the  image  and  the  predictions of the 
first network, and  predicted  an  updated  boundary map. We  used  the  output of the  barbr network, 
which had  an  effective  FoV of 201x201x21, and  performed  a  grid  search  for watershed 
parameters, optimizing  for ERL computed  within  the  densely skeletonized  subvolume. The  best 
ERL found  this way was 0.7  µm, which was less than  the  baseline  CNN. We  therefore  decided 
to  exclude  this network from further experiments.  
 
SegEM, as well  as all  FFN segmentations, used  the  elastically aligned  volume. CNN and 
CNN+GALA used  the  original  volume  which was only translationally aligned, as these  methods 
applied  to  the  elastically aligned  volume  showed  worse  performance  as measured  by the  set of 
12  skeletons used  for hyperparameter tuning. Myelin, OOB, and  blood  vessels were  masked  out 
in  all  segmentations -- voxels classified  into  one  of these  three  categories were  set to  0 
(background). 
 
For SegEM, the  best performing  set of parameters was found  to  be: r=0  (no  morphological 
filtering) and  h=0.045. For CNN, the  optimal  parameters found  were  Th=0.945, Tl =0.945, Te=0.5, 
Ts=1000). For CNN+GALA, the  agglomeration  threshold  was set at 0.9. 
 
 
SegEM metrics: 
In  Supplementary Table  2  we present SegEM metrics for the  segmentations discussed  in  Fig. 3. 
For the  SegEM segmentation  method, we found  the  inter-error distances to  be  consistent with 
those  previously reported  (optimal  IED = 11  µm in  the  present work, and  7.9  µm and  4.9  µm for 
the  two datasets discussed  in  the  original  paper11).  
 

Segmentation IED  (split) [µm] IED  (merge) [µm] IED  ("optimal") [µm] 

SegEM 7 36 11 

CNN 2 497 4 

CNN+GALA 10 171 19 

FFN-a 30 594 57 

FFN-b 14 48,670 27 

FFN-c 33  23,335 66 

Supplementary  Table 2. Full-volume  evaluation  of segmentation  quality with SegEM metrics 
and  50  ground  truth  skeletons. The  merge  detection  heuristic discussed  in  "Skeleton  Edge 
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Accuracy Classification" has been  applied  to  detect mergers. Segments detected  as merged 
were  counted  as a  single  merge  error. The  harmonic mean  of IED split and  IED merge  was 
used  to  compute  the  optimal  IED. 
 
 
Breakdown  and  comparison  of computational  cost: 

FFN inference  run FFN inference  calls 
[x  109] 

EFLOPs Wall time  with 1000 
Tesla  P100  GPUs 
[h] 

9x9x20  nm, forward 2.22 41.05 3.15 

9x9x20  nm, 
backward 

1.98 36.69 2.76 

18x18x20  nm, 
forward 

0.55 10.18 0.77 

18x18x20  nm, 
backward 

0.48 8.89 0.67 

36x36x40  nm  0.05 1.00 0.09 

agglomeration 6.10 112.76 8.64 

total 11.39 210.58 16.08 

Supplementary  Table 3. Computational  cost of FFN inference. No pre- and  post-processing  of 
the  data  is taken  into  account in  the  calculations. The  wall-clock time  is an  empirical 
measurement based  on  average  inference  speed  with  single  precision  floating  point numbers, 
on  a  single  NVIDIA Tesla  P100  GPU with  TensorFlow, and  using  CuDNN v6  as the 
computational  backend. 
 
For comparison  of segmentation  cost between  the  FFN pipeline  and  the  baseline  CNN in  the 
main  text, we assumed  that CNN inference  was done  in  a  distributed  setting  with overlapping 
subvolumes of size  182x182x158  (the  size  of the  subvolume  was limited  by the  need  to  store 
the  intermediate  feature  maps in  GPU memory). 
 
Local  versus Global  Evaluations: 
In  our experiments, we have  repeatedly found  that local  evaluations using  small  (order of 
hundreds of µm3) subvolumes of data  underestimate  error rates. Similar observations were 
made  in  the  context of synapse  prediction  in  30. In  Sup. Table  3  we provide  evaluations of the 
segmentations from Fig. 3  over the  5  µm x 5  µm x 5  µm densely skeletonized  subvolume  (with 
connected  components of the  segmentation  recomputed  after restricting  it to  the  subvolume). 
The  total  skeletonized  path  length  is 1  mm (20% of which is glial), and  the  maximum possible 
ERL is 13.4  µm. 
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Note  that if two objects were  merged  outside  of the  subvolume, but were  directly adjacent to 
each  other within the  subvolume, recalculation  of connected  components would  not allow them 
to  be  split. The  number of merges is therefore  overestimated  compared  to  what it would  be  if the 
segmentation  procedure  was restricted  to  the  subvolume  from the  beginning  (cf. FFN-c in  Sup. 
Table  4  with and  "recurrent single  object (FFN)" in  Sup. Table  6). 
 

Segmentation ERL 
[µm] 

Edge 
accuracy 

Merged 
edge 

fraction1 

Split edge 
fraction 

Omitted 
edge 

fraction 

SegEM 4.1 79.8% 15.2% 4.8% 0.2% 

CNN 3.3 87.4% 2.7% 9.5% 0.5% 

CNN+GALA 4.2 88.7% 7.3% 3.5% 0.5% 

FFN-a 5.0 84.1% 14.3% 0.5% 1.1% 

FFN-b 8.9 97.9% 0.0% 0.9% 1.2% 

FFN-c 10.9 98.3% 0.0% 0.6% 1.2% 

Supplementary  Table 4. Evaluation  of segmentation  quality on  the  densely skeletonized  [5 
µm]3 subvolume. 
 

Segmentation ERL 
[µm] 

Edge 
accuracy 

Merged 
edge 

fraction  1

Split edge 
fraction 

Omitted 
edge 

fraction 

SegEM 42 67.7% 28.0% 3.7% 0.8% 

CNN 26 76.3% 8.6% 14.0% 1.2% 

CNN+GALA 112 50.1% 46.4% 2.5% 0.1% 

FFN-a 208 84.3% 13.5% 1.3% 0.9% 

FFN-b 88 96.0% 0.0% 2.8% 1.2% 

FFN-c 1,097 94.5% 2.8% 1.6% 1.0% 

Supplementary  Table 5. Evaluation  of segmentation  quality on  the  test set of 50  skeletons, 
with a  total  path  length  of 97  mm and  max ERL of 2.1  mm. 
 

1  Fraction  of edges belonging  to  segments that contain  at least one  merger. 
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Comparing  the  data  in  Sup. Tables 4  and  5, we observe  that small-scale  evaluations can 
severely underestimate  the  merged  path  length  and  the  relative  quality of different 
segmentations. For instance, in  Sup. Tab. 4  FFN-c looks like  a  small  incremental  improvement 
over FFN-b, but when  evaluated  over the  whole  volume, the  former is significantly better in 
terms of reconstructed  error-free  path  length. 
 
There  are  two main  reasons for this. First, some  data  quality issues are  inherently local  to 
different parts of the  volume, and  hard to  capture  in  a  single  small  subvolume. For instance, the 
densely skeletonized  subvolume  does not suffer from any misaligned  slices, cutting  artifacts, or 
weakly stained  neurites. Second, as the  rate  of errors in  the  segmentation  decreases, getting 
good  estimates of the  different error rates requires sampling  larger path  lengths, at some  point 
exceeding  those  contained  within  a  small  subvolume. 
 
 
Ablation  Experiments: 
To  elucidate  the  impact of the  recurrent and  single-object nature  of the  FFNs, we trained  four 
different network variants: 
 

1. boundary prediction  with  no  recurrent channel  (standard  approach), 
2. boundary prediction  with  recurrent channel  (multi-object prediction), 
3. memory-less FFN (single  object prediction, no  recurrent channel), 
4. full  FFN (recurrent single  object prediction). 

 
Only the  minimum required  changes were made  between  the  experiments, and  all  other 
parameters, such  as the  architecture  of the  network were  kept fixed. 
 
For experiments 1) and  2) with  boundary prediction  networks, the  training  data  was formed  by 
first applying  morphological  erosion  with  radius 1  to  the  ground  truth  data  to  ensure  separation 
of nearby neurites, and  then  binarizing  the  resulting  image. The  soft labels of 0.05  for 
background  and  0.95  for object interior were  used, similarly to  the  original  FFN. After inference, 
the  boundary network predictions were  thresholded  at 0.5, and  converted  into  a  segmentation 
by computing  the  connected  components of the  regions labeled  as object interior. 
 
For experiments 1) and  3), the  second  channel  of the  network input was set to  a  uniform empty 
image  at value  0.05, and  fixed-step  movement procedure  was used  with a  step  size  of (8, 8, 4) 
voxels. The  "disconnected  voxel  bias" was active, allowing  the  network to  override  prior 
predictions of "object interior" to  "exterior", but not vice  versa. 
 

Network  type ERL [µm] Merged Split Omitted 

boundary 8.0 3.8% 0.5% 3.0% 

recurrent 8.8 0.0% 0.5% 2.5% 
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boundary   

single object 5.8 1.9% 1.2% 4.5% 

recurrent 
single object 
(FFN) 

10.9 0.0% 0.5% 1.1% 

Supplementary  Table 6. Evaluation  of segmentation  quality of different network types. 
 
The  results of our experiments presented  in  Sup. Table  6  suggest that the  recurrent nature  of 
the  network is the  main  factor responsible  for its segmentation  accuracy, driven  by its ability to 
eliminate  mergers. These  small  scale  experiments do  not show the  single  object nature  of the 
FFN to  have  a  significant impact on  the  results. We  note  however, that this property is crucial  for 
other procedures used  in  our pipeline  (consensus, agglomeration), which were  not applied  here, 
but which were  necessary to  obtain  good  segmentations at the  scale  of the  whole  volume. 
 

Neuron  Reconstructions in  Skeleton  Test Set 
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Supplementary  Figure 3. Qualitative  analysis of segmentation  accuracy. Different colors 
indicate  different segments. Neurons reconstructed  with  the  full  pipeline  (FFN-c) ordered  from 
largest (92%, top-left) to  shortest (0%, bottom-right) fraction  of maximum expected  run  lengths 
according  to  the  skeleton  ground  truth  test set.  
 
FFN Reconstruction  of Single  Neurite 
FILE ATTACHED: supplementary_video_1_ffn.mov 
 
Supplementary  Video 1. FFN reconstruction  of a  single  neurite  (i.e., seeded  from a  single 
voxel) in  J0126  volume.  
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