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Abstract

The advancements of AI methodologies and computing power enables automation and
propels the Industry 4.0 phenomenon. Information and data are digitized more than
ever, millions of documents are being processed every day, they are fueled by the growth
in institutions, organizations, and their supply chains. Processing documents is a time
consuming laborious task. Therefore automating data processing is a highly important task
for optimizing supply chains efficiency across all industries. Document analysis for data
extraction is an impactful field, this thesis aims to achieve the vital steps in an ideal data
extraction pipeline. Data is often stored in tables since it is a structured formats and the
user can easily associate values and attributes. Tables can contain vital information from
specifications, dimensions, cost etc. Therefore focusing on table analysis and recognition
in documents is a cornerstone to data extraction.

This thesis applies deep learning methodologies for automating the two main problems
within table analysis for data extraction; table detection and table structure detection.
Table detection is identifying and localizing the boundaries of the table. The output of the
table detection model will be inputted into the table structure detection model for struc-
ture format analysis. Therefore the output of the table detection model must have high
localization performance otherwise it would affect the rest of the data extraction pipeline.
Our table detection improves bounding box localization performance by incorporating a
Kullback–Leibler loss function that calculates the divergence between the probabilistic
distribution between ground truth and predicted bounding boxes. As well as adding a vot-
ing procedure into the non-maximum suppression step to produce better localized merged
bounding box proposals. This model improved precision of tabular detection by 1.2%
while achieving the same recall as other state-of-the-art models on the public ICDAR2013
dataset. While also achieving state-of-the-art results of 99.8% precision on the ICDAR2017
dataset. Furthermore, our model showed huge improvements espcially at higher intersec-
tion over union (IoU) thresholds; at 95% IoU an improvement of 10.9% can be seen for
ICDAR2013 dataset and an improvement of 8.4% can be seen for ICDAR2017 dataset.

Table structure detection is recognizing the internal layout of a table. Often times
researchers approach this through detecting the rows and columns. However, in order for
correct mapping of each individual cell data location in the semantic extraction step the
rows and columns would have to be combined and form a matrix, this introduces additional
degrees of error. Alternatively we propose a model that directly detects each individual
cell. Our model is an ensemble of state-of-the-art models; Hybird Task Cascade as the
detector and dual ResNeXt101 backbones arranged in a CBNet architecture. There is a
lack of quality labeled data for table cell structure detection, therefore we hand labeled the
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ICDAR2013 dataset, and we wish to establish a strong baseline for this dataset. Our model
was compared with other state-of-the-art models that excelled at table or table structure
detection. Our model yielded a precision of 89.2% and recall of 98.7% on the ICDAR2013
cell structure dataset.
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Chapter 1

Introduction

The industry 4.0 phenomenon has pushed industries to digitize documentation and
enhanced the manufacturing process [2]. Along with it, the use of Internet of Things,
smart manufacturing, cloud-based manufacturing and automated processes are becoming
more prevalent. Many areas have been enhanced to support the industry 4.0 phenomenon,
such as 5G wireless communication, Artificial Intelligence (AI) and the improvements in
computing hardware [3]. New products are being rapidly introduced at a unprecedented
pace. To support the increased throughput of product creation, supply chains are in a
position to benefit from these new automated methodologies. Industries around the world
are moving towards digital data, with the benefits of enhanced information organization
and querying. Documents can often be found in digital format or born-digital to begin with.
Millions of these digital documents are processed throughout supply chains throughout the
world. These documents cannot be automatically queried due to the fact that they are
created for human consumption without a predetermined format. Efficient processing of
these documents through software mediation will allow for complete digital transformation
([4]).

According to the industry 4.0 requirements automated document processing in supply
chains is highly desired [5]. This is because supply chains play a integral role in a com-
pany’s success [6]. Supply chains consists of upstream and downstream firms that connect
to the end consumer. The communication and sharing of information between these firms
are paramount to the success of an efficient supply chain. This information is often por-
trayed electronically in formats such as PDF, email and fax. The received data is often
unstructured and requires manual processing. Thus, efficient management of supply chains
can easily improve the time value spent within the product development cycle [7].
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Figure 1.1: Example document flow which exists throughout all industry. [1]

Document analysis consists of processing all parts of a document, this includes figures,
graphs, tables and text. Understanding tables and table structures a key aspect to au-
tomated data extraction and a crucial part of document analysis. Document extraction
can leverage the innovations in AI-based methods, mainly image recognition with deep
Convolutional Neural Networks (CNN). There are many public competition datasets that
have been created to advance the process of automating document information extraction
([8, 9, 10]).

Document table extraction is difficult due to an absence of absolute global formatting
and infinite variations of internal structure layouts. There have been several studies focused
on the detection of tables within documents utilizing deep learning-based methodologies
([11, 12, 13, 14, 15, 16, 17, 18]. However, there is much less effort on the detection table
structures and often times the table structure is categorized by rows and columns of a table
([19]). A more generalized way of recognizing table structure is by cell recognition.

Most datasheets are found as digital-born documents, however, as their internal struc-
ture and meta-data does not follow consistent structures or themes, it is more prudent to
approach them as they were scanned images rather than electronic documents. A deep
learning approach that specializes in image processing serves as a promising candidate for
table extraction. Table extraction has two parts

• First, there is table detection. Which is classification and localization of table ob-
jects. Which is the detection of the presence of a table within a document and then
generating a bounding box showing the encasing coordinates of the table boundaries.
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• Second, there is the detection of the anatomy of a table. This is done through
detection of table row and columns. By segmenting each row and column separately
and then combining the output results, specific data points can be extracted. This can
also be accomplished with cell detection where individual cells of a table is detected.
Therefore each cell will be classified and localized within a table to generate an
anatomy of the table structure.

Table detection is challenging since it requires classifying tables among surrounding text
and other figures that serve as noise. Graphs and figures are the most prominent sources
of noise, for tabular cell structure detection on tables separated by white spacing, noise is
more prevalent between the lines. Whereas detecting the structure of a table is even more
challenging due the presence of split columns or rows as well as nested tables or embedded
figures. A study by [20] showed that the deep learning-based detector Mask Region-Based
Convolutional Neural Network performed well in table detection and structure detection.
For table detection they were able to achieve a precision of 0.974 on the ICDAR2013
dataset, and for structure detection they were able to achieve a precision of 0.95. They
achieved state-of-the results and showed great promise for deep learning-based models
over heuristic based or mathematical morphology based models. Graphs and figures that
present structural features may be falsely classified as tables. Tables have an infinite
amount structures especially with heterogeneous tables. Tabular cells can be large in
volume and small in size.

The two parts of tabular information extraction are often independent, namely table
detection and table structure detection. This thesis tackles the table structure detection
in cell recognition. Deep learning approaches have been used for both parts, Convolutional
Neural Networks (CNNs) has shown great capabilities in classifying objects from images
([21, 22]). Specifically, Faster-RCNN and Mask-RCNN has shown to be state-of-the-art
detectors for many object detection tasks, it has also shown to outperform other models
specifically for table detection task ([23]). Table anatomy is often difficult for CNNs to
recognize due to the fact that rows and cells will often be only a few pixels in height, this
adds complexity for CNNs [24]. The larger filters and pooling layers within the network
works better with detailed features and suffers on smaller objects ([25]).

1.1 Motivation

Electronic datasheets within supply chains are published in great quantities and varies
greatly in formatting style. The introduction of new products keeps occurring through inge-
nuity and technological excellence, and thus new products (with new associated datasheets)
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are launched, and existing datasheets are frequently revised (and published essentially as
new datasheet documents). The sheer volume of these new supply chains product doc-
uments is becoming increasing difficult to handle with manual efforts. The difference
in formatting styles from different manufactures around the world with the lack of offi-
cial guidelines and standards is outstripping existing extraction methods that require well
structured data with access to sufficient text metadata. Indeed, as many documents are
obtained via scanning, or OCR that identified individual characters, they contain no meta-
data, and cannot be used with most commercial tools. Therefore a robust methodology
for table structure detection is both highly desired. For table detection it is vitally impor-
tant to have high localization performance for the detected bounding boxes. Important
information can easily be cropped out due to poor performing models. The evaluation
metric is used in object detection tasks rely on an Intersection over Union (IoU) value to
determine if an object is deemed detected or not. This is a comparison between the overlap
of ground truth bounding boxes and predicted bounding boxes. Researchers often test the
models at 50% IoU or an average of IoUs over different thresholds, however, verifying high
performance tabular detection results at high IoU thresholds is needed to ensure a proper
first step in a highly accurate data extraction pipeline.

For tabular structure detection, there is a lack of quality labeled data present. Recog-
nizing tabular structure is more complex due to the heterogeneous nature that tables can
take on; such as split and merged tables, as well as embedded tables. Researchers focus
on detecting the row and columns to obtain the tabular structure, however, combining
the outputs of the two classes for pin point data extraction is difficult due to the complex
structures certain tables make take on. Heterogeneous tables may have many split cells
and merged cells that create scenarios where only one element exist in a particular row or
column. These scenarios can cause trained models to overestimate or underestimate the
outer limits of that particular row and column, thus creating more room for error to occur.
The error of both row detection and column outputs would be compounded when joint to
determine exact tabular cell coordinates.

1.2 Objectives

The goal is to propel automation in document processing within supply chains. The
proposed methods should work on all digital documents whether born digital or scanned
without relying on PDF metadata. The focus is extracting content out of tables, since often
times the most crucial technical specifications and data are stored within a tabular format.
There are two distinct challenges to identifying tables and their location in documents,
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specifically detection of tables and detection of the internal structure in tables. The goal
of this study is to propose a highly accurate model for table detection that performs well
even at high IoU thresholds. As well as to propose an tabular structure detection model
that focuses on detecting tables by identifying each individual cell rather than the row and
columns for better pin point data extraction on heterogeneous tables.

1.3 Contributions

After examining related works pertaining to the realm of document analysis and table
extraction. A document analysis pipeline for data extraction was proposed. Two models
were proposed to support the proposed data extraction pipeline; one for table detection
and one for table cell structure detection.

Our main contributions can be summarized as follows;

• The first contribution is the proposal of a deep learning based object detection model
for table detection that improves bounding box localizing performance at all IoU
thresholds and especially at high thresholds of 95%. This is done by improving
the proven Faster-RCNN [26] model for table detection by incorporating the Kull-
back–Leibler loss function [27] that calculates the divergence between the probabilis-
tic distribution between ground truth and predicted bounding boxes. As well as
adding a voting procedure into the non-maximum suppression step to produce better
localized merged bounding box proposals.

• This thesis generated a benchmark for the ICDAR2013 cell structure dataset and
compared state-of-the-art detection models Mask-RCNN, Cascade-RCNN, Cascade-
Mask-RCNN and Hybird Task Cascade. Different backbone combinations were pre-
sented, namely ResNet101 [28], ResNeXt101 [29], HRNet [30]. ICDAR2013 and IC-
DAR2017 datasets were hand labeled for cell structure detection as quality labeled
data are scarce within this field. The performance metrics across IoUs of 50% up to
95% is shown for each model for better gauge of model performances.

• A deep learning based object model that focuses on tabular cell structure detection.
The outputs of the table detection model serves as the inputs of the table structure
detection model. We reduce the complexity of structure detection by only training on
the detected table region. The proposed tabular cell structure model is an ensemble
model that consists of Hybrid Task Cascade [31] and dual ResNeXt101 [29] in the
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Combination Backbone Net (CBNet) ([32]) architecture as well as the addition of
Soft-Non-Maximum-Suppression (Soft-NMS).

1.4 Thesis Outline

This thesis is comprised of six chapters. In Chapter 2 we present a literature survey
on previous works aimed to tackle the same types of problems in the field of document
analysis, with specialization in extraction of tables and table structures. In Section 2.1,
we present hand-crafted rule based and heuristic based methodologies that have previous
been proposed by researchers for document analysis. In section 2.2, we present the ma-
chine learning methodologies that have been adapted for document analysis. Often times
researchers would use a combination of heuristics to extract features and use a machine
learning classifier. In section 2.3 we present the deep learning methodologies that have
been used for table detection as well as table structure detection. Most predominantly
using CNNs and variations and improvements on CNN architectures.

In Chapter 3 we explain the deep learning methodology that applies to our experiments.
Section 3.1 gives a background and explanation of two stage RCNN detectors that we use
throughout the paper. Section 3.2 then continues with explanation of backbone networks
that serve as a crucial part of a detection pipeline. Section 3.3 explain the architecture
of ResNet and how it address key issues of degradation when utilizing deeper networks.
Section 3.4 covers the most prominent detector in the field of tabular detection, Faster-
RCNN. This model was used in our proposed table detection model as well. Section ??

covered FPNs and how they enable detection performance at different scales, they benefit
our table structure detector due to the small nature that table cells can take on. Section 3.6
explains the use of the NMS algorithm and how it integrates with the rest of the detection
pipeline.

In Chapter 4, we present our methodology to improving table detection with respect
to bounding box localization. The datasets we used are presented in Section 4.2. The
training details are then covered alongside the evaluation metric in Section 4.3. Details
on the methodology and improvements added are presented in Section 4.1. Section 4.5
concludes the table detection portion of this thesis.

In Chapter 5, we present our methodology to improving table structure detection with
focus on detecting cell location instead of row and columns for better pin point extraction
of data. The datasets we used are presented in Section 5.2. The training details are
then covered alongside the evaluation metric in Section 5.3. Details on the ensemble
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model methodology are presented in Section 5.1. Section 5.5 concludes the table structure
detection portion of this thesis.

Lastly, Chapter 6 discusses the approaches used within this thesis and summarizes the
research findings. The thesis is finalized with future directions in Section 6.1.
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Chapter 2

Literature Survey and Background

Documents are more prevalently existing in digital formats versus the traditional phys-
ical format. The documents can be created and filled digitally, scanned from physical or
filled via converting physical data. These documents can contain valuable data such as
product specification, cost, dimensions [1]. Data is often kept in organized formats such
as tables where the reader can easily access and understand the content. Tables contain
attribute value information for association with a particular key. The rows and columns of
a table can be used to group important comparison information [33]. Therefore identifying
tables within documents and understanding the table structure is vitally important to the
success of data retrieval. Automated data extraction has been extensively studied over
the years, methods for extracting tabular information range from hand crafted rule-based
methods [34, 35] to PDF-based methods [36] that utilize meta data from PDF document to
identify tables and contents. Recently, deep learning-based methods that tackles tabular
detection as a computer vision problem has shown great potential [11, 20]. The tables are
treated as objects and the the structured nature of the tables are learned, either from the
white-spacing , guiding lines or tabs. Table detection is detecting the presence of a table
within a document and providing the location of the table itself. Table structure detec-
tion is detecting the internal structure of the table, showing the location of each area that
contains content, this can be achieved through two methods. Either identifying row and
columns and then combining them both to achieve exact locations that contain content or
by identifying the individual cells. Documents that contain meta data are much easier to
work, information is stored within a structured digital data format that can be parsed and
extracted at will, this is however much more time consuming during document generation.
It would be ideal for current industrial tools such as MS Azure and AWS to reveal their
performance metrics on public competition datasets, it would enable better comparison
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between the state-of-the-art methodologies and industrial methods.

2.1 Rule Based Methods

Automating document analysis using computerized tools and techniques have been
research for decades. Analyzing documents is a tedious task that is simple for humans to
do, therefore it is a prime area for automation. One of the earliest works was presented in
1968 [37], where researchers tried to develop methods to translate physical documents to
digital documents. This required a human operator to scan papers with a joystick control,
this method proved to work with complex documents such as research journals. They
classified text by identifying white spaces above and below the text with a certain density
of black spots in the middle. They used a 780 bit shift register for scanning the text. The
register will return zero if it hits a white spot and return one, if it hits a black spot, certain
combinations will yield different numbers. They also proposed an automated method for
which a scanner is used to obtain a negative of the document for unsupervised operation.
This work propelled document analysis and established the fact that research in this sector
is needed.

The early models and methods usually rely on heuristic approaches; features and rules
were selected from an opinion basis through logical deduction. Wahl et al. [38] proposed a
methodology to classify and segment regions of text and images for digitized documents.
This was achieved through block segmentation that divides the document into subsections
based on the type of data, each section would only contain one data type. A constrained
run length algorithm was proposed for detecting long lines. A bitmap is used to map black
and white pixels in binary and depending, the bit string is applied to each line and when a
predefined threshold of adjacent similar binary inputs, the constrained run length algorithm
will replace the input with its inverse. The output is formatted in a table describing the
positions of the blocks and the respective data types.

Pyreddy et al. proposed TINTIN [39] in 1997 for table retrieval in electronic documents.
TINTIN uses a heuristic based model to separate tables from text, this is done by looking
for aligned white spaces. A data structure called the Character Alignment Graph is used
to check white spacing between contiguous text, this is used to identify gaps within blocks
of data. A certain threshold is set for white spacing between characters and if it is shown to
be above this threshold, the gap will be considered as a potential separator for a column.
The outputted product is a text table that contains the captions and headings of the
table. The heuristics used are mainly gap structure heuristics that identify large empty
spaces, alignment heuristics to check if characters of two or more lines are aligned, pattern
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regularity heuristics to separator lines from captions, differential column count heuristics
to identify the beginning of a table and differential gap structure heuristics to identify lines
that have an irregular gap alignment. TINTIN proved that simple heuristics can be used to
detect tables, it is a pioneering work that can be built upon for further improvements. With
the advent of digitization, the formats of tables are ever expanding, complex heuristics may
be needed for the vast variety of table structures available in modern times.

Jain et al. [40] propose a high performance representation scheme to convert paper
document to a specific electronic version. Those documents contains complex layouts, they
utilized skew detection as well as logical and geometrical layout analysis. Through scanning
journal papers, representation of document images is achieved by page segmentation. The
high level performance of page decomposition system is largely based on the accuracy of the
page segmentation as well as several region’s label ,e.g., rulers, images,drawings,tables and
text. Not only does this novel document model contains top-down generation information
but also can represent documents methodically such as transfer, retrieval, storage, editing
and layout analysis. Labeling, segmentation and orientation estimation are also involved
in this paper, which is different from other papers within the same field.

Kieninger and Dengel [41] presented a well-known and widely used system which is
T-Recs table recognition system. The goal of their work is to segment random documents
and is based on different level: words, sentences, paragraphs. Instead of focusing on line
detection, T-Recs is a bottom-up method that is detected by utilizing words. They start
with words and a bounding box. The boxes will be linked together if they are in an
adjacent position. If their neighbouring relation is horizontal, they will be recognized as
from the same table. A new rule is developed by authors to detect its inside structure
such as columns and rows. [41] promote the original T-Recs detection model by linking
the vertical blocks together and then generating a new table. Compared to the original
method, combine the blocks together to detect tables, their method has a higher accuracy.
T-Recs is a significant progress, which can achieve a arbitrary table detection without rely
on the lines detection.

Tabfinder, proposed by Cesarini et al. [34], they recognized the line positioning of
a table to detect table boundary coordinates within a document image. A hierarchical
representation based on the MXY tree is utilized to detect the document. To represent
the table, adjacent lines are searched by MXY tree if they are paralleled to each other. By
identifying the blank spaces and vertical lines which are the region between the parallel
lines to locate table and meet the resemblance criteria. This paper shows the capabilities
of hand-crafted rules for table detection.

Gatos et al. [35] proposed a table detector which is not dependent on any heuristics
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and can work on any document images. The method starts with character size estimation
and line estimation based on black runs processing. Continuous black pixels are connected
(black runs) and labelled to create connected components. To finalize the detection, the
authors first detect the intersection of the detected lines and remove all the lines. Then,
intersection points are checked against the alignment to conclude the table detection. This
method heavily depends on lines in the tables (both horizontal and vertical) as well as
scan quality.(developed a smart table representation for the document environment. The
document layout description and the performance of OCR can directly relate to the non-
textual content detection such as lines and tables which are continual images. To achieve
the effect, the authors pre-processed the images then detect lines and remove it horizontally
and vertically, line intersection and table are detected and reconstruction finally. The
advantages of this paper is that the author take many formats of documents such as bank
cheques, handwritten documents and scientific journals in to consideration.)

Linmen and Xiong [42] introduced a new path representation and analysis of table of
contents regions depending on its relevant context. The authors combined layout analysis
and natural language processing to promote the tables of contents detection. Different from
other works that need machine leaning models for individual documents and only focus
on the table of contents without take other contents at different pages into account. The
relation between text contents as well as its specific page numbers are integrated together
to improve its detection accuracy. Besides, the whole content of document’ s information
is adequate utilized for the wide variety of documents’ detection without relying on the
learning models for specific documents. The reason to do so is to leverage the constant
association between table of contents and other pages’ content from same document. A
high performance algorithm based on dynamic tree dictionary ,text chunking and table
of content graph description is proposed to detect hidden links which are repetitive in
the table or insinuated in the phrases. The primary steps of hidden links detection: set
up table of content pages’ image description and tree dictionary for every participant;
through matching the association with the table of contents and its other pages to divide
the candidate page into text chunking; calculate the core of each table of contents page
candidate on account of text mining as well as numbers of pages; confirmed candidate table
of content page will be associate to the specific articles; greater than a given threshold’s
title-page-core will be determined as a title page.

TARTAR [43] was able to transform arbitrary tables into logical form and by trans-
forming them into frames. A certain logical step is given: (1)normalize and clean the
tables which is to obtain a description and utilized in the subsequent steps. Note that this
description is different from the encoding type of input document; (2)accomplish structure
detection include token type hierarchy, initial assignment of functional type and proba-
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bilities, detecting logical table orientation and discovery and leveling of regions;(3) build
functional table model; (4)enriching of functional table model include discovery semantic
labels and mapping functional table model into a frame; step2-4 are repeated until the se-
mantic level of conversion process is reached. Each F-logical frame which associated with
a specific input table will be system returned as a output.

Liu et al. (2009) [44] proposed two algorithms to solve a common problem which is
generated by PDF text extraction tools; the error of text sequencing. Both algorithms are
enabling extraction of table content where it is possible to extract sparse lines’ sequences.
Algorithm 1 has two steps: resorting the cross-column and the within-column. The author
simply compared the width of document with the non-spare lines’ average length. The
algorithm 2 has four steps: fully acquire the sparse lines’ non-repeated Y-axis values in a
given area; rank these Y-axis values from largest to smallest; sort the sparse lines in the
specific area based on the ranked Y-axis values; return all the sparse lines in that area in
a sorted sequence.

Certain methods rely heavily on PDF metadata to achieve tabular detection. Fang et
al. [12] uses graphic ruling lines and white spaces as visual separators. They were able to
detect tabular regions and table columns. PDF-TREX ([36]) uses a bottom-up heuristics
approach to recognize tables within PDF documents. They utilize spatial features to group
and align the content elements of a PDF document. The table is then given as a set of cells
associated with 2-dimensional coordinates. PDF-based approaches are highly effective for
documents such as research papers that have meta data associated with them.

2.2 Machine Learning Methods

In recent years, machine learning and deep learning methodologies are gaining traction
propelled by the improvements in processing power.

One of the early works that introduced machine learning for document analysis is Wang
et al. [45]. They proposed a decision tree classification method to identify zones where
images, text and tables are present. This can be used within a document analysis pipeline
to divide the types of data and then process each type with a following methodology. Wang
et al. [46] later presented a paper that utilizes machine learning for detection of tables
on web pages. They used continuous-value decision trees [47] as well as SVM [48] with
layout features, word group features and content type features to classify whether tables
are genuine or non-genuine tables. The content type features included the average number
of columns, standard deviation of number of columns and geometric data relating to the
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table size and cell size. The Content type features contains the different types of data
present in the tables. Word group features removes commonly occurring words and maps
the remaining into a vector, association with certain words represent whether a table is
genuine or non-genuine. The definition of genuine and non-genuine table is a bit ambiguous
in this work. It does not focus on locating tables, more so it focuses on analyzing tables
to classify whether the contents in the table is useful or not.

Shetty et al. [49] used CRF [50] for labeling extracted content in scanned documents.
They mainly focused on identifying printed words, handwritting and noise. Their method
performs pseudo-likelihood estimates for the CRF model parameters through the probabil-
ity of the labels under Gibbs sampling [51]. The model is trained using conjugate gradient
descent [52]. Although this work does not directly classify tables, it does show the poten-
tial of utilizing CRF models for document analysis and can be adapted to include other
content beyond the three that they selected.

Ng et al. [53] classified tables as well as rows and column within free texts such as wall
street journal new documents. They utilized back-propagation with C4.5 decision trees for
classifier generation. Their focus is first detecting the boundaries of the table and then
the row and columns, this is accomplished by detecting horizontal and vertical lines. The
leftmost and rightmost vertical lines along with the topmost and bottom-most horizontal
line makes the boundaries of the table, and the row and column structure is deducted
with lines that are presented within the boundary. This methodology falls in line with
our approach of first detecting the presence of a table and then determining the internal
structure of the table. However, modern tables with more complex structures or tables
that are solely separated by white spaces may prove challenging for this method.

Silva proposed HMMs for detecting tables in text for document analysis [54]. Their
methodology is to group potential lines into tables by leveraging probabilistic charac-
teristics of table components. Their work showed that independantly trained document
structure detectors can be combined optimally by utilizing HMM to balance them.

Kasar et al. [55] proposed a method that uses a combination of logical heuristic methods
with a machine learning classifer to detect tabular regions. Their method solely relies on
the separator lines between rows and columns present in the input image. The intersection
of the horizontal and vertical separator lines are used to generate a set of 26 low level
features to feed into a SVM classifier to identify whether a table is present or not. This
study is one of the first to use SVM for tabular detection, however the performance is much
more heavily dependant on the heuristic approaches they used to obtain the horizontal and
vertical lines.

Distant Supervision was proposed by Fan and Kim [56] for detecting table regions
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in PDF documents. Distant Supervision uses heuristic annotation to generate a large
database of weakly labeled training data. Three classifiers are then used to jointly vote on
whether the proposed region is a table or not; Naives Bayes, Logistic Regression and SVM
are used. They solve the problem of labeled data through using weakly labeled data and
they compensates the noise in the data by utilizing an ensemble model of three classifiers.

Cermine was proposed by Tkaczyk et al. [57] for extracting structured metadata from
scientific documents. Cermine uses PDF metadata to determine sections in the document.
The sections are then classified into several classes, namely, content, references, metadata.
They use a SVM classifier that has lexical, sequential, geometric , formatting and heuristic
feature inputs. Overall the two step process of determining zones and then classifying the
zones of a document is a trend that is seen throughout other research papers. This lowers
the complexity of the problem and it is also similar to the methodology that our thesis
proposes, first identifying the presence and location of a table then specifically focus on
that location for understanding the table internal structure.

2.3 Deep Learning Methods

After the deep learning breakthrough in the computer vision field [28], the researches
that work on document analysis from the document images began to adopt deep learning
to their solutions. Deep learning methodologies for image classification has been propelled
through the advent of CNNs. With the support of improved processing power from GPUs
[58] showed that capabilities of image classification, their work propelled deep learning
methodologies for computer vision problems. Ever since then, researchers have also been
utilizing deep learning for tabular detection tasks in document analysis. Deep learning is
an image based approach that takes images as an input rather than taking text files as an
input. Image-based approaches are more generalized as such it can be used to detect all
documents and is not limited to PDF documents or excel documents, specifically scanned
documents that do not have proper format.

Hao et al. [59] proposed one of the earlier works on integrating CNNs for tabular
detection. Their work focuses on frist proposaling regions that may contain tables, the
types of are split into tables with either horizontal rulling lines, vertical ruling lines and
no ruling lines. These proposed regions are then fed to the CNN for classification. Their
method outperformed other heuristic based approaches on the ICDAR 2013 dataset [8].
However, their method is only utilizing the CNN as a classifer, whereas the central part
of their methodology relies on the heuristics methods to obtain the proposed regions for
input.
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DeepDeSRT was proposed by Schreiber et al. [11], it is an end-to-end model that
tackles table detection as well as table structure detection. This is one of the first works
that solely depends on deep learning and does not include any heuristic methods. The
input is a document image and the output is the output is the detected table regions and
tabular structure row and columns. The authors applied transfer learning to deal with
the data scarcity. Tabular structure data is vastly limited within the document analysis
domain. They implemented Faster-RCNN [26] for table detection and FCN [60] for row
and column detection. Their work demonstrated the capabilities of end-to-end use of deep
learning methodologies in the document analysis field. Faster-RCNN is a state-of-the-art
deep learning architecture architecture that has excelled at many object detection tasks
[61, 62, 63]. Variations of Faster-RCNN have been used widely for document analysis
([23, 14, 64, 65, 20, 66, 67, 17]). Faster-RCNN ([26]) was first shown to perform well for
table detection by Gilani et al. ([17]). They augmented the input images to look more
natural with three distance metrics to show the dimensions in the images. These metrics
include the distance between whitespaces and texts. This was on of the earlier works that
used image pre-processing for tabular detection performance improvements.

Arif and Shafait [67] adopted Faster-RCNN with their own methodology, they prepro-
cessed different parts of a document by color coding foreground and background features
and tackled the table detection as a scene recognition problem. They proposed Faster-
RCNN with a combining corner method that groups detected corners through coordinate
matching and filters out unreliable corners. The bounding boxes are refined based on the
corresponding corner group and this improves pixel-level precision of the table boundary.

Traquair et al. [14] showed that Faster-RCNN performs well on table recognition with
only bounding box annotations. Kara et al. [23] utilized Mask-RCNN which adds an
additional masking layer to Faster-RCNN to improve instance segmentation to perform
table structure detection on rows and columns. In another work, Kara et al.[64] added a
judging module to the detection pipeline of Mask-RCNN to show improvements to table
detection, structure detection and an end-to-end detection.

DeCNT was proposed by [65] to use a novel combination of Faster-RCNN/FPN with
deformable convolution networks. Specifically deformable ResNet 101 with deformable
ROI pooling within faster-rcnn. Deformable convolutions allows for extra offsets in the
convolutional sliding window appraoch to dynamically adjust its receptive field based on
the surrounding location and target object. The offsets are generated by a separate con-
volutional layer, they are implemented through bi-linear interpolation. DeepTabStR ([68])
also proposed deformable Faster-RCNN with deformable ResNet101.

We [69] introduced a Kullback–Leibler (KL) Loss function version of Mask-RCNN with
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a variance voting non-maximum suppression post processing step to improve the precision
to 0.987 on the ICDAR2013 dataset. Their work has shown to improve the detection
performance at high Intersection over Union(IoU) values of 95%. Therefore generating a
model with accurate bounding box predictions of the detected table.

TableNet was proposed by [70] to utilize FCN with VGG19 as a backbone for table
detection and row and column structure detection. CascadeTabNet was proposed by [18]
to utilize Cascade-Mask-RCNN with High Resolution network (HRNet) to achieve a 1.0
F1 Score on the ICDAR2013 table detection dataset, showing higher results than TableNet
and DeepDeSRT. Cascade-Mask-RCNN is the combination of Cascade RCNN and Mask-
RCNN that includes the cascading architecture and masking layer to improve detection
performance and instance segmentation.

Li et al. [71] proposed a combination of unsupervised clustering with CNNs for POD.
They use unsupervised clustering on line regions to classify them into specific objects.
First, Binarization is done on the document, then column regions are segmented and line
regions are extracted. The regions belonging to the same cluster are merged to obtain
objects. CRF model is used to classify the line regions into specific objects such as tables,
figures, formulas and text lines. Figure regions that contain more than one figure is split
with heuristic based approaches. The classified regions are then fed to a CNN to verify
the previous classifications. Their model achieved the highest performance metric results
on the ICDAR 2017 POD dataset [72].

Table 2.1: Overview of document analysis and table extraction research covered.

Rule-Based Machine Learning-Based Deep-Learning-based
[37, 38, 39, 40, 41, 34, 35, 42] [45, 46, 49, 53, 54] [59, 11, 23, 14, 64, 65, 67]

[43, 44, 12, 36] [55, 56, 57] [17, 20, 65, 69, 70, 71, 18]

Deep learning shows promise to be more comprehensive and generalize better to the
ever varying document formats. Deep learning is superior to PDF-based methodology
since it does not rely on metadata, as well as the fact that all document formats are in-
capsulated due to the input is image based [1]. The augmentation techniques that can be
applied within deep learning allows for the model to adapt better to scanned images. Ma-
chine learning methods are often combined with heuristic methods for a complete tabular
extraction pipeline [55, 56, 57], however the model is always limited by the hand crafted
heuristic rules.
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Chapter 3

Methodologies

Documents are constantly being processed within supply chains in various industries
throughout the globe. Within those documents, often times the most important content is
stored in tabular format. Processing documents for transfer of knowledge or for commu-
nication is a labour intensive and error prone process. Therefore an automated technique
for supply chain document processing is highly desired. Deep learning approaches show
promise to deliver an end-to-end extraction model. In this thesis, we want to focus on de-
tection of tables and table structures to automate document processing. Figure 5.1 shows
the proposed document analysis pipeline for data extraction. This thesis supports the
proposed pipeline by proposing the architecture and deep learning methods for classifying
and localizing tables and their respective internal structures. This thesis utilizes state-of-
the-art deep learning approaches to improve localization performance for table detection as
well as overall performance metrics in recall and precision. For table structure detection,
cell structure detection is proposed over the traditional row and column detection methods
for better data extraction and performance on heterogeneous table layouts. The tables
are first detected with our table detection model, then the detected table cropped based
on the bounding box coordinates. The table structure detector then classifies and locates
the individual cell locations on the cropped table. Identifying the presence of a table is
an easier task and more well studied task when compared to table structure detection.
Table detection also has many well-labled public datasets to support research in that field,
however, tabular structure detection is far more complex due to the possibilities of different
table layouts. By focusing on each task individually, we are reducing the complexity of the
problem. Also, since table detection is a simpler task, a lightweight model can be used,
whereas a larger complex model is needed for tabular structure detection. Splitting the
problem into two distinct steps allows us to narrow the problem down and reduce noise
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within the problems. We assume 100% accuracy in table detection stage to ensure that the
performance of our structural detection model is strictly based on its capability to capture
tabular cells. As with the nature of tabular cell detection, each individual piece of content
can be understood as a cell, therefore if the whole document is used as an input then each
individual text element can serve as noise to the cell detection model. Deep learning models
enables the model to learn the architecture that forms a table, in comparison to heuristic
methods that that dependant on hand-crafted rules to pre-determine certain features of a
table.

Figure 3.1: Document Analysis pipeline for Data Extraction

This section covers the main parts of the deep learning models that was used to ac-
complish table and table structure detection. Details on specific methodologies for table
detection and table structure detection is covered in Chapter 4 and Chapter 5 respectively.

3.1 Regional Convolutional Neural Networks

Object detection relates to classification and localization of the of the classified object.
State of the art detection algorithms are currently all based on two stage detection [73][74].
Two stage-detectors consists of a feature extractor backbone, regional proposal stage and
detector, they are categorized as RCNNs. The difference between a two stage versus one
stage detector is the additional RPN stage. An example of a two stage RCNN detector
can be seen in figure 3.2. The RPN adds an additional stage to the detection pipeline
by providing the detector with regional proposals that proposes regions to focus on for
the detector, this simplifies the detection task and yields higher accuracies [75]. Whereas
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Figure 3.2: Two Stage RCNN detector

one-stage detectors only consists of the detector and backbone, the task is treated as a
regression problem that attempts classify and localize the input directly [76, 77, 78].

RCNNs were first proposed by Girshick et al. in 2014 [75] and has found tremendous
success in the field of computer vision. The state-of-the-art models at the time were
large ensemble models and lacked innovation in detection sturcture, later on the RCNN
archetcture dominated the computer vision scene with models such as Fast-RCNN [79],
Faster-RCNN [26], Mask-RCNN [22], Cascade-RCNN [80, 81], Grid-RCNN [82], Libra-
RCNN [83] , and Dynamic-RCNN [84]. The key contributions from [75] are the addition of
the regional proposals within the detection pipeline for a new category of CNN architecture
as well as proving the effectiveness of leveraging transfer learning in tasks with scarce
labeled data. Transfer learning is a technique that leverages a backbone feature extractor
that is pre-trained a large dataset such as the ImageNet Dataset [85]. The pretrained
model is inputted and fine-tuned with the limited amount of labeled data to orient the
new model to be biased for the chosen application. [86] showed that RCNNs are great for
detecting smaller objects in computer vision problems, which is beneficial for our approach
to table structure detection, where we are focused on detecting cell regions.
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3.2 Backbones

Backbone Networks are an integral part of a detection pipeline, they serve as feature ex-
tractors and provides the detection model with a feature map. Fully training an object de-
tection model would require an enormous amount of quality labeled data, which reserchers
often do not have. In recent years, the transfer learning approach of utilizing supervised
pre-training and then performing application based fine-tuning has proven to be the widely
accepted paradigm. Modern state-of-the-art backbones are all pre-trained on versions of
the ImageNet dataset, such as VGG [87] , ResNet [28] , ResNeXt [29] and high resolution
net [30]. These backbones are initially designed for image classification tasks but have been
adopted for object detection to extract basic features. Studies have shown that backbones
with more layers provide a richer feature map and improve detection performance [88, 32].
This can be seen through the performance of ResNet50, ResNet101, ResNet152. However,
the increased performance comes at the cost of computational complexity. The backbone
is one of the areas that was focused on for improving tabular structure detection. This
was done by not only utilizing a more complex backbone, but also using a novel backbone
integration structure that combining multiple identical backbones.

3.3 ResNet

The trend of larger and deep networks was influenced by [58]. Ever since then, networks
are becoming larger to improve performance metrics. Residual Networks [28] was proposed
to solve the problem of vanishing gradients and accuracy reduction when more layers are
added to a network. This is solved by incorporating shortcut connections. Shortcut con-
nections allow for comparisons of residual networks that have the same characteristics of
depth, width and number of parameters while not introducing any additional computa-
tional complexity, they are a connection that allows skipping multiple layers. The stacked
layers were used to fit a residual mapping instead of expecting the stacked layers to fit ac-
cording to the original mapping. Suppose the underlying mapping is H(x). By fitting the
layers to a residual mapping, it can be denoted as F(x)=H(x)-x. Then the original underly-
ing mapping will be transformed into F(x)+x. It would then be more simple to optimize the
residual mapping. F(x)+x is accomplished through shortcut connections of feed-forward
neural networks. He et al. [28] showed that residual networks solve the degradation prob-
lem, is easy to optimize compared to traditional networks and continuously improve in
accuracy even at significantly large depths of over 100 layers.

A 50 layer ResNet model (ResNet50) is used for the table detection task in this thesis.
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The archetecture of ResNet50 that was used in this thesis is shown in figure 3.3. There
are strides associated with each convolution block, respectivly conv2, conv3, conv4, conv5
has strides 4,8,16,32.

Figure 3.3: ResNet50 Architecture

3.4 Faster-RCNN

Faster-RCNN is an improvement on the RCNN category of detectors by solving key
issues in CNN based detection algorithms. A regional proposal method that was commonly
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used was selective search [89], it did not have learning capabilities and it had a slow pro-
cessing speed of two images per second. Faster-RCNN proposed RPN that is a deep neural
network that shares layers with the detector. They also proposed the concept of anchor
bounding boxes that would enable object detections at varied ratios and scales. Both the
RPN and detector takes in the feature map that is generated by the backbone network.
The RPN outputs regional proposals and provides confidence scores of the detected re-
gions. During this process, the RPN also performs regression on coordinate localization.
The confidence score represents how likely the detected region belongs to the predicted
class. Faster-RCNN shares convolutional layers with the detector which is adopted from
Fast-RCNN [79], this process enables faster processing times.

The Faster-RCNN pipeline consists of extracting a feature map with the backbone, then
scoring/refining the proposals with a regressor in the Regional Proposal Network (RPN),
and then finally merging multiple output candidate bounding boxes that belong to the
same object with a non-maximum suppression (NMS) algorithm, this is then fed into the
detector portion of the Faster-RCNN and undergoes classification and regression again,
following with another NMS processing.

The feature map from the backbone is given to the RPN, a small convolutional network
that uses the sliding window approach goes over the feature map. We can assume the input
of the small network is of size n x n. Each of the sliding windows will then be mapped to
a lower-dimensional feature that is sent to the regression and classification fully connected
layers. The RPN architecture can be found in figure 3.4.

The anchors within the RPN allows for production of proposals at different ratios and
scales. A Tunable parameter k is given to limit the amount of proposals. The regression
layer outputs 4k coordinate proposals and the classification layer outputs 2k proposals
with confidence scores. The anchors will have predetermined scales and ratios for each
location. The default is 3 scales and ratio of 1:1, 1:2 and 2:1, making 9 total anchors at
each location. Assume the feature map is W x H, the total anchors to be placed would
be W x H x ratios x scales. The scaling capabilities enables the use of feature pyramid
networks, which provide higher resolution outputs for improved performance metrics.

The loss function for an image is shown in equation 3.1. The classifcation loss Lcls is
the log over the object and non-object classes. The regression loss is used for bounding
box localization, it is shown in equation 3.2. The R stands for the smooth L1 loss defined
in Fast-RCNN [79].
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Figure 3.4: RPN Architecture
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The parameterization for regression is given by the equation 3.3. Where x and y denote
the center location of the bounding box and the w and h denote the width and height. The
predicted box is given by x, the anchor box is denoted by xa the ground truth is denoted
by x∗, this format also applies to y, w, h.

tx = (x− xa)/wa, ty = (y − ya)/ha,

tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y1 = (y∗1 − y1a)/ha,

t∗w = log(w ∗ /wa), t∗h = log(h∗/ha),

(3.3)

Faster-RCNN and its adapted modified versions has been a state-of-the-art detector for
many object detection applications. This is also the case in the tabular detection domain.
In Chapter 4 we improve upon the base Faster-RCNN model to improve bounding box
localization for table detection. Table detection is a simpler task than table structure
detection therefore a lightweight robust model is better suited. State-of-the-art models have
already achieved success with Faster-rcnn in table detection, however, their performance
at higher IoU thresholds are not sufficient for industrial deployment. For the purpose of
high precision data extraction, the model would require a high degree of IoU overlap to
ensure that important information is not cropped out.

3.5 FPN

FPN was proposed by lin et al. [90] as a solution to detecting objects at different
scales. This have been a widely studied problem, one solution is manually scaling the
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images and running the detection algorithm for each scale [91]. This method can be
observed in early works that utilized heuristic image processing methods like in [92, 93].
This allowed the model to be able to perform well irrespective to the scale of the image,
however, it increases computational time since the detection is performed many times in
succession. Even though CNNs inheretly perform well regarding to detecting objects at
different scales. [90] showed that performance gains can be possible by using pyramidal
shaped feature maps. For our domain, document analysis, tables are larger objects and can
be detected regardless of scale, however, detecting smaller objects such as the cells within
a table is more challenging. This is due to the low resolution and noisy representation of
smaller objects [94].

FPNs benefit from the pyramidal stucture to combine low-level features and high-level
features semantically to generate a top-down architecture for object detection at different
scales. There are two major parts to the FPN, a bottom-up and top-down architecture.
The feed-forward operation shown in regular convolutional neural networks serves as the
bottom-up structure basis. The layers that does not change the input size are grouped into
the same level. The last layer in each group is used for the bottom-up architecture. For
example, the ResNet50 backbone structure would consist of using the last layer of conv2,
conv3, conv4, conv5 to create the bottom-up architecture. Each of these levels are then
connected to a top-down architecture of feature maps and merged together. The features
are up-scaled before adding them to the upper layers for merging.

Figure 3.5 shows the architecture of the FPN. The left side shows the bottom-up level
structure and the right side shows the top-down structure.

Figure 3.5: FPN Architecture

25



3.6 Non-Maximum-Suppression

NMS has been an integral part of state of the art computer vision applications [95, 96,
97, 98]. A certain threshold of candidate bounding box proposals are set for both the RPN
and the detector. NMS is a post processing algorithm that merges the proposed bounding
boxes that belong to a single detection. Soft NMS [96] and learning NMS [99] have been
shown to improve over standard NMS results. Standard NMS eliminates candidate boxes
with lower classification scores while learning NMS focuses on the bounding box scores
to improve localization performance. Instead of eliminating objects, soft-NMS scales the
detection scores of an object as a function of overlap with the ground-truth bounding boxes,
this has shown to improve mean average precision of Faster-RCNN by 1.7% on PASCAL
VOC 2007 [96].
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Chapter 4

Table Detection

Table detection has been a well studied problem. There are many methods available,
such as rule-based methods, pdf-based methods and deep learning based methods. Recently
deep learning based methods have proven to be more prevalent in the field of document
table detection [20]. Researchers often focus on classification capabilities in the application
of table detection and have reached F1 scores of 97.8 [100]. However, the localization per-
formance of the respective deep learning models have not been studied thoroughly. Often
times researchers focus on evaluating their results at 50% IoU or an average value ranging
over multiple IoU thresholds, 50% (losely localized object) to 100% (perfectly localized
object) [101]. Improving bounding box localization performance is vital for information
extraction. The prevention of crucial data being cropped out due to a poor performing
detector is paramount to automating data extraction. By improving current detectors in
localization performance we can facilitate an end-to-end model that aims to derive semantic
meaning from the extracted data.

We propose a deep learning based solution for classifying and localizing tables within
document images. The application of this spans from born-digital to scanned images and
is generalized for a wide range of documents, ranging from conference papers, journals,
newpapers, datasheets and webpages. We transform the documents to an image format
and tackle it as a computer vision challenge. Taking images as an input also makes our
method more universal, allowing it to work with scanned images or documents without
metadata. We achieved state of the art results on public and private datasets as well as
greatly improve localization performance at higher IoU thresholds of 95%.

Tabular detection accuracy is not always correlated to the localization performance of
the detected bounding boxes. Valuable information may be cropped out due to in accurate

27



localization accuracy, which is detrimental to information extraction systems. Therefore we
propose Faster-RCNN with a KL Loss function. Transfer learning was utilized to train our
deep neural network. The ResNet-50 backbone was pre-trained on the ImageNet dataset.
The dataset used for training is a combination of many public datasets and a private
dataset. We also introduce an additional post processing step that utilizes the bounding
box variances acquired from the KL loss function to initiate a voting procedure during
NMS.

This chapter first reviews the datasets used in Section 4.2. The methodology used will
then be covered in Section 4.1. Afterwards, the training details will be covered in Section
4.3. The results would then be shown in Section 4.4. Finally, the conclusion will be made
in Section 4.5.

4.1 Methods

In this section, we present the use of Faster-RCNN, a state-of-the-art two stage object
detector and our proposal to improve the tabular localization performance under Faster-
RCNN. Two-stage object detection models generate multiple initial candidate bounding
box proposals which thus makes it more accurate in comparison to single-stage detectors.
Introduction of KL Loss function into Faster-RCNN-based object detection aims to improve
its detection capabilities. Then an additional post processing variance voting step is added
to improve bounding box localization performance. Fig. 4.1 illustrates our additions to
the original Faster-RCNN model [73].

4.1.1 Faster-RCNN with KL Loss Function

Faster-RCNN has proven to be a strong candidate for table detection tasks [14]. Faster-
RCNN improves upon Fast-RCNN with the addition of Regional Proposal Networks that
can share convolutional layers with the backbone feature extractor. This in turn acceler-
ates the running time. Faster-RCNN has a classification loss function and bounding box
regression loss function. The classification loss function is used to classify whether a table
is present within the document while the bounding box regression loss function is used to
refine bounding box predictions and improve localization performance.

The classification loss is a logarithmic loss over the background and foreground objects,
it is adopted from [73] is shown in (4.1).
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Table 4.1: Table of Notation

i Index of an anchor in a mini-batch i
pi predicted probability of anchor i being

an object
p∗i Ground-truth label for pi
ti A vector representing coordinates of

the predicted bounding box
t∗i A vector representing coordinates of

the ground truth box associated with
a positive anchor

Lcls Classification loss
Lreg Regression loss
x1, y1, x2, y2 predicted corner coordinates
x1∗, y1∗, x2∗, y2∗ ground truth corner coordinates
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L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗

i )

+ λ
1

Nreg

∑

i

p∗iLreg(ti, t
∗

i ).
(4.1)

The regression loss is originally the smooth-L1 loss function used in [73, 79]. It doesn’t
consider ambiguous ground truth bounding boxes within a dataset and in turn may result
in lower accuracy when the classification score is low [27].

The KL loss function is proposed to accomplish bounding box regression as well as
localization uncertainty. This is achieved by modeling the ground-truth bounding boxes
as a Gaussian distribution function.

The coordinates are parameterized by a 4-dimensional vector (x1, y1, x2, y2). Each di-
mension represents a boundary location of the bounding box shown in (4.2)

tx1 = (x1 − x1a)/wa, ty1 = (y1 − y1a)/ha,

tx2 = (x2 − x2a)/wa, ty2 = (y2 − y2a)/ha,

t∗x1 = (x∗

1 − x1a)/wa, t∗y1 = (y∗1 − y1a)/ha,

t∗x2 = (x∗

2 − x2a)/wa, t∗y2 = (y∗2 − y2a)/ha,

(4.2)

The above equation formulates the offsets of the predicted bounding box coordinates
and ground-truth bounding box coordinates. tx1, tx2, ty1, ty2 is the predicted bounding
box coordinates while t∗x1, t

∗

x2, t
∗

y1, t
∗

y2 is the ground-truth bounding box coordinates.

The predicted bounding boxes can be modeled as a single variate Gaussian distribution
because we assume the coordinates are independent. Shown in Equation 4.3.

PΘ(x) =
1√

2πσ2
e−

(x−xe)
2

2σ2 (4.3)

The ground truth bounding boxes can also be modeled as a Gaussian distribution,
however since ground truth bounding boxes have a variance of zero, it can be modeled as
a Dirac Delta function. shown in Equation 4.4.

PD = δ(x− xg) (4.4)
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Figure 4.1: Faster-RCNN architecture with the addition of KL Loss and variance voting
with Soft-NMS

The KL divergence between these probability distribution functions can serve as the
regression loss shown in Equation (4.5). This model has proven to be able to predict larger
variances which in turn can produce lower loss values from He et al [27]. If there are
ambiguous bounding boxes, a smaller loss will be generated. The variance learned from
the KL loss function gives the capability to perform the proposed post processing variance
voting step.

Lreg = DKL(PD(x)||PΣ(x)) (4.5)

We chose Faster-RCNN because it is widely adopted since the first publication of the
architecture, and it has been used in many tasks and domains such as face detection
[102], medical chart interpretation [103, 104], and many other abstract object detection
challenges as presented in [105]. The wide application of Faster-RCNN proves its suitability
for transfer learning and domain adaptation. A comparison study by Traquair et al [106]
reports that for tabular detection Faster-RCNN achieves high recall and precision values
of 0.981 and 0.974, respectively on ICDAR2013 dataset. We use Faster-RCNN with the
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ResNet-50 backbone feature extractor. ResNet-50 is trained more than a million images
from the ImageNet database. ResNet-50 is 50 layers deep and can classify 1000 object
classes [107].

4.1.2 Variance Voting

Variance voting is a method that votes on the location of a candidate bounding box
in relation to predicted variances of neighboring bounding boxes. Boxes are given higher
weights if it has lower variances and has a high IoU with the ground truth box. Variance
voting was used by He et al [27] to improve bounding box localization performance of the
COCO dataset. The KL Loss function acquires the variances of the neighboring bounding
boxes. This is then followed by voting on the learned variances with perspective to the
neighboring bounding boxes. Voting on the perspective bounding boxes with the selection
process of soft-NMS can generate new positions. The new positions can be calculated
according to the distance and variance to the ground truth bounding box. The formula is
presented in (4.6) and (4.7)

pi = e(1−IoU(bi,b))
2/σt (4.6)

The probability of a given candidate coordinate is calculated with respective of its IoU.

x =
Σipixi/σ

2
x,i

Σipi/σ2
x,i

(4.7)

The new location of the coordinate is then calculated. It is worth to note that this
method focuses on localization confidence therefore it does not consider classification score
since the two are not directly related. This method improves the localization accuracy of
the final output bounding box, resulting in a higher IoU overlap with the ground truth
location.

4.2 Datasets

The datasets used are a mixture of private and public datasets. Deep learning models
benefit from large amounts of training data. This ensures the final model is more gen-
eralized and works on tabular styles that it has never encountered. The public datasets
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are Marmot1, ICDAR-2017 dataset2, ICDAR-2013 Table Competition Test Dataset3. The
private dataset was supplied by Lytica Inc, which we call the Lytica dataset. The private
dataset was provided by our industry partners at Lytica Inc4, a company based in Kanata,
Ontario, Canada that specializes in data analytics and supply chain optimization. We can
call this private dataset the Lytica Dataset, which was also used in [106, 20].

4.2.1 ICDAR2013

The International Conference on Document Analysis and Recognition (ICDAR) is the
flagship conference in the field of document analysis. The 2013 ICDAR table detection
dataset has been used widely as a benchmark for table detection. This dataset includes
government documents from the websites of the European Union and United States. These
are regulated documents therefore the table structure does not differentiate too much
between each other. This dataset contains 238 images.

4.2.2 ICDAR2017

The is dataset that was given in the 2017 ICDAR conference, specifically for Page
Object Detection. This dataset is much larger than ICDAR2013 dataset, it has 2417
images. It consists of documemnts from academic papers of CiteSeer. A wide spread of
page layout styles of tables can be seen within this dataset.

Initially it was created for four detection challenges; formulae, table, figure and page
object detection. However, we focus only on the table detection portion of the dataset.
The challenges of this dataset is that the other page objects, such as Figures and Graphs
can often be classified as tables. A subset of the dataset is used for training and testing,
specifically images that include tables; 200 images were used for testing and 617 images
were used for training.

4.2.3 Marmot

The Marmot dataset is a popular public dataset for table detection published by Peking
University. The dataset contains 2000 images in which 1000 contains tables, of the remain-

1http://www.icst.pku.edu.cn/cpdp/data/marmot data.htm
2http://www.icst.pku.edu.cn/cpdp/ICDAR2017 PODCompetition/dataset.html
3https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition/
4https://www.lytica.com/
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ing 1000 tables, 500 are in English and 500 are in Chinese. The English pages are from
CiteSeer spanning from 1500 conference and journal papers from 1970 to 2011. While the
Chinese pages were selected from a range of 120 e-books provided by Founder Apabi library
in which less than 15 pages are selected from each e-book.

4.2.4 UNLV

The UNLV dataset consists of 2889 documents and was published by the University
of Nevada located in Las Vegas. The document sources ranges from magazines, business
letters and reports. The subset of the dataset that includes tables consists of 424 images.
This dataset contains scanned images, which is a target category that our model is aiming
to cover.

4.2.5 Lytica

The Lytica dataset was provided by Lytica Inc, it consists of 2323 tabular images in
total. The contents of this dataset was gathered from various supply chain manufactures
around the world, it mostly contains electronic component datasheets. This dataset is
complex due to the varied styles of tables produced by the diverse manufacturers. This
dataset also contains a multitude of heterogenous tables, such as having tables embedded
within the row of a larger table. The diverse nature of this dataset allows for the trained
model to be more generalized, since many table formats that are present in this dataset
are not present in the public datasets. Furthermore, by utilizing industrial documents as
a cornerstone, the trained model will be geared more so for commercial use.

4.3 Training Details

For training we use 8 Tesla K80s, images are pre-scaled to 600 by 1000 pixels. The
loss is monitored to prevent over-fitting. The learning rate is set to 0.02 based on the
scaled value recommended by Detectron [108]. The model is trained to 17500 iterations
which translates to 28 epochs. Figure 4.2 shows the learning curve for our trained model,
it shows that at 17500 iterations the model shows a clear convergence. Each dataset is
split into 80% training and 20% testing partitions. The training partitions of each dataset
is combined to form a final training dataset. A singular model is trained with this final
training dataset. This model is then tested with the testing partition of each dataset.
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Figure 4.2: Loss function (i.e. learning curve) displaying training loss over iterations

A combination of IoU, precision and recall is used to evaluate the model. The σt for
Variance voting is set to 0.02 according to [27].

For predicted bounding box (P ) and ground truth bounding box (Gt), IoU can be
described as;

IoU(P,Gt) =
P ∩Gt

P ∪Gt
(4.8)

IoU is the intersection area of the candidate bounding box with the ground truth bounding
box over the total spanned area of the ground truth and candidate bounding boxes.

The model is tested at different IoU thresholds of 0.5 to 0.95 in increments of 0.05 .
If the detection results are higher than the set threshold the table is deemed detected.
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Therefore recall and precision values are often lower as IoU thresholds improves.

4.4 Results

Figure 4.3: Precision values for ICDAR2017 dataset from IoU 50% to 95%

The Lytica dataset contains a wide array of tabular images for electronic components.
It is diverse in it’s tabular structure since it contains different electronic components from
multiple manufactures. See Appendix, Figures A.1 A.2 A.3 A.4 show the example output
of our Faster-RCNN model with KL Loss and variance voting on the Lytica dataset. It
can be seen that the Dataset includes various electronic component figures and graphs that
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Table 4.2: Table detection performance comparison on ICDAR2013 test set.

Models
ICDAR2013 Test Set

Recall Precision F1

Kavaisidis et
al.[100]

0.981 0.975 0.978

DeepDeSRT[11] 0.962 0.974 0.968

Tran et al.[13] 0.964 0.952 0.958

Faster-RCNN
[106]

0.981 0.974 0.977

Faster-RCNN +
KL Loss

0.965 0.983 0.974

Faster-RCNN +
KL Loss + Vari-
ance Voting

0.981 0.987 0.984
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Table 4.3: Table detection comparison for models on Lytica test set.

Models
Lytica Test set ICDAR2017 Test set

Recall Precision F1 Recall Precision F1

RetinaNet
w/ResNeXt-101
[106]

0.910 0.777 0.838 0.975 0.924 0.949

RetinaNet
w/ResNeXt-50
[106]

0.944 0.765 0.845 0.994 0.903 0.946

Faster-RCNN
[106]

0.953 0.911 0.932 0.969 0.939 0.953

Faster-RCNN +
KL Loss

0.990 0.998 0.994 0.992 0.986 0.989

Faster-RCNN +
KL Loss + Vari-
ance Voting

0.997 0.998 0.998 0.996 0.986 0.991

share similarities with tables. The tabular data obtained from public datasets are often of
scientific origin. Therefore they generally stem from a similar structure.

The Lytica dataset contains 2323 hand-labeled documents. Along with the ICDAR-
2017, ICDAR-2013 and Marmot datasets, we have a total of 5569 images to apply transfer
learning. Testing is done individually on each dataset to evaluate and observe the perfor-
mance.

For pre-processing we stretched the images by 250% vertically to increase the row size,
according to Kara et al [20] this method can improve recall and precision by up to 20% .
For post-processing we implement the aforementioned variance voting step.

In Table 4.2, we present the comparison of the recall, precision, values of various detec-
tion models in comparison to the introduced Faster-RCNN + KL Loss, and Faster-RCNN
+ KL Loss + Variance voting. They are all tested on the ICDAR 2013 dataset. It can
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be seen that with the addition of the KL Loss function alone, the precision value rises
to 0.983 which is 1.3% higher than the the results of Kavaisidis et al [100]. After adding
variance voting to the model the precision improves further to 0.987. Overall the F1 score
of the Faster-RCNN + KL Loss + variance voting is highest at 0.984. Table 4.3 shows
the performance results on the Lytica and ICDAR2017 dataset. With the addition of the
KL Loss function the F1 score improves by 6.2% from to 0.994 from 0.932. This is due
to the 8.7% improvement in precision. After adding the variance voting step the F1 score
improves to 0.998. For the ICDAR2017 test set the KL Loss alone improves by 4.6% from
0.953 to 0.989. The variance voting step improved the F1 score even further to 0.991.
Figs 4.6 4.7 4.8 show the comparison of KL loss Faster-RCNN versus the model with the
addition of variance voting on the ICDAR 2017, ICDAR 2013 and Lytica dataset. We can
observe that at IoU of 95% the addition of variance voting improves the precision by 10.9%
on ICDAR2013, 8.6% on ICDAR2017 and 6.7% on Lytica dataset.

4.5 Conclusion

In this chapter, we have proposed the integration of KL loss function and variance
voting into deep learning based table detection i.e., (Faster-RCNN) to improve bounding
box localization performance at high IoU thresholds of 95% as well as improve overall per-
formance metrics. This can help optimize supply chain efficiency by automating document
processing and removing additional sources of human error. By improving the bounding
box regression with KL Loss we can see an improvement in precision of 5.3% on the IC-
DAR2017 dataset. The variance voting step has shown to improve the precision at 95% IoU
by a drastic 10.9% on the ICDAR2013 dataset. Both the addition of KL Loss and variance
voting has shown to improve the standard state-of-the-art object detector Faster-RCNN
on ICDAR2013, ICDAR2017 and Lytica dataset.
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Figure 4.4: Precision values for ICDAR 2013 dataset from IoU 50% to 95%.
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Figure 4.5: Precision values for Lytica dataset from IoU 50% to 95%.
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Figure 4.6: Precision values for ICDAR2017 dataset from IoU 50% to 95%
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Figure 4.7: Precision values for ICDAR 2013 dataset from IoU 50% to 95%.
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Figure 4.8: Precision values for Lytica dataset from IoU 50% to 95%.
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Chapter 5

Table Structure Detection

There is an increasing demand for automated document processing techniques as the
volume of electronic component documents increase. This is most prevalent in the supply
chain optimization sector where vast amount of documents need to be processed and is time
consuming and prone to error. Detection of tables and table structures serves as a crucial
step to automating document processing. While table detection is a well investigated prob-
lem, tabular structure detection is more complex, and requires further improvement. To
address this, this study proposes a deep learning model that focuses on high precision tab-
ular cell structure detection. The proposed model creates a benchmark for the ICDAR2013
dataset cell structure with comparison to the previously state of the art table detection
models and proposing alternative models. Our methodology approaches improving table
structure detection through the detection of cells instead of row and columns for better
generalization capabilities for hetergenous table structures. Our proposed model advances
prior models by improving major parts of the detection pipeline compared to previous state
of the art table structure detection models, mainly the two-stage detector, backbone, back-
bone architecture, and non-maximum-suppression (NMS). TabCellNet consists of Hybrid
Task Cascade (HTC) with Combinational Backbone Network (CBNet), dual ResNeXt101
and Soft-NMS to achieve a precision of 89.2% and recall of 98.7% on the hand annotated
ICDAR2013 cell structure dataset.

5.1 Methods

This section describes the methodology used for tabular cell detection. Figure 5.1
describes the proposed document flow pipeline for document processing. This paper is
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focused on the table structure detection portion of the proposed pipeline.

Figure 5.1: Document flow pipeline for document processing

5.1.1 Hybrid Task Cascade

Hybrid Task Cascade (HTC) was proposed by [31] to improve upon the classic and
powerful Cascade-Mask-RCNN. Cascade-RCNN has a cascading structure that focuses
on iterative refinement on predictions and adaptive training distributions. The cascad-
ing architecture would would well for object detection but not fully adaptive for instance
segmentation. HTC integrates the cascading structure for instance segmentation by in-
terlocking the detection and segmentation features to create a collaborative multi-stage
process. The refinement process is benefited by the shared contextual information among
detection, mask prediction and semantic segmentation tasks. There is also a direct path
that incorporates information flow between mask branches.

Figure 5.2 depicts the architecture of the HTC model. Where the model takes in input
from the Feature Map given by the CBNet backbone and RPN to predict the bounding box
and mask regions. The bounding box proposals are receiving information from the previous
layers, adopting from Cascade-Mask-RCNN, while the Masking proposals are improved
with the benefit of using the updated bounding box proposals as well as communicating
between each mask layer. The connected masking layer is where HTC improves upon
Cascade-Mask-RCNN, the details on the information transfer between masking layers can
be seen in Figure 5.3.

HTC is formulated by Equation 5.1, where xbox
t and xmask

t respectively denote the
the bounding box and mask features. Where x denotes the features obtained from the
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backbone network. P () represents the pooling operator. While the predicted mask and
bounding boxes are denoted as mt and rt. The mask and bounding box heads are denoted
by Mt and Bt. m−

t−1 is the features of the previous mask layer, while Gt represents the
function that transforms the previous mask features into a 1x1 convolutional layer. The
mask layers are connected by the 1x1 convolutional layer, this is shown in Figure 5.3 for
further clarification. Each Masking layer consist of four 3x3 convolutional layers and this
information is shared to the next masking layers.This shows that the predicted mask mt

is a composition of the mask features from a previous layer Gt(m
−

t−1) and mask features of
the current layer xmask

t . Whereas the current mask layer takes the updated bounding box
proposals rt and feature map x as the inputs.

xbox
t = P (x, rt−1), rt = Bt(x

box
t ),

xmask
t = P (x, rt), mt = Mt(x

mask
t + Gt(m

−

t−1)),
(5.1)

Feature Pyramid Networks

The Feature Pyramid Network (FPN) proposed by [109] has been widely used in various
CNNs to improve feature map quality. It consists of a bottom up, top-down and lateral
connections. This allows for building high level semantic feature maps at all scales. It
accomplishes this by extracting features from high-resolution to low resolution then com-
bines them from low-resolution to high resolution. The tabular structures consists of row,
columns and cell that can be small in nature, after layers of convolution and pooling oper-
ations there is a reduced number of meaningful features. Therefore FPN can aid in tabular
structure detection applications to produce more favourable results.

Region Proposal Network

The backbone network extracts features that creates the FPN, which are then fed into
the Region Proposal Network (RPN). Backbone networks such as ResNet-50 extract fea-
tures and then these features are fed into the RPN which then proposes candidate bounding
boxes that may include an object of interest. Mask-RCNN ([22]) is almost identical to the
Faster-RCNN but it employs additional methods to further improve the results. As pre-
sented in ([26]), Faster-RCNN improved vastly upon previous object detection architectures
and gained wide adoption ([14, 11, ?]).
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Figure 5.2: Hybrid Task Cascade Architecture
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Figure 5.3: Masking Layer Connection
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Batch Normalization

Batch Normalization (BN) was proposed by [110] is a training technique that uses a
regularizer between the layers to solve the internal covariate shift issue. During training,
the distribution between inputs of each layer changes and thus requires lower learning rates.
BN normalizes the input of each mini-batch,

5.1.2 ResNeXt101

ResNeXt101 was proposed by [111] to improve on the robust VGG and ResNet archi-
tectures in a simplistic yet effective way. ResNext architecture performs a set of trans-
formations of the same topology on a low dimensional setting and then aggregates each
transformation by summation. This methodology is more effective and has less compu-
tational complexity; a 101 layer ResNeXt is able to outperform a 200 layer ResNet while
only having half of its complexity ([112]). The archetecture of ResNeXt101 can be seen in
figure 5.4.

5.1.3 Combinational Backbone Network

The backbone is of paramount importance within a detection pipeline, it is tasked
with extracting features out of input images. Studies have proven that the larger and
more complex a backbone is, the better the performance gains to a degree, like in the
case of ResNet 50, ResNet 101, ResNet152 and ResNet200. The Combinational Backbone
Network (CBNet) was proposed by [32] and in combination with Cascade-Mask-RCNN it
was able to achieve an astonishing mAP of 53.3 on the COCO dataset, which was the
state-of-the-art results at the time.

CBNet consists of a lead backbone and assistant backbones. The lead backbone pro-
vides the feature map for the detector, while the assistant backbones supports the lead
backbone by feeding its output features to the input features of the next backbone.

The amount of identical backbones is denoted by K where K ≥ 2. The lead backbone
can be denoted as BK , While the assistant backbones can be denoted as B1, B2, ....BK−1.
A backbone consists of several stages, at each stage there are several convolutional layers.
A stage can be denoted as S and often times there are S=5 stages. The output of a stage
is denoted as xs−1. In a traditional single backbone architecture, the input of a stage is the
output of the stage before it. However, in the CBNet structure, the input of a stage is the
combination of the output of the stage before it (xs−1) as well as the output of the previous
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Figure 5.4: ResNeXt101 Architecture

Figure 5.5: Dual Combinational Backbone Network
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backbone at the same stage (xl
k−1). This is shown in equation 5.2. We have visualized

a dual combinational backbone network in Figure 5.5. The document image is taken as
an input and two backbone networks are used in parallel to generate a feature map, the
convolutional stages correspond to stages within ResNeXt101. This information is then
fed to the RPN and used alongside to help with the bounding box and mask predictions
in HTC.

xs
k = F s

k (xs−1
k + g(xs

k−1)), s ≥ 2 (5.2)

Dual Backbone

[32] showed that as the number of backbones increase, the performance also increases,
however, computational complexity and inference time also increases. This is mainly due
to the composite architecture instead of due to the increase in network parameters. For
the COCO dataset, it was shown that the performance converges at around triple back-
bone architectures, however, tabular structure detection is a less complex detection task
compared to the 80 classes in the COCO dataset, therefore our results has shown that the
dual backbone architecture performed best.

5.1.4 Soft Non Maximum Suppression

Non-maximum suppression (NMS) is a vital part of a modern object detection pipeline
[96]. The proposed bounding boxes are given by the RPN proposals, the NMS step merges
the proposed bounding boxes. Standard NMS eliminates bounding boxes with lower clas-
sification scores. While Soft-NMS improves over standard NMS by eliminating bounding
boxes by not eliminating objects with lower classification scores, but instead scale the de-
tection score as a function of IoU witht he ground truth, this method has shown to improve
many baseline predictions, for example there is a gain of 1.7% mean average precision on
Faster-RCNN with PASCALVOC 2007 dataset.

5.2 Dataset

The dataset used in this study is the cell-annotated version of the ICDAR 2013 ([8])
dataset. Currently, there is a shortage of annotated data for table structure analysis.
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ICDAR 2013 has been a benchmark for table detection analysis. Therefore preprocessing
stage of this research involves hand annotation of the ICDAR2013 dataset for tabular
cell recognition. The goal of structure detection is to be able to pin point extract cell
information for querying purposes. Often times rows and columns are used to obtain
tabular structure and the combination of row and column coordinates can generate a matrix
of cell coordinates. This method works well for homogeneous tables where there the table
consists of x rows and y columns with no split or merged cells. Heterogeneous tables pose an
increased complexity for the detection model and makes the structure detection model less
generalized to fit the wide array of tabular structures within document processing. Thus,
our solution is to mainly focus on cell detection instead of row and column detection. The
dataset is cropped to only include the tables in the images, it is assumed that table detection
performance is 100%. Table classification and position detection has achieved results as
high as 100% F1 score on the ICDAR2013 dataset, therefore the proposed methodology
focuses solely on structure detection. The document processing pipeline starts with the
detection and extraction of the table, then the detection of the tabular structure. When
a table is fully extracted and the position of each cell is known then creating a semantic
understanding of the tabular contents can be done effectively using various OCR and NLP
techniques.

The ICDAR2017 cell structure dataset consists of in total 1081 cropped table images,
of which 865 are used for training and 216 for testing. The dataset is labeled oriented
towards content focused annotations. This means that for tables without separator lines
between the rows and columns we do not infer a dimension for the cell width and height,
instead we only annotate the area around the content. We removed the EmptyCell class,
therefore the dataset only have the Cell class. Through experimentation the Empty Cell
class overall did not have an apparent positive impact to the model, removing it does not
reduce the performance of our model, however it does reduce confusion on inference results.
This is most likely due to the indeterminate nature of empty cells in tables separated by
white spacing.

5.3 Training Details

To formulate a benchmark for ICDAR2013 cell structure dataset we experimented with
deep learning models that performed well for the ICDAR2013 table dataset. We also
experimented with model combinations that havent been used before but have shown
promising results on other public datasets such as the COCO dataset.

All experiments were done on the Mist GPU cluster utilizing 4 Tesla V100 GPUs with
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32GB of VRAM each. The mmdetection toolbox that was based on pytorch was used to
implement the models. Table 5.1 contains more detailed attributes for our network. To
identify which models would perform well on cell structure detection, potential models
were trained using the same backbone network, ResNeXt101. Faster-RCNN has been a
benchmark detector for several related works [14, 66, 65], Mask-RCNN was shown to be
a better candidate than Faster-RCNN based on [20, 64, 23]. The addition of a mask-
ing layer that uses Fully Convolutional Network (FCN) on top of Faster-RCNN presents
more spatial features. Furthermore, Cascade-Mask-RCNN was proposed by [18] to achieve
even higher results on the ICDAR2013 table detection dataset. These models all showed
promising performance on the ICDAR2013 table dataset therefore we wanted to use them
to create a benchmark for the ICDAR2013 cell structure dataset. Deformable convolutions
networks (DCN) was used by [65] for table detection, this was tested but it was not able
to outperform our final selected model. For each model the learning rate was tuned for
optimal performance, the learning curve for each model was also observed to ensure that
the model is fully trained. An average training accuracy of 99.5% was observed on each
model. A learning curve for a HTC CBNet Dual ResNeXt101 model can be seen in figure
5.6. State-of-the-art backbones were then studied as well as different backbone structures.
ResNet101 and HRNet have both previously been used for tabular detection, therefore
we compared them with ResNeXt101, as the proposed CBNet double ResNeXt101 and
triple ResNeXt101. For bounding box regression, we tried Balanced L1 loss ([113]), IoU
Loss ([114]), Bounded IoU Loss ([115])and General IoU Loss ([116]), however, none showed
improvements over the smooth L1 loss for this task. Soft-NMS has shown improvements
on many detectors and over many applications therefore it is implemented on the best
performing model seeking to improve the performance results further.

Table 5.1: Model Settings

GPU Learning Rate Optimizer momentum weight decay Image Scale batch size
Tesla V100 32GB RAM x4 0.01 SGD 0.9 0.0001 1333x2000 50

5.3.1 Evaluation Metrics

The models are tested in regards to precision, recall and F1 score under the IoU range
of 50% to 95% as well as Mean average precision (mAP), mean average recall (mAR) and
mean average F1 Score (mAF1). F1 score is a combination of Recall and Precision values,
it gives us a gauge of the models performance. We favour recall over precision due to the
fact that for data extraction we want to make sure that the detected cells are actual valid
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Figure 5.6: Learning Curve for HTC CBNet Dual ResNeXt101
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detection, this shows how complete the tabular cells within a table are detected. Whereas
precision is a metric to evaluate the validity of the detected results.

F1(Precision,Recall) = 2 × Precision×Recall

Precision + Recall
(5.3)

Figure 5.7: IoU Illustration

For predicted bounding box (P ) and ground truth bounding box (Gt), IoU can be
described as;

IoU(P,Gt) =
P ∩Gt

P ∪Gt
(5.4)

IoU is the area of intersection between the predicted bounding box and ground truth
bounding box over the total spanned area of the two bounding boxes. An illustration of IoU
for predicted and ground truth bounding boxes can be seen in Figure 5.7. Utilizing different
degrees of IoU will allow us to gauge the localization performance of our detector. This is
important because often times the focus is the classification capabilities of the model rather
than the localization performance. In order for deep learning-based document analysis to
reach a industrial level, the localization performance of the detector must be studied to
ensure that crucial information is not left out during the data extraction phase.
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Table 5.2: Structure Detection with different models
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Mask-RCNN has been previously proven to be a promising candidate for tabular
detection [23, 14, 64]. Cascade RCNN and Cascade-Mask-RCNN has shown to improve
upon Mask-RCNN. Hybrid Task Cascade was proposed by [31] to further improve
Cascade-Mask-RCNN.
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Table 5.3: Cascade-Mask-RCNN with different Backbones
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Cascade-Mask-RCNN has been shown to result in the highest F1 score at certain IoUs
based on Table 5.2. Cascade-Mask-RCNN was tested with different backbones.
Cascade-Mask-RCNN with HRNet backbone was proposed by [18], and achieved 1.0 F1
score under the ICDAR2013 for table detection. Therefore, this study aims to test
Cascade-Mask-RCNN on the ICDAR2013 structure dataset.
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Table 5.4: HTC with different backbones
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HTC with CBNet Double ResNeXt101 and soft-NMS performed the best for almost
every category compared to all models tested. The dual ResNeXt101 performs the triple
ResNeXt101 due to the model reaching a point of diminishing return on features
obtained. The additions of Soft-NMS outperforms standard NMS due to its ability to
scale confidence scores instead of eliminating bounding boxes.
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5.4 Results

In Table 5.2, The structure detection results are presented and compared with various
state-of-the-art detectors with ResNeXt101 Backbone. The state of the art does not contain
research that have trained and tested the ICDAR2013 and ICDAR2017 structure datasets,
hence this work will serve as a this research will serve as a baseline for research in this
field. Mask-RCNN shows promise for table detection as well as tabular structure detection
based on [23, 14, 64, 20].

Table 5.2 shows that Hybrid Task Cascade achieves the highest mAF1 score of 0.781
and continues to achieve the highest F1 score at various IoUs. Cascade-Mask-RCNN also
shows promise in terms of performance at lower IoUs of 65%, 70%, 75% and 95%. Often
times benchmarks are evaluated at 50% IoU or the mean average of 50% to 95% IoU. This
is due to most deep learning-based models are more concerned with classification of objects
in the image than the localization performance, therefore 50% IoU is enough to suffice that
an object is positively detected in the image. However, in order to ensure data is extracted
properly without error the localization performance needs to be high enough so that data
is not cropped out. The mean average value that is often used by COCO detection [117]
challenges go up till 95% IoU as the highest threshold. Therefore we evaluate the model
individually at each of the threshold values in the mean average calculation to gauge an
overall performance of the system. At 50% IoU the highest precision and recall are both
taken by HTC at 0.891 and 0.978 respectively.

Both Cascade-Mask-RCNN and HTC are experimented with further due to their perfor-
mance capabilities at different IoUs. They perform better due to them both incorporating
benefits from the cascading architecture and masking layers of Cascade-RCNN and Mask-
RCNN.

Cascade-Mask-RCNN is tested with different backbones to evaluate the best combina-
tion between backbone and detector. This includes the use of ResNet50 [28], ResNet101
[28], ResNeXt101 [29] and HRNet [118]. ResNet50 have been used by us and other re-
searchers for table detection [69, 14], ResNet101 was used by Siddiqui et al. [?] and
ResNeXt101 was used by Kara et al. [20]. The combination of Cascade-Mask-RCNN and
High Resolution Net (HRNet) was proposed by [18] to achieve 1.0 F1 score on the IC-
DAR2013 table detection dataset, which is currently the state-of-the-art results for that
dataset. Therefore its performance for the ICDAR2013 structure dataset should also be
included for the baseline formulation. The results are shown in Table 5.3. ResNeXt101 led
to an improvement over Resnet101, with a mAF1 of 0.776 compared to 0.762. Deploying
double and triple ResNeXt101 in a CBNet showed even further improvements, with double
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ResNeXt101 performing the best at a mAF1 of 0.783, and a F150 of 0.920. This is due
to architectural improvements in major aspects of the model developed on top of proven
state-of-the-art detectors. Faster-RCNN has been proven many times to be a strong de-
tector for document analysis, Kara et al. [1, 20] showed that Mask-RCNN that is built
upon Faster-RCNN is a promising candidate for tabular structure detection. Therefore
HTC improves upon the detector by sharing information through masking layers as well
as utilizing the Cascading architecture from Cascade-RCNN [81]. While CBNet improves
the detection by combining adjacent backbones for a more detailed representational fea-
ture map. Soft-NMS preserves and scales detection scores to retain all elements so non is
eliminated.

Table 5.4 shows the performance of HTC detector with various backbone structures
with combinations of standard NMS and Soft-NMS. Once again, the addition of arranging
double or triple backbones in a CBNet structure improves the the model’s performance in
precision, recall and F1 score due to the improved feature map that is fed to the RPN and
detector. The additional backbones allows for the extraction of more representational basic
features compared to a singular backbone. Single backbones are specifically designed for
image classification therefore they are not optimized for object detection [32]. Aligning with
the results of Cascade-Mask-RCNN, double ResNeXt101 outperforms triple ResNeXt101.
For HTC an increase of 1.6% mAF1 score for double ResNeXt101, and for Cascade-Mask-
RCNN a 0.6% incresae. When compared to the single ResNeXt101, Double ResNeXt101
shows a mAP increase of 3.5%, mAR increase of 1.2% and mAF1 increase of 3.2%. The
Soft-NMS post processing operation further improves the performance of the HTC model
with double ResNeXt101, with Soft-NMS added, it has the highest F1 score in every IoU
category except IoU of 50%, this is because at IoU of 50% the triple ResNeXt101 backbone
provides more basic features to the feature map, however, these additional features do not
contribute more at a higher IoU threshold, on the contrary it over saturates the feature
map due to tables having simple background and foreground features, and this is probably
why dual ResNeXt101 over performs triple ResNeXt101. While also acheiving the highest
mAP of 75% and mAR of 89.9%. Therefore our proposed model consists of the HTC model
with CBNet dual ResNeXt101 and soft-nms. The inference results of this model on the
ICDAR2013 cell structure dataset can be observed in the Appendix.

All models perform relatively well up until an IoU of 85%. At higher IoUs of 90%
and 95% a decrease in precision of 14.7% and 39.2% is observed respectively for the best
performing HTC model. As IoU thresholds go up, the performance metrics in recall and
precision go down due to increased localization performance threshold. The cells are not
deemed detected if they cannot satisfy this threshold. The cells within a table can be very
small in size, with a few pixels in height and width, therefore a slight shift in bounding
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box proposals would result in an invalid detection at high thresholds. Also, there can
be hundreds or thousands of cells within a single table, the sheer quantity as well as the
small size nature of the cells adds to the complexity of the challenge. By having a recall
of 91.2% at 85% IoU represents that 91.2% of all cells were detected with at least 85%
area overlap, with the nature of the IoU calculation an 85% IoU is actually higher than
85% total area of the ground truth bounding box detected. This shows that the best
performing HTC model performs well at even high IoUs of 85%. The recall is generally
much higher than the precision, we favour recall over precision due to it being a value
that allows us to gauge the percentage of cells detected in the table. Recall is often
higher in tabular cell detection due to the fact that the model outputs more bounding
box predictions that are necessary. Therefore most of the correct cells will be detected,
however, out of the bounding box proposals a higher quantity would be incorrect cells,
leading to a lower precision value. Hetergenous tables with split cells, merged cells as well
as tables separated by white spacing without seperator lines complicates the problem, for
example, the detector might detect more than one cell for merged cells since there is a
change in format at that location, leading to a lower precision value. The recall at 50%
IoU is 8.3% higher and the recall at 95% IoU it is 38.5% higher, meaning that there are
often much fewer false negatives than false positives. Which means their are less missed
cells in the detection model. We want to ensure that as many cells are detected to not
lose any information, this is more important than if the cells are classified wrong, since
compensation in the semantic modeling part of the data extraction pipeline can phase out
the wrongly detected cells. If a detection identifies that a cell is present, then there is high
probability that the cell is actually present.

Furthermore, augmentation is applied to the image inputs, specifically resizing, padding
and applying horizontal and vertical flipping. The threshold for bounding box proposals
were increased to 10000 for the RPN and detector. We found that certain images may
contain over 500 cells, therefore more candidate boxes are required, this effectivly improved
the performance of the model during testing, without needing to retrain the model. NMS
for the RPN was reduced from 0.7 to 0.5. This objects are small objects, therefore more
tolerance during the NMS operation during RPN allows for more bounding box proposals
for the detector. This operation also allowed for increases in performance without needing
to retrain the model.

The proposed model that consists of HTC and dual ResNeXt101 backbone in CBNet
architecture performed the best on the ICDAR2013 dataset therefore we utilize it again
for performance evaluation on the ICDAR2017 dataset.

The results for our proposed model on the ICDAR2017 dataset can be seen in Table
5.5. A comparison has been done for a model with image augmentations and without.
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Overall augmentations improved the average F1 score by 1% and improved the F1 score
at 50% IoU by 2.3%. The model with image augmentations shows consistent improved
performance up until the high IoU thresholds of 85%, 90% and 95%. The results follow the
same trend of achieving a higher Recall value than precision. The results for ICDAR2017
infernce outputs can be found in the Appendix.

Table 5.5: Proposed Model on ICDAR2017 dataset

Backbones with Hybrid Task Cascade
IoU

50%:95% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

No Augmentation Precision 0.590 0.894 0.870 0.843 0.809 0.753 0.681 0.555 0.358 0.127 0.010
Recall 0.713 0.954 0.893 0.865 0.838 0.789 0.754 0.703 0.627 0.501 0.206

F1-Score 0.646 0.923 0.881 0.854 0.823 0.771 0.716 0.620 0.456 0.203 0.019

Augmentation Precision 0.600 0.915 0.895 0.870 0.829 0.772 0.687 0.559 0.348 0.117 0.008
Recall 0.747 0.980 0.942 0.906 0.876 0.840 0.772 0.726 0.650 0.514 0.264

F1-Score 0.665 0.946 0.918 0.888 0.852 0.805 0.727 0.632 0.453 0.191 0.016

The proposed HTC with dual ResNeXt101 in CBNet archetecture on the ICDAR2017
cell structure dataset, a comparison of before and after image augmentations.

5.5 Conclusion

The flow of information through supply chains are increasing more than ever, in which
automated processing of valuable data is crucial in order to further optimize supply chains.
Important data within documents is often stored in a tabular structure. Detection of tables
is the first step while detection of table structures is the second step to effective information
retrieval. Locating data points in heterogeneous tables is more effective if table cells are
extracted versus compounding the intersections of row and columns.

This study proposed a deep learning-based model that consists of a novel combination
of HTC and CBNet double ResNeXt101 with Soft-NMS for cell structure detection within
tables. Models that performed well for table detection were tested at each IoU from 50%
to 95%. Various combinations were proposed, and the best performing by far was selected.
cell structure detection is significantly more complex than table detection. The proposed
model builds upon the models that performed well on table detection. The proposed model
includes the use of HTC that improves upon Cascade-Mask-RCNN as well as Mask-RCNN
and Faster-RCNN, the use of ResNeXt101 that significantly improves over ResNet101, the
use of CBNet architecture that improves upon a singular backbone and the use of Soft-
NMS that improves over standard NMS. The proposed model achieves a precision of 89.2%
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and a recall of 97.5%.
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Chapter 6

Conclusion

Advancements in deep learning Convolutional Neural Networks for object detection
methodologies can be leveraged for improving document analysis models for data process-
ing, especially within the sector of optimizing supply chain efficiency. Extracting data from
data-sheets is a laborious task that is prone to error. Millions of documents are processed
each day, an automated method to extract content is highly desired. These documents
can be from industry supply chains, government, research papers etc. The source of these
documents range from different industries and countries without a unified format. The vast
variation in format makes it difficult for pre-defined heuristic methods to be generalized
enough for industrial use. Data is often stored in structured tabular format. Focusing
on understanding tables is a key area in document analysis that will enable efficient data
extraction. This thesis is dedicated to analyzing tables within documents. There are two
crucial steps for analyzing tables within documents, first is determining the presence of
table and its coordinates, second is determining the anatomy of the classified table. Table
detection serves as a key point in a document analysis pipeline, the detected results will be
given to the next part of the pipeline which would be information retrieval and semantic
understanding of tabular contents.

Regarding table detection, various rule-based methodologies have been developed over
the years, as well as methods that rely on document metadata. However, in recent years,
deep learning based CNNs prove to be the most efficient and robust methodology. Ta-
ble detection requires classification and localization of the table boundary. While table
structure detection requires anatomical detection of tables. This can be achieved through
various methods, the most studied is detection of row and columns, however, this the-
sis focus on detection of individual cells, which enables pin point data extraction for the
semantic extraction portion of the document analysis pipeline. This thesis tackled each

65



detection task individually in a methodical way. The proposed pipeline is first detecting
the boundary of tables within a document, then solely focus on detected table region. We
simplify the tabular structure detection task by eliminating the noise that the other ele-
ments in a document presents. The tabular structure model input would only be confirmed
detected tables. In order for this method to be successful, the table detector must be highly
capable at localization the table boundaries. Therefore we improved the tested state-of-
the-art Faster-RCNN detector for better localization performance. This was achieved by
utilizing a KL Loss function as the regression loss and adding a voting methodology during
the NMS step. Our tabular detection model achieved state-of-the-art results in regards to
precision and recall and we showed the vast improvements at extremely high IoUs of 95%.
IoU thresholds are a reflection of localization performance needed before the detection is
deemed positive. Therefore at 95% IoU, the ground truth bounding box and predicted
bounding box has an overlap area of 95%. Previous table detection research only only
evaluate their models at 50% IoU or an average across multiple IoUs, localization is highly
important for table detection due to the possibility of data loss and its affects on the lat-
ter stages of data extraction. The outputs of the table detection model is then fed into
our table structure detection model. Table structure detection is much more complex due
to the heterogeneous nature of table formats. Tables without guiding lines are especially
difficult to analyze due to there being no guidelines on exactly how width and high each
tabular cell should be. Tables can also contain thousands of cells with each cell being
small in size, small objects are difficult to detect in the field of computer vision due to
their lack of resolution. We propose an ensemble model that leverages multiple state-of-
the-art networks. HTC was used in conjunction to dual ResNeXt101 backbones in CBNet
architecture. this model performed the best on the ICDAR2013 cell structure dataset that
we hand-labeled. It was compared extensively to other state-of-the-art detection models in
the domain of table detection as well as table structure detection. Our proposed method
provides a baseline performance metric results on the ICDAR2013 cell structure dataset.
Overall, this thesis presents a high precision table and table structure detection model that
serves as an intermediate process within document analysis for data extraction.

6.1 Future Directions

Table detection is well studied and consists of a wide array of well annotated and diverse
datasets. Currently detection performance is reaching high degrees of accuracy, such as
the 99.8% precision that our proposed model achieves on the ICDAR2017 dataset.

However, the performance of table structure detection still has room for improvement,
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in particular, the lack of quality datasets for cell structure detection is still a major issue
for research within tabular document extraction. Our contributions of ICDAR2013 and
ICDAR2017 will contribute to the advancement the table structure detection domain,
however, it is still not enough to achieve the same amount of success as table detection since
table structure detection is inherently more difficult. The field of cell structure detection
is still in it’s early stages, it is even more difficult than row and column detection due to
many aspects, they can be abundant in volume and they can be extremely small objects
which are challenging for CNNs. For example, our private dataset contains electronic
component datasheets from a diverse spread of manufacturers, with each using vastly
varied formats for their tabular content. Heterogeneous tables that has split cells and
merged cells are abundant, the cells are also often separated by white spacing with no
clear dictation on the dimensions for each cell. Better comparisons can be made between
proposed research methodologies if the performance metrics of a model over different IoU
thresholds is presented. The application of document analysis requires high localization
accuracy to ensure that data is not lost during the early stages of the extraction pipeline.

We are still exploring other state-of-the-art deep learning strategies to further enhance
document structure detection performance, such as training models that do not require
annotations as well as attention based models. If we can train models that do not require
pre-annotated data then it would be a great breakthrough in table cell structure detection.
Annotating table cells is far more time consuming that annotating rows and columns, this
is also one of the reasons why annotations in this field are scarce.

Future directions are given as below;

• Tabular cell structure detection poses two difficulties, first there is the challenge of
large quantity of detections within a single image; there can be over 1000 cells within
a table. The study of Deep learning object detectors for large quantity of object
detections within a singular image have not been studied and optimized. Second
there is the challenge of detecting tiny objects, depending on the resolution, cells can
be a few pixels in height and width. The combinations of large quantity of detections
and small objects in tabular cell detection adds complexity to the problem. Object
detectors that focus specifically on this area should be researched to advance tabular
cell structure detection.

• Even with our annotated ICDAR2013 and ICDAR2017 cell structure datasets, quality
labeled data within this field is still scarce. Further annotation on the Marmot
dataset, UNLV dataset [10] and private datasets can be used to train an even more
generalized detector.
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• Extensions to thesis also include next part of the data extraction pipeline is semantic
understanding of the extracted table contents. The model should built upon this
study and utilize NLP techniques to relate and understand the nomenclature and
attributes of the data contained within the tables. This is currently being investigated
by other researchers.

• The integration between the table extraction part that was presented in this thesis
and the semantic modeling portion is an integral part to a complete end-to-end data
extraction pipeline that needs to researched. For homogeneous tables it would be easy
to understand the key values of the table and relate to its attributes, however, for
heterogeneous tables that have inconsistent formatting, the problem becomes vastly
complex.
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Appendix A

Appendix

A.1 Table Detection Outputs

The table detection outputs for our proposed Faster-RCNN with KL loss and Variance
voting are shown. The four examples show that our model has near perfect localization
capabilities for the tables of our complex Lytica dataset. Figure A.1 shows that only the
table in the middle is detected, whereas the other items within the image can easily be
misclassifed as tables due to them having a structured layout. Figure A.2 and A.4 shows
that all three tables are detected with high localization accuracy, the detector understood
that three tables are present, instead of grouping the three tables into one singluar table
detection. Figure A.3 shows the correct detection of tables among graphical figures that
have grid lines.
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Figure A.1: Example output for KL Loss + Variance voting on Lytica Dataset
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Figure A.2: Example output for KL Loss + Variance voting on Lytica Dataset
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Figure A.3: Example output for KL Loss + Variance voting on Lytica Dataset
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Figure A.4: Example output for KL Loss + Variance voting on Lytica Dataset
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A.2 Table Structure Detection Outputs

A.2.1 ICDAR2013 Results

This section presents a selection of inference results on ICDAR2013 dataset to further
support the numerical results in 5.

Figure A.5: A homogeneous table that contains guiding lines.

Fig. A.5 presents a homogeneous table that contains guiding lines. TabCellNet per-
forms well at classifying and localizing cells on homogeneous tables that contains guiding
lines.

Figure A.6: A homogeneous table with guiding lines and contains empty cells.
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Fig. A.6 illustrates a homogeneous table with guiding lines and contains empty cells.
There are two classes listed within the ICDAR2013 cell structure dataset, cells and empty
cells. The detection of cells is often much better than the detection of empty cells, this
is due to the small quantity of empty cells within the dataset as well as the sparseness of
empty cell distribution.

Fig. A.7 illustrates a heterogeneous table without guiding lines. TabCellNet is able
to consistently detect and localize all of the cells within this image. This type of table is
occurs often within the ICDAR2013 dataset. Once again the detection of empty cells is
poor this is because in a scenario that does not contain guiding lines the empty spaces can
be easily mistaken for empty cells.

The table in Fig. A.8 illustrates an example of false positives. This table has guiding
lines for columns but no guiding lines for rows, there are many rows that are separated by
different amounts of spacing. The detector has the most difficulty when classifying cells
that are separated by inconsistent spacing. The spacing of most rows and small, however
the spacing increases when the category changes. The Row that the detector struggles the
most with is the row with category ”Aged 6 and older”, this is most likely due to the rapid
changing of row spacing; a large spaced row following by a small spaced row and then
ending with a large spaced row. With the absence of guiding lines the cells are is mostly
determined through the white spacing. Another observation is that the detector struggles
with symbols, such as ”****” and ”(X)”, these symbols distort the trend of white spaces
compared to the letters or numbers and adds complexity to the image.

A.2.2 ICDAR2017 Results

This section shows the inference results of our proposed model of HTC with dual
ResNeXt101 backbones arranged in CBNet architecture on the ICDAR2017 cell structure
dataset.

Figure A.9 shows the inference output of a homogeneous table that is separated by
white spacing. Homogeneous tables are easier to detect while tables with white spacing
presents a challenge as the width or height of the cells is indeterminate.

Figure A.10 shows the inference results on a heterogeneous table separated with white
spacing. The hetergenous nature of the table layout is challenging, however our detector
is able to correctly classify all cells as well as localize them to a degree in which no content
would be cropped out.
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Figure A.7: A heterogeneous table without guiding lines.
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Figure A.8: An example table to illustrate false positives.

Figure A.9: Homogenous table separated by white spaces
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Figure A.10: Heterogenous Table separted by white spacing
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Figure A.11: Table with diverse row spacing

Figure A.11 shows a table that is significantly diverse in row spacing as well as con-
tent. However, our cell structure detector was able to identify each line of the equations
individually to a high localization accuracy.
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