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Abstract—A novel navigation system for obtaining high-
precision globally-referenced position and attitude is pre-
sented and analyzed. The system is centered on a bundle-
adjustment-based visual simultaneous localization and
mapping (SLAM) algorithm which incorporates carrier-
phase differential GPS (CDGPS) position measurements
into the bundle adjustment in addition to measurements of
point features identified in a subset of the camera images,
referred to as keyframes. To track the motion of the camera
in real-time, a navigation filter is employed which utilizes
the point feature measurements from all non-keyframes,
the point feature positions estimated by bundle adjustment,
and inertial measurements. Simulations have shown that
the system obtains centimeter-level or better absolute
positioning accuracy and sub-degree-level absolute attitude
accuracy in open outdoor areas. Moreover, the position
and attitude solution only drifts slightly with the distance
traveled when the system transitions to a GPS-denied
environment (e.g., when the navigation system is carried
indoors). A novel technique for initializing the globally-
referenced bundle adjustment algorithm is also presented
which solves the problem of relating the coordinate systems
for position estimates based on two disparate sensors while
accounting for the distance between the sensors. Simulation
results are presented for the globally-referenced bundle
adjustment algorithm which demonstrate its performance
in the challenging scenario of walking through a hallway
where GPS signals are unavailable.

I. INTRODUCTION

Cameras remain one of the most attractive sensors for motion
estimation because of their inherently high information con-
tent, low cost, and small size. Visual simultaneous localization
and mapping (SLAM) leverages this vast amount of informa-
tion provided by a camera to estimate the motion of the user
and a map of the environment seen by the camera with a high
degree of precision as the user moves around the environment.
However, the utility of stand-alone visual SLAM is severely
limited due to its scale ambiguity (for monocular cameras) and
lack of a global reference.

Much prior work in visual SLAM has focused on either elim-
inating the scale ambiguity, through the inclusion of inertial
measurements [1], [2] or GPS carrier-phase measurements [3],
or employing previously-mapped visually recognizable mark-
ers, referred to as fiduciary markers [4]. In contrast, there has
been little prior work that attempts to solve the problem of
anchoring the local navigation solution produced by visual

SLAM to a global reference frame without the use of an a
priori map of the environment, even though the no-prior-map-
technique is preferred or required for many applications. The
few papers addressing this issue typically employ estimation
architectures with performance significantly inferior to an
optimal estimator and lean heavily on magnetometers and
inertial measurement units (IMUs) for attitude determination,
which results in poor attitude precision for all but the highest
quality magnetometers and IMUs [5]–[9].

The visual SLAM framework reported in prior literature that
comes closest to that reported in this paper is Bryson’s visual
SLAM algorithm from [10]. Bryson used a combination of
monocular visual SLAM, inertial navigation, and GPS to create
a map of the terrain from a UAV flying 100 m above the
ground. However, this algorithm was incapable of running
in real-time; estimation of the map of the environment and
vehicle motion was performed after-the-fact. Additionally, the
accuracy of the solution in a global sense was severely limited
because standard positioning service (SPS) GPS, which is
accurate to only a few meters, was used. The inertial measure-
ments and visual SLAM help to tie the GPS measurements
together during the batch estimation procedure to increase the
accuracy of the resulting solution, but the resulting position
estimates were still only accurate to decimeter level.

The visual SLAM framework presented in this paper is in-
spired by Klein and Murray’s Parallel Tracking and Mapping
(PTAM) technique [11], which is a stand-alone visual SLAM
algorithm that separates tracking of the position and attitude of
the camera and mapping of the environment into two separate
threads. The mapping thread performs a batch estimation
procedure, referred to as bundle adjustment, that operates on
a subset of the camera images, referred to as keyframes, that
are chosen for their spatial diversity to estimate the position
of identified point features and the position and orientation of
the camera at each keyframe. The tracking thread identifies
point features in each frame received from the camera and
determines the current position and attitude of the camera using
the point feature measurements from the current frame and the
current best estimate of the positions of the point features from
the mapping thread.

Like PTAM, the visual SLAM framework presented in this
paper separates tracking of the position and attitude of the
camera and mapping of the environment into two separate
threads. However, the mapping thread’s bundle adjustment
algorithm presented in this paper additionally employs carrier-
phase differential GPS (CDGPS) position estimates, interpo-



lated to the time the keyframes were taken. This allows the
mapping thread to determine the position of each point feature
and the position and attitude of the camera at each keyframe
to high-precision in a global coordinate system without the
use of a magnetometer or IMU and without an a priori
map of the environment. When CDGPS position estimates
are not available (e.g., when the navigation system is carried
indoors), the mapping thread continues to operate without
these measurements at new keyframes. However, the accuracy
of the estimates of any newly identified point features, and thus
the position and attitude of the system, decays slowly with
the distance traveled in the GPS-denied environment. Since
information about previous keyframes is maintained, returning
to a previously-visited area in the GPS-denied environment
will aid in fixing up any accumulated errors, a condition
referred to as loop closure.

The tracking thread for the visual SLAM framework presented
in this paper maintains the point feature identification function-
ality of PTAM’s tracking thread but incorporates a navigation
filter. This filter greatly improves the accuracy of the best
estimate of the current position and attitude of the camera by
providing a better motion model, through the incorporation of
IMU measurements, and utilizing information obtained from
all non-keyframes. The filter additionally improves the robust-
ness and computational efficiency of the tracking and mapping
threads by aiding in recovery during rough dynamics, reducing
the search space for feature identification, and reducing the
number of required batch iterations for the mapping thread.

One significant advantage of this navigation system over other
high-precision navigation systems is that it can be implemented
using inexpensive sensors. Modern digital cameras are inex-
pensive, high-information-content sensors. Inexpensive GPS
receivers are available today that produce the single-frequency
carrier-phase and psuedorange measurements required to de-
termine a CDGPS position solution. An inexpensive IMU can
also be employed because the navigation system does not
rely on the IMU for long-term state propagation or attitude
determination.

One promising application for this type of navigation system
is augmented reality. Augmented reality (AR) is a concept
closely related to virtual reality (VR), but has a fundamentally
different goal. Instead of replacing the real world with a
virtual one like VR does, AR seeks to produce a blended
version of the real world and context-relevant virtual elements
that enhance or augment the user’s experience in some way,
typically through visuals. The relation of AR to VR is best
explained by imagining a continuum of perception with the
real world on one end and VR on the other. On this continuum,
AR would be placed in between the real world and VR with
the exact placement depending on the goal of the particular
application of AR.

The primary limiting factor for AR is the fact that AR requires
extremely precise navigation to maintain the illusion of realism
of the virtual objects augmented onto the view of the real
world. AR applications simply fail to impress without this
illusion of realism, and the human eye is fairly good at picking
up on this. Additionally, large errors in the registration of
virtual objects (i.e., position and orientation of virtual objects
relative to the real world) make it impossible for a user to
interact with these objects.

Many current successful AR applications rely on visual SLAM
for relative navigation, which results in accuracy suitable for
many applications. However, there are many AR applications,
such as construction, utility work, social networking, and
multiplayer games, that are awkward or impossible to do
using relative navigation alone because of the need to relate
navigation information in a consistent coordinate system. The
navigation system presented in this paper has the required
precision in a global reference frame to serve as a viable AR
platform for all of these applications.

This paper begins with a discussion of the estimation ar-
chitecture that details the differences between the proposed
estimation architecture and that of the optimal estimator. Next,
the state vectors and measurement models for the bundle
adjustment and navigation filter are described. Then, the bundle
adjustment algorithm is detailed including a novel technique
for initialization of the globally-referenced bundle adjustment.
This is followed by a detailed description of the navigation
filter. Finally, results from simulations of the bundle adjustment
are presented.

II. ESTIMATION ARCHITECTURE

The eventual goal of the work presented in this paper is
the creation of a high-precision globally-referenced navigation
system based on a fusion of visual SLAM, CDGPS, and inertial
measurements that is capable of operating in real-time. An
important consideration for any multi-sensor navigation system
is how the information from these sensors will be combined to
estimate the state. An optimal estimator would, by definition,
attain the highest precision state estimate for any given set of
measurements, but operation of an optimal estimator in real-
time is impractical for this system due to finite computational
resources and the high computational demand of visual SLAM.
Therefore, compromises must be made with regard to the
optimality of the estimator to enable real-time operation, as
is typically the case. The remainder of this section details
the compromises made to enable real-time performance by
describing the differences between the optimal estimator and
the estimation architecture proposed in this paper. Note that the
optimal estimator and the intermediate architectures leading
to the final proposed architecture are only notional and are
used simply to draw a comparison with the final proposed
architecture.

A. Optimal Estimator

To highlight the differences between the proposed estimation
architecture and the optimal estimator, the optimal estimator
for this problem must first be presented. Due to non-linearities,
the optimal estimator, in a least-squares sense, requires that
the measurements from all sensors at all time epochs received
thus far be processed together in a single least-squares batch
estimator. Before introducing the state vector for this batch
estimator, it is necessary to define what measurements from
each sensor the estimator employs, since this choice may alter
the state. For example, there are three types of measurements
that can be taken from a GPS receiver which represent different
stages in the processing and, for CDGPS, will change the state
of the estimator depending on which of these types of mea-
surements is employed. When coupling GPS measurements
with those from another navigation sensor, it is conventional



to consider three levels of coupling based on the types of GPS
measurements used by the estimator and the details of the
estimation architecture. These levels of coupling and the types
of GPS measurements associated with those levels of coupling
are as follows

1) Loosely-coupled, which uses position and time esti-
mates

2) Tightly-coupled, which uses pseudorange and carrier-
phase measurements for each GPS signal

3) Ultra-tightly-coupled, which uses in-phase and
quadrature accumulations for each correlator tap and
GPS signal

As a general rule-of-thumb, more tightly coupled estimation
architectures will result in better performance. Therefore, the
optimal estimator considered here employs an ultra-tightly-
coupled architecture where the tracking loops of both GPS
receivers, a reference receiver at a known location and the
mobile receiver, are driven by the estimate of the state (i.e., a
vector tracking loop). The sensor measurements used in this
estimator are (1) the in-phase and quadrature accumulations
for each GPS signal for the prompt, early, and late correlator
taps from both GPS receivers, reference and mobile, (2) the
image feature coordinates in each image, and (3) the specific
force and angular velocity measurements from the IMU. The
state vector for this estimator would include the following

1) Camera poses (i.e., position and attitude of the cam-
era) for each image

2) The velocity of the camera for each image
3) The local clock offset and offset rate from GPS time

for both receivers at the time each image was taken
4) The image feature positions
5) Either the accelerometer and gyro biases at each

image or the coefficients of a piece-wise polynomial
model for the accelerometer and gyro biases

6) The integer ambiguities on the double-differenced
carrier-phase measurements, which are formed based
on the prompt tap in-phase and quadrature accumu-
lations from both receivers

B. Removal of Inertial Measurements

The first compromise made to reduce the required compu-
tational expense of the estimator was to remove the IMU
measurements from the batch estimator and the accelerometer
and gyro biases from the state of the batch estimator. Due to the
already high-precision of the GPS and vision measurements,
the measurements from the IMU do not significantly contribute
to the accuracy of the state estimate and are not necessary
for observability of the state. The vision measurements act
as an extremely high quality IMU by relating the poses of
each image and allow for determination of attitude to a high-
precision, even without the IMU. Additionally, it is awkward
and computationally burdensome to deal with the IMU biases
in the batch estimator. Thus, incorporating the IMU mea-
surements into the batch estimator is simply not worth the
marginal benefits gained. However, the IMU measurements are
useful for propagating the state between frames, which can be
performed external to the batch estimator.

C. Scalar GPS Tracking Loops

While the vector GPS tracking loops in an ultra-tightly-coupled
architecture do significantly improve robustness of signal
tracking and acquisition, this benefit comes at an extremely
high price in terms of the computational requirements of the
estimator because the estimator has to update the state at a
much faster rate to drive the tracking loops. Additionally, the
incorporation of visual SLAM results in extremely slow drift
in the state estimate during GPS outages and aids in detecting
and eliminating carrier-phase cycle slips, which minimizes the
impact a vector tracking loop would have on performance
over scalar tracking loops. Therefore, a tightly-coupled archi-
tecture for the estimator, where the in-phase and quadrature
accumulations are replaced with pseudorange and carrier-phase
measurements, can be employed instead of an ultra-tightly-
coupled architecture with little loss in performance. The local
clock offset and offset rate from GPS time for both GPS
receivers can also be removed from the state vector. These
parameters were necessary in the ultra-tightly-coupled archi-
tecture because the vector tracking loops needed an estimate
of time, but the tightly-coupled architecture does not require
these parameters, so long as the pseudorange and carrier-phase
measurements for both receivers are aligned in time to at least
GPS standard positioning service (SPS) accuracy. This is a
result of the effects of the local clock canceling out when
forming the double-differenced pseudorange and carrier-phase
measurements in the CDGPS algorithm [12].

D. Separation of CDGPS Processing and Batch Estimator

The third compromise was the separation of CDGPS position
estimation from the batch estimator, which was done primarily
to simplify the design of the batch estimator. In this loosely-
coupled architecture, the CDGPS-based position estimates are
incorporated into the batch estimator instead of the pseu-
dorange and carrier-phase measurements, and the double-
differenced carrier-phase integer ambiguities are removed from
the state vector of the batch estimator. To better understand
the effects of removing the CDGPS algorithm from the batch
estimator, there are two pertinent questions one must ask:

1) How is the estimation of the double-differenced
carrier-phase integer ambiguities affected by incor-
poration into the batch estimator?

2) How much does the accuracy of the state estimate
change when double-differenced carrier-phase mea-
surements with resolved integer ambiguities are in-
corporated into the batch estimator instead of only the
position estimates suggested by those measurements?

As for the first question, it is well understood in literature
on CDGPS that the addition of any constraints significantly
aids the resolution of the integer ambiguities [13]. The vision
measurements are able to constrain pose in a local coordinate
system, which will greatly aid in resolving the integer ambi-
guities (especially during motion). As for the second question,
it is difficult to say how much the state estimate will improve
without implementing this approach. However, the accuracy of
the state estimate is certain to improve at least somewhat. As
opposed to the removal of inertial measurements and transition
to a tightly-coupled architecture discussed previously, the sep-
aration of CDGPS position estimation may have a significant



effect on the performance of the estimator with little change in
the computational burden, provided that the integer ambiguities
are fixed after convergence rather than continually estimated.
Therefore, the authors hope to later reincorporate the CDGPS
algorithm into the batch estimator, which is not a trivial matter.

E. Hybrid Batch/Sequential Approach

Computing global solutions for the keyframe poses and image
feature positions in the batch estimator is a computationally
intensive process that would require immense computational
resources if it were performed at the frame-rate of the camera.
Therefore, an approach to this problem employing a single
batch estimator performing these global solutions for each
frame is impractical for real-time applications. Thankfully, the
highest accuracy for visual SLAM is obtained by employing
a large number of image features, which results in a sparse
structure that can be exploited by the batch estimator, and
a smaller number of geographically-diverse images, as was
shown in [14]. In other words, not all frames are created equal.
The principle of diminishing return applies to frames taken
from nearly the same camera pose. This means that there is
no need to process most of the images in the batch estimator
because incorporating these images into the batch estimator
will result in little improvement in the accuracy of the global
solution. Therefore, new frames should be incorporated into
the batch estimator only when the frame to be incorporated
is, in some sense, geographically diverse from the other
frames already incorporated into the batch estimator. These
geographically-diverse frames are referred to as keyframes
and can be chosen based on a comparison of prior keyframe
poses and an estimate of the current camera pose. As the
system moves around, eventually the number of keyframes will
become too large to perform global solutions in a reasonable
amount of time. At this point, the batch estimator can shed
old keyframes and point features that no longer contribute
significantly to the estimate of the point feature locations
near the system’s current position and save the image feature
measurements for these keyframes for later use if the system
returns to that area.

To be useful as a real-time navigation system, however,
the system must maintain a highly accurate estimate of the
current pose of the camera. This goal is at odds with the
compromise that only select frames be incorporated into the
batch estimator. While the non-keyframes do not contribute
significantly to the accuracy of the global solution, they do
contain valuable information about the pose of the camera
at the time they were taken. To account for this, a second
estimator can be employed that takes as measurements the
non-keyframes and the inertial measurements from the IMU,
which aid in propagating the camera pose between frames.
The second estimator additionally utilizes the estimates of
the image feature locations from the first estimator to tie its
navigation solution to the global map. This approach results
in a federated estimation architecture where one estimator, the
batch estimator discussed in the previous paragraph, is tasked
with mapping the environment and a second estimator is tasked
with tracking the motion of the camera. This is similar to
the approach taken by Klein and Murray’s stand-alone visual
SLAM algorithm called PTAM [11].

One issue with using this federated approach for the estimator,

which is discussed in further detail in section VI, is that the
second estimator cannot maintain cross-covariances between
the image feature positions from the batch estimator without
destroying its ability to operate in real-time. This means the
second estimator cannot hope to truly maintain a consistent
estimate of the state covariance and an ad-hoc inflation of
the covariance matrix must be used. However, these cross-
covariances between image feature positions will typically be
small in practice, which is demonstrated by the simulation
results in Sec. VII.

The system reported in this paper employs a sequential es-
timator or filter as this second estimator. Thus, the estima-
tion architecture presented in this paper describes a hybrid
batch/sequential estimator. One could instead employ a batch
estimator that uses only the last few frames, but incorporating
the IMU measurements into this framework would be some-
what awkward. However, this is a viable option that might be
explored in future work.

F. Proposed Estimation Architecture

Based on the previous discussion, an estimation architecture
was designed that has the potential for real-time operation.
A block diagram of this estimation architecture is shown in
Fig. 1. The blocks on the far left of Fig. 1 are all the sensors
for the system; camera, reference GPS receiver, mobile GPS
receiver, and IMU.

The most important components of this estimation architecture
are the two blocks on the far right of Fig. 1. The upper block
is the batch estimator responsible for creating a high-precision
globally-referenced map of the environment based on image
feature measurements from the keyframes and CDGPS-based
position estimates, when available, interpolated to the time the
keyframes were taken. This process of estimating a map of
the environment based on keyframes in a batch estimator is
commonly referred to as bundle adjustment. In this particular
case, the bundle adjustment is augmented with CDGPS-based
position estimates which anchor the bundle adjustment to a
global coordinate system. The lower block is the sequential
estimator or navigation filter responsible for maintaining an
accurate estimate of the current pose of the camera based
on image feature measurements from non-keyframes, IMU
specific force and angular velocity measurements, and the
image feature position estimates from the bundle adjustment.
In addition to being the primary output of the estimator as
a whole, the camera pose estimated by the navigation filter
is also used in several other components of the estimator to
aid in improving computational efficiency and performance.
These two components of the estimator, bundle adjustment and
navigation filter, are the main focus of the remainder of this
paper.

In addition to the bundle adjustment and the navigation filter,
there are several other components of the estimation architec-
ture that are responsible for producing the measurements that
are later input to the bundle adjustment and the navigation
filter. The CDGPS filter, shown in the middle of Fig. 1, is
responsible for estimating the position of the GPS antenna and
the double-differenced carrier-phase integer ambiguities based
on the pseudorange and carrier-phase measurements from the
reference and mobile GPS receivers. An estimate of the current
camera pose from the navigation filter is provided to the
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Fig. 1. A block diagram of the proposed estimation architecture.

CDGPS filter only for linearization and, thus, does not create
correlation between the CDGPS-based position estimates and
the navigation filter’s pose estimate. This is important because
any correlation between the output of the navigation filter
and the input to the bundle adjustment would destroy the
consistency of the map created by the bundle adjustment and
could cause divergence of the estimator. The feature identifier,
shown to the right of the camera in Fig. 1, finds and matches
features in each image received from the camera. To reduce the
computational burden of the feature identifier, estimates of the
camera pose and image feature positions are provided to the
feature identifier by the navigation filter and bundle adjust-
ment, respectively, which reduces the search space for each
image feature. Although not shown explicitly in Fig. 1, the
feature identifier also identifies new features matched between
multiple keyframes. The keyframe selector, shown to the right
of the feature identifier in Fig. 1, employs a set of heuristics
that determines whether a frame is geographically diverse
enough, relative to the current keyframes, to be considered
a new keyframe. These heuristics are based on the estimate
of the current camera pose provided by the navigation filter.
While these components (CDGPS filter, feature identifier, and
keyframe selector) serve important roles in this estimation ar-
chitecture, they will only be discussed superficially throughout
the remainder of this paper because this is not where the
contributions of this paper lie and there is already a plethora
of literature on these components individually.

III. STATE VECTOR

Before discussing the measurement models and estimation
algorithms for the bundle adjustment and the navigation filter,
it is appropriate to first introduce the state vectors for each
estimator.

A. Bundle Adjustment State

The bundle adjustment is responsible for producing a globally-
referenced map of the environment and, as such, must include
the position of each image feature in the global coordinate
system in its state vector. As a byproduct of producing this
map, the camera poses at each keyframe must also be estimated
in this global coordinate system. Therefore, the state vector for
the bundle adjustment is as follows

XBA =

[

(

xC1

G

)T (

qC1

G

)T

. . .
(

xCN

G

)T (

qCN

G

)T

,

(

x
p1

G

)T
. . .

(

x
pM

G

)T
]T

(1)

where xCi

G is the position of the camera at the ith keyframe in

the global coordinate system, qCi

G is the quaternion representa-
tion of the attitude of the camera at the ith keyframe relative
to the global coordinate system, N is the number of keyframes
in the bundle adjustment, x

pj

G is the position of the jth image
feature in the global coordinate system, and M is the number
of image features in the map.

The Ci frame is the camera frame at the time the ith keyframe
was taken. The camera frame, which will be denoted as C,
is defined as the reference frame centered on the camera lens
with the z-axis pointing down the bore-sight of the camera, the
x-axis pointing to the right, and the y-axis pointing down to
complete the right-handed triad. The G frame is the Earth-
Centered Earth-Fixed (ECEF) coordinate system. Note that
for any attitude representation in this paper (·)AB represents
a rotation from the A frame to the B frame.



B. Navigation Filter State

The navigation filter is responsible for maintaining an estimate
of the current camera pose, which must be included in the
state vector. As part of maintaining an estimate of the current
camera pose, the camera pose after each measurement update
must be propagated forward in time to the next measurement.
This is accomplished through the use of accelerometer and
gyro measurements which include bias terms that must be
estimated. Therefore, the state vector for the navigation filter
is as follows

XF =

[

(

xCG
)T (

vC
G

)T
(

b
f
B

)T
(

qC
G

)T
(bω

B)
T

]T

(2)

where xCG and vCG are the current position and velocity of the

camera in the global coordinate system, qC
G is the quaternion

representation of the current attitude of the camera relative to

the global coordinate system, and b
f
B and bω

B are the current
accelerometer and gyro biases, respectively.

The accelerometer and gyro biases are expressed in the B
frame, which is the IMU’s reference frame. The transform
between the B frame and the C frame, which are both body-
fixed coordinate systems, is assumed to be fixed and either
measured or calibrated ahead of time. This transformation is
given by

(·)C = RB
C (·)B − xB

C (3)

where RB
C is the rotation matrix relating the two coordinate

systems and xB
C is the location of the IMU in the C frame.

While this transformation could be estimated on-the-fly instead
of simply measured or calibrated ahead of time, the transfor-
mation is only weakly observable and does not need to be
known with great precision, since the estimator does not rely
heavily on the accuracy of this transformation.

IV. MEASUREMENT MODELS

This section presents the measurement models employed by
both the bundle adjustment and the navigation filter. As a
matter of notation for this paper, parameters, when substituted
into models, will be denoted with either a bar, (̄·), for a priori

estimates or a hat, (̂·), for a posteriori estimates. Any parameter
without these accents is the true value of that parameter. When
a state vector or an element of a state vector has a delta in
front of it, δ(·), this represents a linearized correction term to
the current value of that state variable. The same accent rules
also apply to delta states.

Before presenting the measurement models, it is appropriate
to discuss how the quaternions representing the attitude of the
camera will be handled within the estimator. Quaternions are a
non-minimal attitude representation that is constrained to have
unit norm. To enforce this constraint, the quaternion elements
of the state are replaced in the state with a minimal attitude
representation, generally denoted as δe, during measurement
updates and state propagation [15]. This is accomplished
through the use of differential quaternions, which represent

a small rotation from the current attitude to give an updated
estimate of the attitude through the equation

q′ = δq(δe)⊗ q (4)

where q′ is the updated attitude estimate, ⊗ represents quater-
nion multiplication, and δq(δe) is the differential quaternion,
which is closely approximated as follows

δq(δe) =

[
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)

]
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] (5)

where cos
(

δθ
2

)

is approximated as
√

1− ||δe||2 instead of
the typical 1 to comply with the quaternion constraint. This
approximation allows for reduction of the quaternion to a
minimal three-element representation, δe, and is useful for
preserving the quaternion constraint in an estimator, as shown
in [15]. During initial convergence of an estimator, the as-
sumption that δθ is small may be violated and could cause
√

1− ||δe||2 to become imaginary. To protect against this
scenario, a less accurate form of the differential quaternion
is used whenever ||δe||2 > 1. This form of the differential
quaternion is

δq(δe) =
1

√

1 + ||δe||2

[

δe
1

]

(6)

This completely specifies the multiplicative update to the
quaternion. All other states are updated in the typical additive
fashion

(·)′ = (·) + δ(·) (7)

A. CDGPS Position Measurements

The CDGPS filter provides estimates of the position of the
GPS antenna that are accurate to within a couple centimeters.
One important observation is that these are not estimates of
the position of the camera lens. Therefore, the position of the
GPS antenna relative to the camera lens, which is assumed to
be fixed and measured or calibrated ahead of time, must be
taken into account. Unlike the transformation between the B
frame and the C frame described previously, it is of prime
importance that the position of the GPS antenna in the C
frame be known as accurately as possible because any errors
in this parameter directly translates to errors in the estimated
state. Thankfully, this parameter is observable provided that
the system is rotated at least somewhat in all directions. If it
is not possible to measure this vector to at least millimeter
accuracy, then a calibration procedure can be defined using
the bundle adjustment approach presented in this paper with
a state vector that is augmented with the position of the GPS
antenna in the C frame.

These CDGPS position estimates can be modeled as follows



xAG = hx
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where hx (·) is the non-linear measurement model for the
CDGPS position estimates, R(·) is the rotation matrix cor-
responding to the argument, xAC is the position of the GPS
antenna in the C frame, and wx is zero-mean Gaussian white
noise with covariance matrix given by the CDGPS filter. The
non-zero partial derivatives of this model with respect to the
state variables are
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where I is the identity matrix and [(·)×] is the cross product
equivalent matrix of the argument defined as

[x×] =

[

0 −x3 x2

x3 0 −x1

−x2 x1 0

]

(11)

where xi is the ith element of x.

B. Image Feature Measurements

To simplify the model for the image feature measurements,
it is assumed that a calibrated camera is used and that any
distortion caused by the lens is removed by passing the raw
measurements through the inverted distortion model prior to
passing the measurements to the estimators. This allows the
bundle adjustment and the navigation filter to be ambivalent
to the distortion model used for the camera. For the simulations
presented in Sec. VII, the field-of-view (FOV) model for a fish-
eye lens from [16] was employed using parameters calibrated
from a real camera using the calibration procedure reported
in [11]. The primary effect of using the distortion model in
the simulations is to properly model the error covariances on
the measurements.

Once the lens distortions have been removed from the raw
measurements, what remains is the result of a perspective
projection. A perspective projection, also known as a central
projection, projects a view of a three-dimensional scene onto
an image plane normal to the camera bore-sight located 1
unit in front of the camera through rays connecting three-
dimensional locations and a center of projection. A perspective
projection can be expressed mathematically as

s
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I = hs
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x
pj

C

)

+ wpj
=

[

x
pj

C

z
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C

y
pj

C

z
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C

]T

+ wpj
(12)

where s
pj

I is the distortion-free image feature measurement
for the jth feature, hs(·) is the perspective projection function,
wpj

is zero-mean Gaussian white noise with covariance matrix

given by the feature identifier, and x
pj

C is related to the state
variables through the equation
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The non-zero partial derivatives of this model with respect to
the state variables are
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where
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C. Inertial Measurements

The inertial measurements consist of 3-axis accelerometer
measurements and 3-axis gyro measurements and are used in
the navigation filter to aid in propagating the state forward
in time. The measurement models presented in this section
simply model the relations between these measurements and
the acceleration and angular velocity of the IMU with respect
to the IMU frame using state variables and should not be
interpreted as modeling the dynamics of the state. Filter state
dynamics models will be presented in Sec. VI-B.

1) Accelerometer Measurements: A subtle, but extremely im-
portant, point regarding accelerometers is that they measure the
specific force they experience and not the acceleration. This
means that accelerometer measurements include gravitational
acceleration, which must be subtracted out. A walking bias
term, which was included in the filter’s state vector, is also
present in these measurements and is typically modeled by
the first-order Gauss-Markov process

ḃ
f

B = ν
f
2 (18)

where ν
f
2 is zero-mean Gaussian white noise with a diagonal

covariance matrix, σ2
f2
I . The covariance of ν

f
2 can be obtained

from the IMU specifications. The acceleration of the IMU with
respect to the IMU frame can be modeled as

aBG = R
(
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(
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− GE
∣
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3 xCG + ν
f
1 (19)



where fB is the accelerometer measurement, GE is the grav-

itational constant of Earth, and ν
f
1 is zero-mean Gaussian

white noise with a diagonal covariance matrix, σ2
f1
I . The

covariance of ν
f
1 can be obtained from the IMU specifications.

Note that using xCG in the gravity term is an approximation to

xC
G + R

(

qC
G

)

xBC , but the term R
(

qC
G

)

xB
C is extremely small

compared to xC
G and, thus, negligible.

2) Gyro Measurements: Like the accelerometer measurements,
the gyro measurements have a walking bias term, which was
included in the filter’s state vector. This bias term is also
typically modeled by the first-order Gauss-Markov process

ḃ
ω

B = ν
ω
2 (20)

where ν
ω
2 is zero-mean Gaussian white noise with a diagonal

covariance matrix, σ2
ω2
I . The covariance of νω

2 can be obtained
from the IMU specifications. The angular velocity of the IMU,
which is also the angular velocity of the camera, can be
modeled as

ω
C
G = R

(

qC
G

)

RB
C (ωB − bω

B) + ν
ω
1 (21)

where ωB is the gyro measurement and ν
ω
1 is zero-mean Gaus-

sian white noise with a diagonal covariance matrix, σ2
ω1
I . The

covariance of νω
1 can be obtained from the IMU specifications.

V. BUNDLE ADJUSTMENT

Bundle adjustment is a batch estimation procedure employed
by many visual SLAM algorithms that takes advantage of
the inherent sparsity of the visual SLAM problem. Due to
exploiting this sparse structure, the computational complexity
of bundle adjustment is linear in the number of image features
and cubic in the number of images included in the bundle
adjustment. Compared to a sequential estimator, which has
computational complexity that is cubic in the number of image
features and linear in the number of images, this is a significant
improvement because the highest accuracy per CPU cycle
for the visual SLAM problem comes from including more
image features rather than images [14]. In other words, the
compromise of reducing the number of frames incorporated
into the bundle adjustment to maintain real-time operation is
preferred to reducing the number of image features, which
is required for a sequential estimator to operate in real-time.
As discussed in Sec. II-E, the frames included in the bundle
adjustment are selected based on their geographic diversity and
are referred to as keyframes.

The bundle adjustment algorithm presented in this section
also incorporates CDGPS position estimates interpolated to
the keyframes, which serve to anchor the bundle adjustment
solution to a global reference frame. For ease of notation,
the equations presented in this section will assume that every
keyframe has an associated CDGPS position estimate and
every image feature is seen in each keyframe. Obviously, this
is not a requirement of the bundle adjustment, and the terms
in these equations corresponding to any non-existent mea-
surements are simply ignored by the bundle adjustment. For
observability of the globally-referenced visual SLAM problem,
four non-coplanar image features seen in three keyframes, that

have corresponding globally-referenced position estimates, is
sufficient provided that the camera positions for these three
keyframes are not collinear [12].

This section begins by defining the robust objective function
to be minimized by the bundle adjustment. This objective
function is linearized and conditions for a minimum of the
objective are presented. Then, the sparse Levenberg-Marquardt
algorithm used to minimize the objective function is presented.
Finally, a novel technique for initialization of the globally-
referenced bundle adjustment is detailed.

A. Objective Function

The objective function most commonly used in estimation
algorithms is the sum of the squares of the measurement
residuals, which is commonly referred to as the least-squares
objective function. The cost function for a least-squares esti-
mator is defined as

ρLS(r) =
r2

2
(22)

where r is the normalized measurement residual. This cost
function performs well for the CDGPS position measurements
because the measurement error distribution is well approxi-
mated by a normal distribution.

The image feature measurements, on the other hand, often have
large outliers, due to mismatches of the point features and
moving point features in the images, and thus the measurement
error distribution has much larger tails than a normal distri-
bution. This necessitates the use of a cost function which is
robust to outliers in order to obtain an accurate estimate of the
state. Ideally, outliers should be entirely suppressed. This can
be accomplished using the Tukey bi-weight cost function [17]
given as

ρT (r) =
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6
; |r| > c

(23)

where c is a constant typically set to 4.6851 in order to
obtain 95% asymptotic efficiency on the standard normal
distribution. However, the Tukey bi-weight cost function is not
convex, which can lead to difficulties with convergence if the
initial guess for the state is too far from the global minimum
of the objective function. Another option is the Huber cost
function [17] which does not completely suppress outliers, but
is convex and significantly reduces the effect of outliers. The
Huber cost function is given as

ρH(r) =
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
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

r2

2
; |r| ≤ k

k

(

|r| − k

2

)

; |r| > k

(24)

where k is a constant typically set to 1.345 in order to obtain
95% asymptotic efficiency on the standard normal distribution.



Huber proposed in [17] that one could begin with the Huber
cost function to obtain an estimate of the state with the outliers
somewhat suppressed and then perform a few iterations using
the Tukey bi-weight cost function to obtain an estimate of
the state with completely suppressed outliers. Once enough
keyframes are obtained, the initial guesses for the pose of new
keyframes and the positions of new point features become so
precise that there is no need to begin with the Huber cost
function because the initial guesses are close enough that the
non-convexity of the Tukey bi-weight cost function is not an
issue. At this point, one can transition to simply starting with
the Tukey bi-weight cost function. This will be the approach
taken in this paper.

In summary, the estimation procedure will first employ the
objective function given as
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where ∆xAi

G and ∆s
pj

Ii
are the normalized measurement resid-

uals defined as
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where x̃
Ai

G and s̃
pj

Ii
are the actual CDGPS position

and image feature measurements, respectively, and R
−1/2

x
Ai
G

and R
−1/2

s
pj

Ii

are the inverse of the Cholesky factoriza-

tion of the measurement covariance matrices for the
CDGPS position and image feature measurements, re-
spectively. After the estimation procedure converges to
a solution to the problem argminXBA∈S f1 (XBA) where
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the objective function is changed to the following
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The estimation procedure then determines the solution to
the problem argminXBA∈S f2 (XBA) using the solution to
argminXBA∈S f1 (XBA) as an initial guess. After enough
keyframes are obtained, the estimation procedure will simply
skip minimizing the first objective function and go straight to
the second.

B. Linearized Objective

The optimization problem defined in the previous section is
a non-linear, equality-constrained optimization problem. The
equality constraints on the quaternions are enforced by reduc-
ing the quaternion to minimal form during the iterative updates,

as described in Sec. IV, resulting in an unconstrained, non-
linear optimization problem at each iteration. At each iteration
of the solution procedure, the objective function is linearized
about the current best estimate of the state to obtain a linear,
unconstrained optimization problem that will be solved at each
iteration. The normalized measurement residuals are linearized
using the partial derivatives of the measurement models defined
in Sec. IV as follows
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Since the objective function is being linearized, the terms
involving the image feature measurements in both objectives
can be equivalently written as weighted least-squares terms of
the form
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where wV (·) is a weight function for the vision measurements
that is defined based on the cost function. For the Huber and
Tukey cost functions, the corresponding weight functions are

wH(r) =

{

1 ; |r| ≤ k
k
|r| ; |r| > k (32)
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C. Conditions for a Minimum of the Linearized Objective

The first-order necessary conditions for a minimum of the
objective function state that the derivative with respect to the
state must be zero. This condition results in the following
set of linear equations, commonly referred to as the normal
equations, for the linearized objective function
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The terms in the summations in Eq. 34 are extremely sparse
and should be treated as such for computational efficiency by
ignoring all known zero elements in the summation. The terms
corresponding to the CDGPS measurements only have non-
zero elements in the rows and columns corresponding to the
camera pose for that measurement. The terms corresponding to
the image feature measurements only have non-zero elements
in the rows and columns corresponding to the camera pose
and point feature for that measurement. After performing the
summations, the resulting matrix equation is of the form

[

U W
WT V

] [

δc
δp

]

=

[

ǫc

ǫp

]

(35)

where δc and δp represent the portion of the state update
vector corresponding to the camera poses and the point feature
locations respectively. The matrices U and V in Eq. 35 are both
block diagonal with U having six by six blocks corresponding
to each camera pose and V having three by three blocks
corresponding to each point feature location. The matrix W is
dense and corresponds to the cross terms between the camera
poses and the point features observed from those camera poses.

The matrix coefficient in Eq. 35 is also the second derivative
of the objective function with respect to the state. The second-
order sufficient conditions for a minimum of the objective
function state that the second derivative of the objective func-
tion must be positive definite. This second derivative matrix
is equal to the sum of positive semi-definite matrices and is
thus at least positive semi-definite. So long as the full state is
observable, this matrix will be positive definite. Conditions for
observability are stated in [12] and will be repeated here with-
out proof. Sufficient conditions for observability of the camera
poses are that four non-coplanar point features are observed in
three images taken from camera locations that are not collinear.
Once the sufficient conditions for observability of the camera
poses are satisfied, a necessary and sufficient condition for
observability of the remaining point feature locations is that
each point feature is observed in at least two images where
the lines between each camera location and the point feature
location are not the same line. Therefore, the solution to Eq. 35
provides the minimizer for the linearized objective function at
each iteration provided that these conditions for observability
are satisfied.

D. Sparse Levenberg-Marquardt Algorithm

This optimization problem was solved using the sparse
Levenberg-Marquardt (LM) algorithm from Appendix 6
of [18]. This algorithm first inflates the diagonal elements of
U and V by a multiplicative factor as follows

U∗
ij =

{

(1 + λ)Uii ; i = j
Uij ; otherwise

V ∗
ij =

{

(1 + λ)Vii ; i = j
Vij ; otherwise

(36)

Upon completion of the iteration, the value of the objective
function is checked to see if it decreased. If the objective
increased, then λ is multiplied by a certain factor and the
iteration is repeated. This has the effect of decreasing the step
size and bringing the solution closer to that which would be
obtained if each state variable was optimized independently. If
the objective decreased, then λ is divided by the same factor
and the iteration is accepted. A common value for the update
factor for λ is 10.

To solve Eq. 35 after replacing U and V with U∗ and V ∗,
the algorithm exploits the block diagonal structure of V ∗ in
Eq. 35 by pre-multiplying the equation by a special matrix as
follows
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where the matrix (V ∗)
−1

is a block diagonal matrix composed
of three by three blocks that are the inverse of the correspond-
ing blocks in V ∗. Therefore, the state update vector can be
determined as follows

δc =
(

U∗ −W (V ∗)
−1

WT
)−1 (

ǫc −W (V ∗)
−1

ǫp

)

δp = (V ∗)
−1 (

ǫp −WT δc
)

(38)

If implemented properly to exploit the sparsity of (V ∗)
−1

, this
algorithm has computational complexity that is linear in the
number of point features and cubic in the number of camera
poses. With only a few minor changes, one could rewrite this
algorithm such that it has computational complexity that is
linear in the number of camera poses and cubic in the number
of point features. However, the number of point features being
tracked at one time tends to number in the thousands for
visual SLAM algorithms, while the number of camera poses
is typically kept in the tens or hundreds range. This is based
on the fact that tracking more point features results in a higher
accuracy than retaining more keyframes as shown by Strasdat
in [14].

Convergence of the solution is determined by comparing the
norm of the state update vector and the change in the objective



at the end of each iteration to threshold values. If both
threshold checks are passed, then the algorithm is declared
to have converged and the covariance of the state estimate is
computed. This covariance is given by the following equation

PBA =

[

Pcc −PccWV −1

−V −TWTPT
cc V −TWTPccWV −1 + V −1

]

(39)

where Pcc =
(

U −WV −1WT
)−1

. Note that the entire
covariance matrix is not computed by the bundle adjustment
since only the 3×3 blocks on the diagonal of the bottom right
sub-matrix are required by the navigation filter, which will be
discussed in Sec. VI. Computing the entire covariance matrix
would add significantly to the computational requirements
of the bundle adjustment. By only computing the necessary
elements of the covariance matrix, the covariance computation
is comparable to one additional LM iteration.

E. Initialization

A convenient and highly accurate method for initializing an
algorithm for combined CDGPS and visual SLAM is to begin
with a stand-alone visual SLAM algorithm. A stand-alone
visual SLAM algorithm, such as PTAM [11], is capable of
determining the camera poses and point feature locations to
high accuracy in an arbitrarily-defined local reference frame up
to a scale factor. This stand-alone visual SLAM mode can be
used on start-up, when CDGPS position measurements are not
yet available, and then transitioned into a combined CDGPS
and visual SLAM mode.

In [19], Horn derived a closed form solution to the least squares
problem of estimating the similarity transformation relating
two coordinate systems given estimates of the locations of
at least three points in space in both coordinate systems.
This transform could be applied directly to the initialization
problem at hand using the camera position estimates from the
stand-alone visual SLAM algorithm and the CDGPS position
measurements if the camera and the GPS antenna were col-
located. However, this is obviously physically unrealizable.
The distance between the camera and GPS antenna could
also easily be accounted for by shifting the camera position
estimates from the stand-alone visual SLAM algorithm to the
location of the GPS antenna if the coordinate frame for the
visual SLAM estimates did not have a scale factor ambiguity,
but this is not the case. Therefore, a modified form of the Horn
transform must be derived that accounts for this separation
between sensors.

For this modified form of the Horn transform, it is assumed
that the vector between the camera and the GPS antenna is
known in the C frame and attitude estimates of the system
are available in the vision frame (i.e., the frame defined by
the stand-alone visual SLAM algorithm), which is true for
stand-alone visual SLAM. Given N stand-alone visual SLAM
pose estimates and CDGPS position estimates, the objective
function to be minimized is given as
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where s, xV
G , and qV

G are the scale-factor, translation, and
rotation, respectively, parameterizing the transform from the

vision frame to the global coordinate system and x̃
Ci

V and q̃
Ci

V
are the position and attitude estimates, respectively, from the
stand-alone visual SLAM algorithm. Expressing the error in
a symmetric form with respect to the scale factor in Eq. 40
has the effect of weighing the errors in the measurements
from both coordinate systems equally and results in a more
convenient expression for the resulting solution for the trans-
form [19].

The method for solving this estimation problem follows the
same procedure as in [19], but results in some additional
complications that prevent a completely analytical solution.
First, the measurements are averaged and re-expressed as
deviations from these averages as follows
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x́
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G = x̃
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G − µxA
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V = x̃
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)

xAC − µxA
V

(42)

Substituting these relations into Eq. 40 for the measurements

and noting that the linear terms in x́
Ai

G , x́
Ci

V , and x́
Ai

V sum to
zero results in the equation
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The second term in Eq. 43 is the only term that contains the
translation, xV

G , and is a quadratic form. Therefore, this term
can be minimized by setting the translation to

xVG = µxA
G
−R

(

qV
G

)

(

sµxC
V
+ µxA

V

)

(44)



However, this relation for the translation depends on the
rotation and scale factor, which must still be determined. It
is interesting to note that the translation is, quite sensibly,
just the difference in the means of the positions of the GPS
antenna in both coordinate systems. This is the same result as
the original Horn transform from [19] with the addition of the
term corresponding to the GPS antenna location relative to the
camera.

After substituting this solution for the translation into Eq. 43,
only the first term remains. This term is then expanded and
the scale factor is pulled out of the summations resulting in
the following
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1
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(45)

where
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The scale factor can be determined by completing the square
and setting that term equal to zero. This results in the following
relation for the scale factor
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Unlike the original Horn transform [19], this solution for
the scale factor depends on the rotation because of the term
corresponding to the GPS antenna location relative to the
camera. However, the solution for the original Horn transform
is otherwise the same. It is interesting to note that the solution
for the scale factor is, quite sensibly, simply a ratio of
metrics describing the spread of the camera positions in both
coordinate systems.

After substituting the solution for the scale factor into the
objective function, this leaves an objective function that is only
a function of the rotation, which is given by the equation

g =
√

SVSG −D (50)

To aid in solving for the rotation, a useful relation between
rotation matrices and quaternions is employed that is given as
follows

(x1)
T
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T
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= qT {x2}T [x1]q

(51)

where [·] and {·} are the quaternion left and right multiplication
matrices, respectively, which, in the case of position vectors,
are given as
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Substituting this relation into the expanded objective function
results in
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In general, there is no analytic solution to the problem of
determining the minimizer of Eq. 54. However, it is safe to
assume that the solution will be close to the solution of finding

the minimizer for −
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)T
(

∑N
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}T [
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)

qV
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is the result from the original Horn transform from [19]. This

is primarily due to x́
Ci

V being greater than x́
Ai

V in realistic
scenarios because the separation between sensors will be
smaller than the distance the whole system moves. The solution
to this reduced problem is the eigenvector corresponding to the

largest eigenvalue of the matrix
∑N

i=1

{

x́
Ci

V

}T [

x́
Ai

G

]

, which is

used as an initial guess for an iterative estimator that uses the
Newton-Raphson method to determine the rotation. Although
difficult to interpret from Eq. 54, it can easily be seen from the
solution to the original Horn transform in [19] that the rotation
is, quite sensibly, the direction that best aligns the deviations
from the means of the camera positions in both coordinate
systems.

Once the estimate for the rotation is determined by the iterative
estimator, the scale factor and translation can be computed
directly from Eqs. 49 and 44 respectively. This estimate of
the similarity transform relating the V frame to the G frame
can be used to transform the camera poses estimated by the
stand-alone visual SLAM algorithm into globally-referenced
pose estimates, which are then used as an initial guess for the
bundle adjustment.



VI. NAVIGATION FILTER

While the bundle adjustment is responsible for maintaining a
high-precision, globally-referenced map of the environment,
it cannot be relied upon for maintaining an estimate of the
current pose of the camera due to real-time constraints. Instead,
a navigation filter is employed that maintains an estimate of the
current pose of the camera using image feature measurements
from non-keyframes and inertial measurements from an IMU
for propagation of system dynamics. The navigation filter also
leverages the map of the environment maintained by the bundle
adjustment so that the image feature measurements can be tied
to a global reference. In other words, the navigation filter treats
image features as fiduciary markers, but with some known
error distribution. The remainder of this section outlines the
algorithm used for the navigation filter.

A. Measurement Update Step

During the measurement update step, the filter state is tem-
porarily augmented with the image feature positions corre-
sponding to the features with measurements in the current
frame. This temporary augmentation of the state vector allows
the estimates of the image feature positions to be treated
as a prior with error covariances provided by the bundle
adjustment. Taking this approach allows the information from
the measurement update to be weighted properly between the
filter state and the image feature positions.

This type of state augmentation would normally destroy the
ability of the filter to perform in real-time. However, there are
several steps that can be taken with little loss in performance
to reduce the computational burden of the filter that results in
only about twice the computational burden over simply taking
the image feature position estimates from bundle adjustment
as “truth” (i.e., conditioning on the image feature position
estimates from bundle adjustment). These steps are as follows

1) The cross-covariances between image feature position
estimates from bundle adjustment can be neglected.
If these cross-covariances were retained the filter
would be required to invert a dense 3M×3M matrix
at most measurement updates because different fea-
tures would be seen in different frames. This would
make real-time operation impossible. By neglecting
cross-covariances, the filter only needs to invert M
3 × 3 matrices, which can also be stored for use
in all frames between bundle adjustment updates.
Additionally, these cross-covariances between image
feature position estimates are small provided that the
system moves a fair amount (∼ 10 m), which is
required for good observability anyways. This point
is demonstrated by the simulations in Sec. VII.

2) Since the cross-covariances between image feature
position estimates from bundle adjustment are being
neglected, the normal equations for the measurement
update have nearly the same sparse structure as
the bundle adjustment normal equations discussed in
Sec. V-D. By exploiting the sparse structure of the
normal equations, a 15×15 system of linear equations
corresponding to the filter state is the largest system
of equations that must be solved. Under the scenario
where the feature position estimates from bundle

adjustment were taken as “truth,” the filter would also
be required to solve a 15× 15 system of equations.

3) The image feature positions are marginalized out
of the state after the measurement update and not
updated within the measurement update. If the image
feature positions were maintained in the state the
sparsity of the next measurement update would not
be preserved and the filter would need to compute the
full covariance matrix for the augmented state. Since
the feature position measurements are not maintained
in the filter between measurement updates, there is
also no need to compute the measurement update for
these variables.

However, this convenience of reduced computational burden
does not come free. The price paid for this ability to operate
the filter in real-time is that the filter covariance estimate is
no longer consistent because cross-covariances between the
image feature positions were ignored. This effect should be
small provided that the system is moved a fair amount (∼
10 m) and the environment is rich with visually recognizable
features. An ad-hoc method, such as fudge factors [20], can
be used to slightly inflate the covariance in an attempt to
maintain filter consistency. Simulations can be used to tune
these fudge factors. Note that, while the filter’s estimate may
not be consistent, the bundle adjustment is not affected by this
issue and maintains a consistent estimate of the map.

Given these considerations, the normal equations for the mea-
surement update step are given as
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where P̄F and P̄p are the a priori covariance matrices for the
filter state and the image feature positions respectively. To
reiterate, Pp is approximated as block diagonal with 3 × 3
blocks corresponding to each point feature position. After
performing the summations, these normal equations are given
as

[

UF WF
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F VF

] [

δXF

δp

]

=

[

ǫF

ǫp

]

(56)

These equations are of nearly the same form as Eq. 35 with the
only difference being that the upper left block corresponding
to the filter state is dense. This means that the same sparse
transformation applied during the bundle adjustment in Eq. 37
can be applied to the filter measurement update. Therefore, the
solution to the normal equations for the filter state update and
covariance is given by the equations

δXF =
(

UF −WFV
−1
F WT

F

)−1 (
ǫF −WFV

−1
F ǫp

)

(57)

PF =
(

UF −WFV
−1
F WT

F

)−1
(58)



B. Propagation Step

The propagation step utilizes accelerometer and gyro measure-
ments to aid in the propagation of the filter state. The models
for these measurements were defined in Sec. IV-C, but the full
state dynamics have yet to be defined. Dynamics equations
for the accelerometer and gyro biases were given in Eqs. 18
and 20. The time derivative of the differential quaternion is
simply

δė
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ω
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(59)

The acceleration is significantly more complicated because the
IMU and camera are not collocated, which means that the
angular velocity of the system couples into the acceleration
when expressed using the accelerometer measurements. From
rigid body kinematics, the acceleration of the camera can be
derived as
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(60)

where ω
E
G and α

E
G are the angular velocity and acceleration of

the Earth, respectively, and α
C
G is the angular acceleration of

the camera. This equation can be slightly simplified by recog-
nizing that the angular acceleration of the Earth is negligibly
small and the angular acceleration of the camera, while not
always small, will not be large over significant time intervals
and will roughly average to zero. Removing these terms and
substituting the accelerometer and gyro measurement models
into Eq. 60 results in the equation
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To summarize, the dynamics model for the full state is given
by
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ḃ
ω

B



















=















vC
G

aC
G

ν
f
2

1
2ω

C
G

ν
ω
2















(62)

Since the time between IMU updates is small (∼10 ms), Euler
integration can be used to determine the state update from time
k to k+1 as

δX̄F (k) = ∆t ẊF
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X̂F (k),ũ(k+1)
(63)

where ∆t is the time interval between time k and k+1 and ũ(·)
is the IMU measurement vector given as

ũ(k) =
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(64)

To determine the propagated covariance, the state transition
matrix and process noise Jacobian matrix must first be deter-
mined as
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The discrete time process noise covariance matrix is then given
as

Q(k) =
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Finally, the propagated covariance matrix is computed using
the standard covariance propagation equation for the Kalman
filter given as

P̄F (k + 1) = F (k)PF (k)F
T (k) +Q(k) (68)

VII. BUNDLE ADJUSTMENT SIMULATIONS

The bundle adjustment algorithm detailed in Sec. V was
implemented and used in a series of simulations designed to
probe the limits of its performance. First, the estimability of
the bundle adjustment state was probed under a simplistic
simulation scenario designed to demonstrate the behavior of
the estimator. Next, a more realistic simulation scenario was
created where a user carrying the system began outside a
building, walked through a hallway in the building with a
single turn, and came out the building on the other side.
All simulations assumed a 2 cm standard deviation for the
CDGPS position estimates and a 1 pixel standard deviation
for the image feature measurements. These are reasonable
values for the errors on both types measurements. Additionally,
the vector between the camera and GPS antenna was set to
xA
C = [ 0.1002 −0.1664 −0.0267 ]m, which is represen-

tative of a real prototype system, to make the simulations more
representative of actual performance.



A. Estimability Simulations

This simplistic simulation scenario was designed to demon-
strate the estimability of the bundle adjustment state. The
scenario involves a single cloud of point features, which are
uniformly distributed in a sphere with radius rp, centered on a
point a distance d away from the center of a cloud of camera
positions, which are uniformly distributed in a sphere with
radius rc. The camera was pointed toward the center of the
cloud of point features with some added random pointing
dither.

These simulations were all performed using 200 point features
and 25 keyframes. The addition of more point features and
keyframes would slightly increase the accuracy of the bundle
adjustment’s solution (up to some geometric limit), but this is
not as interesting as varying the other simulation parameters
because there is only marginal benefit for such a simplistic
scenario.

After fixing the number of point features and keyframes, there
are three simulation parameters which could be varied. These
parameters are (1) the scale of the simulation preserving the
ratio of rp : d : rc, (2) the ratio rc : d, and (3) the ratio
rp : d. A ratio of 1 : 4 was used in all simulations for the third
parameter, rp : d, because there exists a symmetry between
this parameter and rc : d, which was allowed to vary, that
makes varying both of them unenlightening. The first set of
simulations keep the ratio rc : d constant at a value 1 : 2
and vary the scale of the simulation, while the second set of
simulations hold the scale constant with d = 20m and vary
the motion of the camera represented by the ratio rc : d.

1) Simulations Varying Scale: Simulations were performed for
a set of values of d between 0.5 m and 200 m, while preserving
the ratio of rp : d : rc as 1 : 4 : 2. Figure 2 shows a scatter plot
of the camera pose errors from these simulations as a function
of d. The norms of the position errors are shown as blue
asterisks with the left axis denoting their value. The attitude
errors are shown as red pluses with the right axis denoting
their values. Figure 3 shows a scatter plot of the norms of
the point feature position errors from these simulations as a
function of d.

Above about d = 20m, the camera position and attitude errors,
from Fig. 2, are roughly invariant to scale and the camera
position errors are representative of the 2 cm standard deviation
used for each dimension of the CDGPS position estimates.
This means that, over this region, the camera position estimates
are directly limited in accuracy by the accuracy of the CDGPS
position estimates. It is important to note the remarkably small
attitude error over this region, which is less than 0.1◦ in
most cases. This demonstrates the power of this technique for
precise navigation. Unlike the camera pose errors, the point
feature position errors decrease linearly with the scale, even
in the region above about d = 20m. This is a result of the
point feature position estimates being based purely on bearing
measurements, which are invariant to scale. Therefore, the
point feature position errors must decrease linearly with the
scale.

Below about d = 10m, the estimability of the problem begins
to degrade. The attitude errors grow significantly (to over 1◦

for d ≤ 1m) and become highly correlated between frames, as
can be seen by how tightly packed the attitude errors are on

Fig. 2. A scatter plot of the camera pose errors from the simulations as a
function of d, while preserving the ratio of rp : d : rc as 1 : 4 : 2. The norms
of the position errors are shown as blue asterisks with the left axis denoting
their value. The attitude errors are shown as red pluses with the right axis
denoting their values.

Fig. 3. A scatter plot of the norms of the point feature position errors from
the simulations as a function of d, while preserving the ratio of rp : d : rc
as 1 : 4 : 2.

the scatter plot. This is because, as the motion of the system
decreases, the errors in the CDGPS position estimates start to
become significant relative to the distance moved. Therefore,
it becomes more difficult to tie the visual SLAM solution to
the global coordinate system, resulting in a “bias” between
the more accurate local solution normally provided by stand-
alone visual SLAM and the global reference frame. This same
phenomenon is evident in the point feature position estimates
in Fig. 3 for d = 0.5m and d = 2m.

A clearer picture of these correlated errors can be seen in the
left panel of Fig. 4, which shows the point feature position
errors in each dimension for the scenario where d = 2m
with the x errors represented by blue asterisks, the y errors



Fig. 4. The left panel shows the point feature position errors in each
dimension for the scenario where d = 2m and the ratio of rp : d : rc
is 1 : 4 : 2. The x errors are represented by blue asterisks. The y errors
are represented by red pluses. The z errors are represented by green x’s. The
right panel shows the point feature position errors in each dimension under
the modified simulation scenario where the camera and point feature positions
are spread out over an extra 10 m laterally in one direction.

represented by red pluses, and the z errors represented by green
x’s. This correlation is simply an artifact of this simplistic
simulation scenario. In reality, one would typically walk by
these close-up point features fairly quickly and obtain much
better attitude estimates and uncorrelated estimation errors.
This fact is partially demonstrated by the right panel of Fig. 4
which displays the point feature position errors under the
modified simulation scenario where the camera and point
feature positions are spread out over an extra 10 m laterally
in one direction. Under this modified scenario, the errors are
no longer highly correlated and, although not shown directly,
the attitude estimates become much more precise as well.

2) Simulations Varying Camera Motion: Having studied the
behavior of the estimator by varying the scale of the problem
as a whole, it is informative to now fix the scale and vary
the range of motion of the system. The scale of the problem
was set by fixing d = 20m. Then, the range of motion of the
camera was varied from 1% to 75% of d while holding the
size of the point cloud constant at rp = 5m. Figure 5 shows a
scatter plot of the camera pose errors from these simulations
as a function of rc/d. The norms of the position errors are
shown as blue asterisks with the left axis denoting their value.
The attitude errors are shown as red pluses with the right axis
denoting their values. Figure 6 shows a scatter plot of the
norms of the point feature position errors normalized by d
from these simulations as a function of rc/d.

It can be seen from Fig. 5 that below about rc/d = 0.2 the
attitude accuracy begins to degrade while positioning accuracy
remains roughly constant. This is because the positioning
accuracy is directly limited by the accuracy of the CDGPS
position estimates for this value of d, as demonstrated in
the previous section, while the attitude accuracy is heavily
dependent upon the geometry of the problem as a whole.
Below about rc/d = 0.2, the estimability of the orientation

Fig. 5. A scatter plot of the camera pose errors from the simulations as a
function of rc/d with d = 20m and rp = 5m. The norms of the position
errors are shown as blue asterisks with the left axis denoting their value. The
attitude errors are shown as red pluses with the right axis denoting their values.

Fig. 6. A scatter plot of the norms of the point feature position errors
normalized by d from the simulations as a function of rc/d with d = 20m
and rp = 5m.

of the system about roughly the vector connecting the centers
of the cloud of point features and cloud of camera positions
begins to degrade. This results in an attitude “bias” about this
direction which can be seen by how tightly packed the attitude
errors are on the scatter plot for small values of rc/d. It is
interesting to note that the pose accuracy, shown in Fig. 5,
is invariant to scale above about d = 20m, which is the
region where the positioning accuracy is directly limited by
the accuracy of the CDGPS position estimates.

It can be seen from Fig. 6 that the point feature position
errors scale linearly with the decrease in camera motion.
Additionally, it is interesting to note that the normalized point
feature position errors are invariant over all scales. Therefore,
as a rule of thumb, the range of camera motion should be



Fig. 7. A diagram showing the layout and camera trajectory for the hallway
simulation with the x-axis pointing right, the y-axis pointing into the page,
and the z-axis pointing up. The camera trajectory is shown in blue (starting
from the bottom left and ending at the top right, while a road and walls of
buildings are shown in black and red respectively. Black dashed lines outline
four regions of the environment which will be referenced later in the simulation
results. These regions are (A) the area the camera is in before entering the
hallway, (B) the first leg of the hallway up to and including the turn, (C)
the second leg of the hallway, and (D) the area where the camera exits the
hallway.

about 40% of the depth or greater in order to obtain point
feature position accuracy to 1% of the depth, as can be seen
in Fig. 6. This rule of thumb could be useful in practice when
collecting data for the purpose of accurate reconstruction of
the environment.

B. Hallway Simulation

Figure 7 shows the layout of this scenario. The camera
trajectory, shown in blue in Fig. 7, begins in the bottom left
corner of the figure, moves through a hallway, and comes out
the other side in the top right. The simulated visual features
in this environment included trees lining the road (outlined in
black in Fig. 7), the center stripe in the road, windows on
the sides of the buildings, entrances and exits to the hallway,
doors and posters on the walls inside the hallway, and scattered
features on the ceiling of the hallway. In total, there were 1310
features observed in at least 5 keyframes which were included
in the bundle adjustment. Keyframes were taken every 0.25
m while moving and every 30◦ during a turn, resulting in
242 keyframes in total. Uniformly distributed random dither
was added to the trajectory in each direction for the position
and attitude to simulate human motion. This represents a
challenging scenario for the system because there is little
lateral motion to improve observability while in the hallway.
For convenience, four regions of the simulation environment,
shown in Fig. 7 outlined with black dashed lines, are defined
to aid in discussion of the results. These regions are (A) the
area the camera is in before entering the hallway, (B) the first
leg of the hallway up to and including the turn, (C) the second
leg of the hallway, and (D) the area where the camera exits
the hallway.

Fig. 8. A plot of the norms of the camera position errors for the hallway
simulation for each of the three cases with case 1 represented by green
asterisks, case 2 represented by red pluses, and case 3 represented by blue
x’s. The periods when the camera is in the various regions of the simulation
environment are delineated by vertical black lines and labeled.

Three different cases were run for this scenario regarding the
availability of CDGPS position estimates. In the first case,
CDGPS position estimates were available at every keyframe.
This serves to demonstrate the best performance one could
expect from the algorithm in this geometry and acts as a control
for the two more interesting cases. The second case assumes
that CDGPS position estimates are unavailable for the entire
dataset after the camera enters the hallway. This serves to
demonstrate the drift one would expect from the system as
it moves around indoors. The third and final case assumes that
CDGPS position estimates become available again as soon as
the system exits the hallway. This serves to demonstrate how
the bundle adjustment fixes up the estimates of the poses of
previous keyframes and the positions of previously seen point
features after GPS is reacquired.

Figures 8 and 9 show the norms of the camera position errors
and the camera attitude errors, respectively, for each case with
case 1 represented by green asterisks, case 2 represented by
red pluses, and case 3 represented by blue x’s. The periods
when the camera is in the various regions of the simulation
environment are delineated by vertical black lines and labeled.

For case 1, the norms of the position errors are mostly under
1 cm and the attitude errors are mostly under 0.1◦, which
demonstrates the pose accuracy one would expect from this
system with open view of the sky. There is one point of interest
where the pose errors increase significantly near the end of
region B. This point corresponds to the turn inside the hallway
when the camera can only see a few point feature, which results
in poor estimability of the pose. In fact, there is one keyframe
where only 12 point features can be seen. This is partially
an artifact of the simulation because, in actual operation, the
feature identifier would identify more point features as the
camera approached the turn.

In case 2, the attitude estimates are biased by about 0.2◦

over the entire simulation, as can be seen in Fig. 9, except at



Fig. 9. A plot of the camera attitude errors for the hallway simulation for
each of the three cases with case 1 represented by green asterisks, case 2
represented by red pluses, and case 3 represented by blue x’s. The periods
when the camera is in the various regions of the simulation environment are
delineated by vertical black lines and labeled.

the turn, where the errors increase substantially. The position
errors are close to those from case 1 over most of region A,
since these errors are mostly attributed to the CDGPS position
estimates which both cases share. However, the position error
increases roughly monotonically over the remainder of the
simulation, due to the lack of new CDGPS position estimates,
reaching a final error of about 0.2 m, which is rather small
considering that the camera moved about 50 m after loosing
GPS. This is only 0.4% of the distance traveled. There are two
terms to this growing error which correspond to an attitude
bias, as was noted previously, and a drift error. These two
terms can clearly be seen in Fig. 10 which shows the absolute
value of the position errors in each direction for this case with
the x direction represented by green circles, the y direction
represented by red squares, and the z direction represented by
blue diamonds. Note how the error in the z direction suddenly
begins to decrease just before the end of region B, which is
where the turn occurs, and actually goes to zero in the middle
of region C before changing signs and increasing again. This
type of behavior can clearly be attributed to a bias in attitude.
Over the interval the error in the z direction was increasing,
the camera traveled about 27 m with an attitude error of about
0.2◦ resulting in a lateral position error of about 8.7 cm, which
is close to the maximum error in the z direction. On the other
hand, the errors in the x direction continued to increase after
the turn. This error is due to drift of the coordinate system.

For case 3, the camera position errors at the beginning and
end of the simulation are comparable to those from case 1
because, as with case 2, the CDGPS position estimates, when
present, are the primary limiting factor in the accuracy of the
camera position estimate. In the middle of the simulation, when
the camera is in the hallway, the position error has a parabolic
shape with its maximum just before the end of region B (i.e., at
the turn). This demonstrates how the information provided by
the CDGPS position estimates is propagated backward by the
bundle adjustment to fix up the errors in the camera position

Fig. 10. A plot of the absolute value of the camera position errors in each
direction for case 2 of the hallway simulation with the x direction represented
by green circles, the y direction represented by red squares, and the z direction
represented by blue diamonds. The periods when the camera is in the various
regions of the simulation environment are delineated by vertical black lines
and labeled.

estimates. This improvement might have been more drastic if
there had been more point features visible during the turn that
were also visible in nearby keyframes both before and after
the turn. This effectively prevented most of the information
gained through the addition of CDGPS position estimates at the
end of the simulation from propagated back through the turn.
Therefore, little improvement in the camera position estimates
from before the turn is achieved over case 2, as can be seen in
Fig. 8. This behavior is also observed in the attitude estimates
in Fig. 9, which have errors close to those of case 2 before
the turn (i.e., near the end of region B) even though there is
significant improvement in the attitude errors, over case 2, from
after the turn. In fact, the attitude errors from after the turn are
of the same order of magnitude as case 1. For comparison with
Fig. 10, Fig. 11 shows the absolute value of the position errors
in each direction for this case with the x direction represented
by green circles, the y direction represented by red squares,
and the z direction represented by blue diamonds. Due to the
addition of CDGPS position estimates at the end of the data
set, the drift of the position estimates while the camera is
in the hallway is significantly reduced, as can easily be seen
by comparing the errors in the x direction between Figs. 10
and 11.

Figure 12 shows the norms of the point feature position errors
for each case divided into subplots based on the region in
which the point feature is located and ordered within each re-
gion based on the distance of closest approach of the camera to
that point feature from closest to furthest. Case 1 is represented
by green asterisks, case 2 is represented by red pluses, and
case 3 is represented by blue x’s. Note that the point feature
indices in Fig. 12 are only defined within each region and do
not correspond across regions. For region A, cases 2 and 3
have errors that are nearly identical and case 1 only shows
significant improvement over the other two cases on some of
the point features. The upward trend in the error with feature



Fig. 11. A plot of the absolute value of the camera position errors in each
direction for case 3 of the hallway simulation with the x direction represented
by green circles, the y direction represented by red squares, and the z direction
represented by blue diamonds. The periods when the camera is in the various
regions of the simulation environment are delineated by vertical black lines
and labeled.

index is due to the ordering of the features based on the closest
approach. For region B, cases 2 and 3 still have nearly identical
errors, but case 1 now shows significant improvement over the
other cases with about an order of magnitude reduction in
error. This is obviously because case 1 is the only case with
CDGPS position estimates in this region. The fact that cases 2
and 3 have nearly identical errors in region B demonstrates the
fact that the additional information provided by the addition
of CDGPS position estimates at the end of the simulation in
case 3 was not propagated back through the turn. For region
C, there is a clear distinction in accuracy between all three
cases with case 1 being the most accurate and case 2 being
the least accurate. This shows that the additional information
provided by the addition of CDGPS position estimates at the
end of the simulation did help case 3 significantly in this
region. For region D, cases 1 and 3 have errors that are on
the same order, which is to be expected, and case 2 has errors
that are significantly larger than the other cases for most of
the points features.

VIII. CONCLUSION

A novel estimation architecture for combined visual SLAM,
CDGPS, and inertial navigation was presented that is capable
of delivering high accuracy pose (∼ 1 cm positioning accuracy
and ∼ 0.1◦ attitude accuracy) and has the potential for real-
time operation. The system is centered around a bundle-
adjustment-based visual SLAM algorithm that incorporates
CDGPS-based position estimates into the bundle adjustment
and is responsible for maintaining a highly-accurate, globally-
referenced map of the environment. To provide real-time
camera pose estimates, a navigation filter is also employed
which leverages the map created by bundle adjustment during
measurement updates and uses inertial measurements for its
propagation step. The system is capable of maintaining highly-
accurate, globally-referenced camera pose estimates even with-

out GPS availability for a limited distance of travel.

The globally-referenced bundle adjustment algorithm was im-
plemented and used in a series of simulations. A first set
of simulations demonstrated the estimability of the globally-
referenced bundle adjustment problem under a simplistic sim-
ulation scenario. The second set of simulations represented a
fairly realistic scenario where a user carried the system into
and through a hallway that blocked reception of the GPS
signals. These simulations demonstrated the performance of
the bundle adjustment under a challenging scenario. The result
was that the bundle adjustment algorithm demonstrated only
0.4% drift in position over 50 m and still attained absolute
attitude accuracies of about 0.2◦. The addition of CDGPS
position estimates at the end of the simulation, once the system
had exited the hallway, also resulted in significant improvement
in the accuracy of the solution over most of the simulation.
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