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Abstract

Isothermal titration calorimetry (ITC) is a powerful classical method that enables researchers in

many fields to study the thermodynamics of molecular interactions. Primary ITC data comprise

the temporal evolution of differential power reporting the heat of reaction during a series of

injections of aliquots of a reactant into a sample cell. By integration of each injection peak, an

isotherm can be constructed of total changes in enthalpy as a function of changes in solution

composition, which is rich in thermodynamic information on the reaction. However, the signals

from the injection peaks are superimposed by the stochastically varying time-course of the

instrumental baseline power, limiting the precision of ITC isotherms. Here, we describe a method

for automated peak assignment based on peak-shape analysis via singular value decomposition in

combination with detailed least-squares modeling of local pre- and post-injection baselines. This

approach can effectively filter out contributions of short-term noise and adventitious events in the

power trace. This method also provides, for the first time, statistical error estimates for the

individual isotherm data points. In turn, this results in improved detection limits for high-affinity

or low-enthalpy binding reactions and significantly higher precision of the derived thermodynamic

parameters.
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INTRODUCTION

Isothermal titration calorimetry (ITC) is a key technique to measure thermodynamic

parameters of molecular interactions with applications in many different fields, including

food chemistry1,2, materials science3, supramolecular chemistry and host-guest

interactions4–6, thermodynamics of nucleic acids7, peptide and protein interactions8,9, drug

discovery10,11, lipid membrane research12,13, and others (for a recent literature survey,

see 14). ITC is firmly rooted in physical chemistry, and among the few first-principle

techniques that allow the study of molecular interactions between unmodified reactants in

free solution. It is unique in directly measuring enthalpy changes, thereby providing direct,

unequivocal insight into chemical thermodynamics. During the last decades, calorimeters

have become continuously smaller and more sensitive15, resulting in smaller required

sample volumes, and data analysis techniques have become more sophisticated. These

advances have facilitated many new applications, for example, in protein interactions and

for automated higher throughput operation in secondary screening and lead optimization of

candidate drugs10,15,16, for which previously sample requirements would have been

prohibitive. Smaller sample requirements also facilitate experiments that demand multiple

titrations, such as the determination of the heat capacity change (ΔCp) of an interaction8,9,

the derivation of cooperativity parameters8,17,18, and the description of binding reactions

that are coupled to salt or proton binding19–21.

The primary data of an ITC experiment is a thermogram, which records the time-course of

the compensatory power required to maintain a constant vanishing temperature differential

between the insulated sample and a reference cell, while known aliquots of a reactant are

titrated into the sample cell in a series of injections. Each injection causes a change in the

solution composition in the sample cell, and during the relaxation to a new equilibrium the

heat of reaction is recorded as a peak in the power trace. Integration of this peak provides

the total heat generated or consumed upon changing the solution composition. For a

stoichiometric binding reaction, for instance, after modeling the isotherm of integrated heats

the reaction enthalpy change (ΔH), the binding affinity, and information on the binding

stoichiometry can be inferred.

A critical step in the analysis of an ITC thermogram is the distinction between the net

reaction heat and the instrumental baseline power trace. Unfortunately, the baseline power

trace cannot be measured separately and is observed only intermittently. This makes the

assignment of reaction peak signal intrinsically ambiguous, and limits the precision of the

method. Ideally, in an experiment conducted in thermal equilibrium of all calorimeter parts

and in the absence of external mechanical or electrical influences, the baseline power would

be constant. However, in a real experiment the baseline will always exhibit some degree of

drift as well as low- and high-frequency noise components.22 The low-frequency noise is a

major source of uncertainty for the integration of peaks of net reaction heats, which

propagates as noise into the isotherm to be analyzed. The smaller sample volumes and

smaller total heats of modern calorimeters accentuate this source of noise, which has

become a significant factor in the precision of the data and is often limiting for practical

applications. Low-frequency noise is also a critical factor in the analysis of the time-course

of binding or folding reactions by ITC via peak-shape analysis.23,24

Although the importance of baselines has been recognized previously25, the problem of

baseline assignment is only very sparsely addressed in the calorimetry literature24,26,27. To

the best of our knowledge, the algorithms implemented by instrument manufacturers for

default baseline assignment have not been entirely published and thus remain unclear. The

necessity to manually improve on automatically designated baselines after visual inspection,

an option encouraged and implemented in at least some of the commercial instrument
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software28,29, is familiar to most in this field, and is indeed the recommended state-of-the-

art9,19,30,31. Obviously, such human intervention is unsatisfactory because it can introduce

unlimited bias directly into the experimental isotherm data to be modeled. Moreover, it is

often a time-consuming procedure and can even become prohibitive in practice in the

context of moderate to high-throughput analyses.

Automated peak identification and the assignment of unknown baselines is an important

recurring problem in many techniques (including NMR spectroscopy, mass spectrometry,

Raman and other optical spectroscopy, chromatography, and analytical ultracentrifugation),

and has often been addressed by taking advantage of a specific data structure.32–36 Our goal

in the present work was to develop an approach for automatic peak integration of ITC

thermograms resting on rational statistical principles and exploiting the specific data

structure of ITC thermograms. On the basis of the expected properties of local continuity in

the baseline and detailed modeling of the pre- and post-injection baselines, consensus

baselines spanning each injection are estimated, and their confidence limits are determined

for all peaks. We use an analysis of peak shapes to filter out signals not shared by peaks of

most injections. Such features are likely adventitious and are therefore unlikely to represent

the reaction of interest and instead can be assigned as refinements to the baseline. In

addition, we use the expectation of monotonicity of the binding isotherm for the adaptive

determination of integration parameters such as the characteristic reaction time. Compared

to standard methods the approach presented here leads to a considerable improvement of the

sensitivity and precision of ITC analyses, as demonstrated in the present work by application

to different protein interactions. The algorithms described herein are implemented in the

software NITPIC.

COMPUTATIONAL METHOD

Given a thermogram, let us designate signals from the beginning of each injection j at t0,j to

just prior to the start of the next injection as pj(t – t0,j), and let us assume that the reaction

peak has sufficiently decayed back to baseline level after time τend, taken to be uniform for

all injections (see below). τend allows us to distinguish the pre-injection baseline

pj–1(τ>τend) and the post-injection baseline signal pj(τ>τend) surrounding the actual

injection signal pj(τ ≤τend). Both baseline segments are fitted by least-squares with a linear

function, and, if warranted based on the quality of fit using F-statistics on a certain

confidence level (usually taken as 95%), a quadratic term is added37. We can extrapolate

these best-fit linear or quadratic functions into the injection region 0 <τ≤τend, termed

ej,pre(τ) and ej,post(τ),with their associated confidence bands e(±)
j,pre(τ) and e(±)

j,post(τ).
From these, a smooth connecting function is used to empirically construct a continuous

interpolation into the injection region, bj(τ), as well as upper and lower baseline estimates

b(±)
j(τ), as described in detail in the Supplementary Information (Figure 1).

In parallel, we can pursue a second strategy for an initial baseline estimate by simply relying

on a straight-line connection of anchor points just before and after the injection, bj,straight(τ).
For the anchor points, we take the average of the closest navg data points. The virtue of this

approach is that it is insensitive to medium-frequency fluctuations in the pre- and post-

injection period, but it has the drawback that it will be more sensitive to the high-frequency

noise in the data points adjacent to the injection, especially at low navg. Dependent on the

particular experiment, this may be an advantage, or it may constitute a neglect of useful

information in the baseline shapes. The suitability of the straight-line strategy cannot be

known a priori. Therefore, NITPIC compares the performance of both approaches in a

model-free assessment of isotherm noise and automatically chooses the better approach.
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After initial baseline determination, the integration for the total heat of injection is

straightforward

(1)

, which is followed by normalization with respect to the molar quantity of injectant added in

injection j. The error associated with this integral arising from baseline uncertainty is

estimated as

(2)

Next, for the analysis of peak shapes, we perform a singular value decomposition (SVD)

(3)

to decompose the net injection signal in terms of K characteristic signal components uk(τ),
with J being the total number of injections, and the matrix vj,k describing the amplitude of

each signal component required to reconstruct a particular injection signal j. The singular

values sk are ordered and describe the importance of each component in a sense of a global

least-squares fit to all injections. As illustrated in Figure 2, only the first few shape

components are relevant, with the higher components essentially only contributing noise.

SVD also allows us to calculate the contributions of each singular component to each of the

integrated heats:

(4)

. At this point, we can attempt to eliminate the noise components and truncate the

summation to consider the first K’ components, which leads to a different isotherm, Q̃(1...K

'). As a criterion for the choice of K’, NITPIC considers the root-mean-square deviation

(rmsd) of the filtered isotherm from the original, and limits K’ to be no smaller than the

minimum number necessary for keeping the rmsd within the estimated uncertainty of the

integrals  (from eq 2):

(5)

. Among all K’ satisfying this condition, NITPIC chooses the one that minimizes a model-

free measure of the noise in the isotherm (described below), which is usually the smallest

K’-value. The signals from the truncated SVD components can be combined with our

previously predicted smooth baseline bj(τ) as

(6)

for the final best estimate of the baseline bj
(K’). All of the computations above depend on the

prior assignment of the end-point of the injection τend, taken to be common to all injections
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(with few exceptions; see Discussion), and determined as described in the Supporting

Information.

An empirical measure of noise in the isotherm is based on the expectation that at over most

of the range of the titration the Qj values should vary smoothly with solution composition.

For each injection j we fit a second-order polynomial to the set of surrounding isotherm

points {Qj-m, Qj-m+1,...Qj--1, Qj-+1,...,Qj-+m}, typically with m = 4. The quality of fit

determines a weight wj for the confidence of the prediction. For example, the polynomial fit

is poor in very steep transitions, in which case the polynomial prediction is replaced by a

spline. When applied to all injections, a weighted root-mean-square of all deviations

(wrmsd) of ΔQj between the predicted and measured values, calculated as ,

provides a model-free measure of the overall noise of the isotherm. The wrmsd can be used

to optimize some overall parameters affecting the baseline determination of all points, for

example, the navg for the anchored straight-line baseline, and judge whether overall to use

the anchored straight-line approach with bj,straight(τ) or the extrapolation approach with

bj(τ). Furthermore, we can identify individual outliers, which may arise from adventitious

signals invalidating the assumption in the baseline-prediction approach. Dependent on a pre-

set option, NITPIC may be allowed the replacement of the particular ΔQj with ΔQj
(straight),

or vice versa, whichever method shows higher robustness by displaying a smaller deviation

from the polynomial or spline prediction, respectively, for that injection.

Adjustments to the above procedure are applied when NITPIC recognizes high-quality

bimodal thermograms with less than three injections in the transition between the regime of

stoichiometric binding and the saturation plateau, such as generated at high c-values (c-

values being customarily defined as the ratio between the concentration of reactant in the

cell and Kd
38–40). Recognizing that these injections often exhibit slower return to baseline

and may have somewhat different shape, 20% longer injection times are allowed for these

injections and they are excluded from SVD truncation. Furthermore, high-quality bimodal

isotherms with ~10 or fewer injections in the transition, such as achieved often at

moderately high c-values, occasionally exhibit slightly different injection shapes from those

in the stoichiometric and saturation plateau. A possible common residual shape component

in the transition region not represented well in the overall SVD is added to the injection

model in eq 3 as the calculated first SVD terms of the residuals .

The approach above was implemented in the program NITPIC as a compiled MATLAB

script and will be made available as PYTHON-based stand-alone executable for reading .itc

data from MicroCal titration calorimeters; extensions to other data formats can be added on

request. NITPIC is a standalone program that will save a table of the calculated heats and

their error estimates for all injections into ASCII files for any further processing by the user.

Optionally, for convenience it can also write configuration files for the global multi-method

modeling software SEDPHAT18,42, and on request spawn a copy of SEDPHAT for data

analysis in this platform. NITPIC can be obtained from

http://biophysics.swmed.edu/MBR/software.html. It can be run in a fully automated manner

or optionally provides a graphical user interface for visual inspection of the baseline and

integration results. However, other than the pre-defined criteria described above, which

govern the baseline prediction across the board for all injections and can be customized for

specific processes, NITPIC does not offer the possibility to manually change the integration

for individual injections.
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EXPERIMENTAL

Lyophilized carbonic anhydrase II from bovine erythrocytes (CAII; Sigma–Aldrich,

Munich, Germany) was dissolved in 50 mM phosphate buffer, 50 mM NaCl, pH 7.0. The

final protein concentration (typically ~400 μM) was determined spectrophotometrically

using ε280 = 55,100 M–1cm–1.41 Prior to ITC experiments, the protein solution was

supplemented with dimethyl sulfoxide (DMSO) to a final concentration of 0.5% (v/v). A 20

mM stock solution of trifluoromethanesulfonamide (TFMSA) was prepared in DMSO and

diluted in the same buffer to a final DMSO concentration of 0.5% (v/v) DMSO.

Experiments were performed at 25°C with a MicroCal iTC200 (GE Healthcare, Freiburg,

Germany) having a sample cell volume of 197.1 μL. In different experiments, injections of

0.5 – 1.0 μL of CAII at concentrations between 50 – 400 μM were made into the cell

containing 5 – 40 μM TFMSA, with time intervals of 240 s, a stirrer speed of 500–1000

rpm, a filter period of 5 s, and a reference power of 4.2–8.4 μJ/s. All integration of

thermograms in the present work was carried out with the same default NITPIC parameters.

For comparison purposes, baseline adjustment and peak integration were also accomplished

using ORIGIN version 7.0 (OriginLab, Northampton, USA) using default settings (24 points

per injection, medium smoothness)28.

Fitting of the resulting isotherms excluding the first data point was performed with the

software SEDPHAT18,42 version 10.36, which allows global weighted least-squares fitting

of ITC data, taking advantage of the error bars provided by NITPIC for the individual data

points. The model for 1:1 binding was implemented based on standard expressions for mass

action law and total reaction heat, accounting explicitly for baseline offsets and binding

incompetent fractions18, using an unmixed neck model28. Statistical analysis was performed

according to 43. Projection maps of the error surface were calculated by constraining the

parameter of interest sequentially to different values, while allowing all other unknowns to

compensate for the constraint.

RESULTS

NITPIC was applied to a large number of thermograms from different types of biomolecular

binding reactions. After initial adjustment of the algorithm and default parameters, NITPIC

could subsequently be applied without user intervention. Usually the baseline extrapolation

from linear or quadratic fits to the pre- and post-injection baselines yielded better results

than the approach of interpolating a straight line between box-average anchor points. Upon

visual inspection, the predicted baseline bj(τ) was found to be smooth, slowly changing, and

robust with regard to adventitious pre- and post-injection baseline shapes, as illustrated in

Figure 1.

Figure 2 shows an example for the analysis of a non-optimal thermogram, generating initial

heats of ~–7.2 μJ per injection, with considerable low-frequency noise (in this case likely

caused by fluctuations in the room temperature). Typical in our experience for any type of

thermogram is the presence of only a few relevant shape components derived from the SVD

analysis (see Methods). The third singular value is often an order of magnitude smaller than

the first, with a characteristic ‘L’ shape on a log-scale that bends between the 5th and 10th

singular value. The uk(τ) components essentially are noise beyond this point. These results

justify the technique of using SVD to filter out components that contribute only noise to the

heats, as well as those that might represent adventitious shape components unrelated to the

reaction. Usually, NITPIC selects the smallest K’ satisfying the constraints of eq 5, which is

consistent with the notion that those components with smaller singular values contribute

essentially only noise to the integrals. Despite the fact that, with the condition of eq 5, SVD

usually filters only subtly, the number of components is typically only 3 to 5, although it can
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be much higher for data with very high heat signals. When the residuals between the

truncated SVD fit and the measured injection data are attributed to be baseline noise, the

resulting baselines bj
(K’) usually appear plausible (Figure 1).

The effect of SVD filtering is immediately apparent for low-heat injections with low signal/

noise ratio, as can be discerned, for example, in the second half (25 sec < τ < 50 sec) of the

injection in Figure 1C. No significant shape component corresponds to this oscillating signal

pattern, such that it is attributed to baseline noise and does not contribute to the integrated

heat. Similarly, adventitious events with no similarity to any injection and no plausible

relation to reaction heats will be filtered out, as indicated in some examples in the

Supporting Information. We also found SVD filtering effective in compensating for

imperfections in the baseline bj(τ), such as shown in Figure 1A,B. Figure 3 shows the

isotherm as derived from the data in Figure 2. For comparison, the data points generated

from ORIGIN automated integration are shown in blue. It can be discerned that for a large

number of injections the ORIGIN derived points are outside the confidence intervals

calculated by NITPIC. A fit to a simple 1:1 binding model has residuals with 3.4-fold

smaller root-mean-square deviation (rmsd)with NITPIC than with ORIGIN. Typically, this

factor was observed to fall into the range of 2–5. More examples with different types of

thermograms can be found in the Figures SI-2 and SI-3 (Supporting Information).

Exceptions where NITPIC was not superior were thermograms exhibiting few baseline

disturbances when simultaneously the total heat per injection was very large (>50 μJ), so

that uncertainties in the baseline determination are essentially irrelevant, and thermograms

where less than ~ 30% of the time between injections represents baseline (see Discussion).

Next, we studied how the lower noise translates into more accurate estimates of

thermodynamic binding parameters. Figure 4 shows a titration experiment with initial heats

of ~ 18 μJ, carried out in triplicate. With few exceptions, the heats determined from NITPIC

processing of the three thermograms at equivalent molar ratios exhibit a variation consistent

with their assigned error bars (Figure 4A, red symbols). When each of the isotherms is fitted

separately to a 1:1 binding model, the resulting rmsd values are similar with 451, 459, and

574 J/mol. The best-fit Kd-values and 95% confidence intervals are consistent with estimates

of 20 (13 – 28) nM, 22 (13 – 34) nM, and 16 (10 – 24) nM, respectively. For an overall best-

fit Kd-value we can include all isotherms into a global analysis with thermodynamic binding

parameters representing the global parameters, and small baseline offsets and incompetent

fractions representing parameters local to each experiment, leading to a global Kd estimate

of 17 (12 – 23) nM, with a well-determined minimum of the error surface (Figure 4E). For

comparison, ORIGIN processed thermograms (Figure 4, blue symbols) resulted in a Kd

estimate of 19 (6–49) nM, with an rmsd of 1736J/mol. Thus, NITPIC allowed narrowing the

uncertainty for the estimate of ΔG by a factor ~3.2, and similarly, the error interval of ΔH

was reduced by a factor 3.7.

In the present context very interesting features are two adventitious baseline jumps at ~ 6100

and ~7200 sec of the thermogram of one the replicates shown in Figure 4D. These data are

highlighted in Figure SI-1 (Supporting Information). The second of these artifacts is

associated with a “false peak” (an unexplained adventitious baseline spike not resulting from

an injection) only 5 s prior to the scheduled injection time. The discontinuities cause

broadening of the confidence band b(±)
j(τ) and bias the predicted smooth baselines bj(τ).

However, since the shape components in the injection data pj(τ) –bj(τ) implied by these

artifacts are unique, SVD compensates for these features in the net baseline bj
(K’), resulting

in very little heat being assigned by NITPIC to these injections. In contrast, strong artifacts

arise in the integrated heats for the injections flanking such spikes (data not shown) when

the thermogram is integrated automatically by the instrument software ORIGIN. Similar

artifacts of varying magnitude are not uncharacteristic for experimental thermograms, and
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SVD filtering in NITPIC was found to routinely recover their detrimental effects on the

baseline prediction, such as shown in Figure SI-1.

Finally, we hypothesized that the higher precision afforded by NITPIC thermogram

integration might allow one to conduct experiments at lower reactant concentration,

producing smaller reaction peaks. To this end, we extended the experiments with the high-

affinity system of Figure 4 and performed a series of titrations with two-fold dilution of

reactant concentrations, under otherwise identical experimental design, generating initial

peaks with absolute heats of ~8.2, ~4.2, and ~2.1 μJ. At each dilution step, titrations were

carried out in triplicate or quadruplicate and subjected to a global analysis. After

thermogram integration with NITPIC, the best-fit values for Kd are consistent and well-

determined even for the lowest concentration examined (Figure 5), conditions at which the

ORIGIN analysis failed to produce well-determined parameters. An example for even lower

reaction heats of < 0.6 μJ is shown in Supporting Figure SI-3. In contrast to the default

ORIGIN thermogram processing, from which no binding reaction was discernible, the

application of NITPIC resulted in a well-defined binding isotherm confirming high-affinity

binding.

DISCUSSION

As sample volumes of isothermal titration calorimeters become smaller and instruments

more sensitive11,15, adventitious events in the power trace as well as medium- and low-

frequency noise components, all of which cannot be addressed simply by longer data

acquisition windows, appear to become limiting. Experimentally contributing factors often

remain unclear, although bubbles, bent needles, and external mechanical or electronic events

have been identified as sources of noise and poorly reproducible signals9.Unfortunately,

techniques for the analysis of thermograms with imperfectly constant baselines have rarely

been addressed in the scientific literature. Strategies such as a spline model or other smooth

interpolation functions for long-term drifts 24,26,44, as well as linear interpolation between

average pre- and post-injection baselines27 have been reported. The examples of Figure 1

and Figure S1 illustrate where these approaches would clearly not be detailed enough and

introduce errors. Thus, the visual inspection of the power trace and manual assignment of

the baseline and peak integration limits have become the standard procedure in most

laboratories and is recommended in standard protocols 9,19,30,31. Although subjective

choices undoubtedly are at play in the data acquisition of other techniques, this approach

obviously detracts from the rigor of the method, and it would be desirable to avoid. While

this subjectivity is no serious problem for reactions producing large heats and

correspondingly high signal/noise ratio, the relevance of this factor is exacerbated for

experiments with small measured heat signatures.

The basic dilemma of thermogram analysis is that the baselines cannot be measured

independently. However, we know a great deal about the data structure of a thermogram,

which we aimed to exploit: (1) the power peaks resulting from chemical reactions start

approximately at pre-determined times, are continuous, largely similar in shape, and

asymptotically relax back to the baseline; (2) the baseline should have no discontinuities and

change slowly relative to the signal change at the peak of the injection, with isolated

exceptions; (3) there is a finite time after which we can consider the reaction heats to be

negligible and the power signal to reflect the baseline. We added to the above assumptions

the expectation on the isotherm that the relationship between subsequent injections is

smooth in most regions. Some operational aspects of the NITPIC algorithm remain

empirical, such as the choice of weights for pre- and post-injection baselines and the choice

of the transition function and its parameter, and reflect our attempt to distill our

experimental intuition that currently goes into the manual baseline assignment. Yet, in a
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fundamental difference to the manual assignment, NITPIC automatically applies all

procedures with the same criteria and same parameters to all injections and all thermograms.

It thus eliminates individual operator bias and injection-to-injection variation in the

application of these principles, while automation enables consistency and high-throughput

processing.

A new aspect of NITPIC that cannot be exploited by manual processing is the shape

similarity of the injections, which via truncated SVD allows the filtering of unusual shape

components from the signals during the injections. This allows us to filter out effects of

unique adventitious events during the injection, such as false peaks or spurious baseline

fluctuations. It also can provide a fail-safe mechanism for the baseline interpolation, for

example, if the baseline interpolation is biased by imperfections in between the injections, to

the extent that the erroneous baselines imply an unusual shape of the net injection data.

Furthermore, it allows us to effectively estimate the short-term noise components in the

interpolated baseline, significantly enhancing the signal/noise ratio of the resulting isotherm.

When compared against manually adjusted baselines, we found the performance of NITPIC

to be generally close and sometimes even slightly better. For example, when the

thermograms of the triplicate experiments in Figure 4 were manually analyzed (largely blind

to the subsequent isotherm analysis), a global Kd value of 17 (13–22) nM was determined,

which is comparable to the estimate of 17 (12–23) nM from NITPIC. When inspecting the

NITPIC-generated baselines(e.g., those in Figure 1), we did not always find them in

agreement with the choice an individual operator might have made subjectively;

importantly, however, we cannot identify any features of remaining systematic disagreement

across all injections. Furthermore, we noticed discrepancies of similar magnitude among the

subjective preferences of different human interpreters of these traces.

A fundamental limitation of the SVD truncation approach is that it will not perform well

with thermograms featuring single peaks that have unique shapes, such as the broader peaks

often encountered in the transition region of very steep isotherms with very high ‘c-value’,

such as in Figure 4. Currently, we have addressed this problem by adding a routine to

NITPIC for the automated recognition of such isotherms and the modification or elimination

of SVD truncation specifically for the transition points. A possible future improvement

could consist in a global peak shape analysis jointly of thermograms from replicate

experiments. Another current limitation of NITPIC rests in the local least-squares baseline

interpolation, which works best if at least 30%–40% of the time interval between injections

reflects baseline signal. For shorter baseline segments, algorithms that utilize estimates of

the global baseline drift throughout the entire experiment will likely perform better. On the

other hand, providing for sufficient spacing of injections is experimentally trivial and sound

practice. Comparing the sub-optimal thermogram in Figure 2 with those of Figure 4, it

appears that when local baseline interpolation of NITPIC can be applied, the baseline drifts

become essentially irrelevant. This is not to advocate poor experimental practice; however,

these results demonstrate that NITPIC is able to generate satisfactory binding isotherms

even from data acquired under less than optimal experimental conditions.

Given the ambiguity of baseline determination in some cases, it is conceptually satisfying

that the NITPIC algorithm assigns error bars to the integrated isotherm data points

quantifying this uncertainty for each injection. Including the integration errors enables a

more realistic statistical analysis of the ITC isotherm that takes into account the non-

uniformity of these errors and allows the de-emphasis of the statistical weight of data points

where the baselines are more ambiguous. This strategy prevents over-interpretation of the

data. Even in cases where the errors are uniform, the error estimates translate at least one

quality of the raw thermogram into an attribute of the isotherm that is subject to be modeled,
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which may prevent over- or under-fitting of the isotherm. A suitable extension of the public-

domain multi-method analysis software SEDPHAT18 is available to take advantage of this

richer information.

Finally, the automated generation of isotherms of similar quality as manual thermogram

interpretation can eliminate a time-consuming step in the analysis of ITC data and provide

significant improvement in data quality for higher throughput studies that currently rely on

existing automated data processing, equivalent to a several-fold increase in instrumental

sensitivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of the principle of baseline interpolation. Data are taken from injections #7 (A),

#13 (B), and #44 (C) of the thermogram of Figure 2A, to illustrate different types of

injections as well as magnitudes and orientations of baseline drifts. Solid black lines are

available experimental baseline data surrounding the injections, and solid blue lines are

injection data, respectively. Thin solid red lines through the baseline regions are the least-

squares fits to the pre- and post-injection baselines, dashed red lines denote their

extrapolations, and gray bands indicate their 68% confidence range. The bold red line in the

injection region is the interpolated baseline bj(τ), and the area shaded in light red is the

corresponding confidence band, which determines the error of the peak integration. The

dashed green line, virtually superimposing on the injection data, is the truncated SVD model

using eqs 3 and 5. Attributing residuals from the SVD peak model to the baseline bj
(K’) after

eq 6, the bold solid green line is the best-estimate baseline during the injection. The heat

generated by each injection therefore corresponds to the area between this green line and the

blue line of the injection signal, as highlighted with yellow shade, resulting in values of –

7.2, –6. 9, and –0.28 μJ, respectively.
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Figure 2.
Example of a thermogram with low-frequency noise and the SVD of the raw injection data.

(A) Experimental thermogram titrating 389 μM CAII into 40 μM TFMSA in 0.5 μL

injections; peaks highlighted in red correspond to those magnified in Figure 1. (B) Singular

values sk for all shape components. (C) Shape components uk(τ) scaled by their

corresponding singular value. Colors are equivalent to those in Panel B.
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Figure 3.
Titration isotherm resulting from the data in Figure 2 after automated thermogram

processing using ORIGIN (blue circles) or NITPIC (red squares) with associated error bars

(grey) and 1:1 binding model fitted to the NITPIC isotherm (red line).
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Figure 4.
Isotherm analyses of triplicate experiments titrating 443 μM CAII into 40 μM TFMSA. (A)

Integrated heats calculated by ORIGIN (blue, for clarity offset by –4 kJ/mol), NITPIC (red),

and manually determined baselines (green, offset by +4 kJ/mol). Best-fit isotherms to the

NITPIC data are shown as red lines. (B-D) Raw thermograms corresponding to the

isotherms shown as circles (B), squares (C), and triangles (D), respectively. (E) Error

projection maps of the global analysis of the triplicate experiments showing the relative

increase of the global χ2 over the best-fit as a function of parameter values for Kd. The error

projection maps are from isotherms after thermogram processing by ORIGIN (blue),

NITPIC (red), or manually determined baselines (green). Also indicated is the relative
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increase of χ2 associated with the 68% and 95% confidence levels (gray dotted and black

dashed lines, respectively).
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Figure 5.
Analyses of ITC experiments conducted in a dilution series. Error projection map from the

analysis of (I) triplicate experiments titrating 200 μM CAII into 20 μM TFMSA with 40

injections of 1 μl each generating initial heats of ~-8.2 μJ (dotted lines); (II) quadruplicate

experiments titrating 100 μM CAII into 10 μM TFMSA with 40 injections of 1 μl each

generating initial heats of ~-4.2 μJ (short dashed lines); (III) triplicate experiments titrating

50 μM CAII into 5 μM TFMSA with 40 injections of 1 μl each generating initial heats of ~

-2.1 μJ (solid lines). The error projection maps shows the value of the global χ2 as a

function of parameter values for Kd, scaled such as to have a minimum at ordinate values of

0 corresponding to the best-fit χ2 and values of 1 at a χ2 corresponding to a 95% confidence

level (black horizontal line).Global analyses are shown from NITPIC processing of

thermograms (red) and ORIGIN processing (blue). In set I, one outlier data point was

excluded in the ORIGIN analysis, and in set III one outlier data point was excluded in both

NITPIC and ORIGIN analyses.
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