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Abstract 

Network nano-sheet arrays of Co3O4 for high precision NH3 sensing application 

were prepared on alumina tube using a facile hydrothermal process without template 

or surfactant, and their morphology, nanostructures and NH3 gas sensing performance 

were investigated. The prepared nano-sheet Co3O4 arrays showed a network structure 

with an average sheet thickness of 39.5 nm. Detailed structural analysis confirmed 

that the synthesized Co3O4 nano-sheets were consisted of nanoparticles with an 

average diameter of 20.0 nm. NH3 gas sensor based on these network Co3O4 

nano-sheet arrays showed a low detection limit (0.2 ppm), rapid response/recovery 

time (9 s/134 s for 0.2 ppm NH3), good reproducibility and long-term stability for 

NH3 detection at room temperature.  
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1. Introduction 

Recently there is a huge demand for monitoring and controlling air pollutants, in 

which ammonia (NH3) is one of the most common ones causing severe environmental 

problems. The search for new and more effective solid state chemical sensors for 

monitoring low level concentrations of ammonia in air is of great interest in many 

fields, including automotive, industrial process monitoring, medical diagnostics and 

air quality control. One of the mostly used sensing mechanisms for the NH3 is based 

on resistive sensors using various metal oxide semiconductors [1,2], such as ZnO 

[3-4], WO3 [5], In2O3 [6-7], ZrO2 [8], V2O5 [9], carbon nanotubes [10-11], Fe2O3 [12] 

and Co3O4 [13]. Among these, cobalt oxide, Co3O4, has received much research 

attention due to its high resistance to corrosion, abundant raw material and 

non-toxicity. It is a promising material for applications in Li-ion batteries [14-16], 

catalysts [17,18], and gas sensors [13,19-25]. In particular, the oxidative catalytic 

activity of the Co3O4 is superior [17], thus it can be directly used to design or enhance 

the gas response, selectivity, and sensing kinetics [13,19-25]. However, most reports 

on the Co3O4 sensors [13,19-21,24,25] were focused on high temperature sensing 

applications (i.e., up to 300 oC). Up to now, the NH3 sensor based on the Co3O4 

operated at room temperature has not been reported. 

As we know, the dimensionality, size and morphology of the oxide nanostructures 

have significant influences to their physical and chemical properties. Development of 

novel nanostructured transitional metal oxides with controlled shapes and 

morphologies has stimulated considerable research interest due to their novel physical 
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and chemical properties and potential wide-range applications [26-28]. So far, various 

morphological nanostructures of Co3O4 have been explored, including nanoparticles 

[19], nanofiber [20], nanowires [17,29-31], nanotube [15,16], nanobelt [32], nanorods 

[13,23,24], and nano-sheets [18,33,34] using various methods including thermal 

oxidation, hydrothermal synthesis, electrospinning and inverse microemulsion. Co3O4 

nano-sheets grown directly on substrates should have excellent sensing performance 

because the interconnected nano-sheets will form a network porous nanoscale system 

which facilitates a fast and effective gas adsorption onto the entire sensing surface, 

thus significantly improving sensitivity and reducing the response time. However, 

development of low cost, large scale, highly sensitive and extremely selective gas 

sensors based on the Co3O4 nano-sheets grown directly on substrates still face many 

technical and economical challenges.  

In this paper, a high precision NH3 gas sensor operated at room temperature based 

on the Co3O4 nano-sheets grown directly on an alumina tube was reported using a 

facile hydrothermal method without any template or surfactant. The sensing 

characteristics including sensitivity, selectivity, stability, response time and recovery 

time as well as the NH3 sensing mechanism based on the Co3O4 nano-sheets were 

investigated. 

2. Experimental procedures 

  2.1 Materials synthesis and characterization 

In a typical synthesis process, Co(NO3)2·6H2O of 8.109 g, urea of 0.450 g and 

NH4F of 0.111 g were dissolved into the distilled water of 80 ml under continuous 
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stirring at room temperature to form a homogeneous solution. Subsequently the 

obtained solution was transferred into a Teflon-lined stainless steel autoclave of 150 

ml, and an alumina tube was placed vertically at the bottom of the autoclave. The 

autoclave was kept at 130 oC for 9 hours, and subsequently was cooled down to room 

temperature naturally. The resultant black precipitates of Co(CO3)0.5(OH)·0.11H2O 

was collected and washed with distilled water and absolute ethanol for three times, 

respectively. Then they were dried at 110 oC in air for two hours. Finally, the ceramic 

tube with the resultant black precipitate was annealed at 350 oC for two hours in air in 

order to obtain the black Co3O4. 

Crystalline structures and phase composition of the Co3O4 nano-sheets were 

characterized using X-ray diffraction (XRD, Rigaku D/max-2500) with Cu Kα 

radiation at a wavelength of 1.5406 Å and operating voltage/current of 40 kV/30 mA. 

The morphologies of the obtained Co3O4 were observed using a scanning electron 

microscope (SEM, Inspect F50, USA) with an operation voltage of 5 kV. 

Transmission electron microscope (TEM, JEM-2200FS, Japan) was used to 

characterize crystallographic features of the sample. Surface porosity was 

characterized using a nitrogen physisorption apparatus (BELSORP-miniII, Japan) at 

77.4 K. Before the measurements, the samples were degassed at 200 °C in a vacuum 

(with a based vacuum of 10-6 Pa) for 6 hours. The specific surface area was calculated 

by Brunauer–Emmett–Teller (BET) method. The total pore volumes (Vtotal) were 

evaluated from the adsorbed amounts of nitrogen at a relative pressure P/P0 of 0.99. 

The pore size distribution was attained by the non-local density functional theory 
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(NLDFT) method. X-ray photoelectron spectroscopy (XPS, KratosAxis-Ultra DLD, 

Japan) was used with a monochromatic Al Kα radiation (1486.6 eV) in order to 

identify the chemical binding of the elements. UV–vis spectroscopy was recorded 

using a UV-2101 spectrophotometer (Shimadzu Corporation, Japan).  

2.2 Gas sensor fabrication and measurements 

The alumina tube coated with the Co3O4 nano-sheets was used to fabricate the 

sensors directly. A schematic diagram of the sensor design is shown in Fig. 1a. There 

are a pair of gold electrodes connected with Pt wires at each end of the ceramic tube. 

Between the two gold electrodes, it was the area coated with the Co3O4 nano-sheets 

film. A Ni-Cr heating wire was used as the heating supply source and was inserted 

inside the ceramic tube to control the operation temperature of the gas sensor.  

Gas-sensing performance of the device was evaluated using a WS-30A gas sensor 

measurement system (Weisen Electronic Technology Co., Ltd., Zhengzhou, China). 

Fig.1b illustrates the measurement circuit of the gas sensor, where RF is a load resistor 

connected in series with the gas sensor and RS donates a resistor of the sensor. During 

testing, an appropriate working voltage (Vworking=0.10 V in this study) was applied. 

The response of the gas sensor was monitored by the voltage changes of the RF. The 

gas response (S) of the sensor was defined as follows: S=Rg/Ra for the NH3 gas, 

where the Rg and Ra are the electrical resistance of the sensor measured in the NH3 

gas and dry air, respectively. 
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3. Results and discussions 

3.1 Structural and morphological characteristics 

Fig. 2 shows the XRD spectra of the synthesized products before and after 

calcination. Before calcination, as shown in Fig. 2a, all of the diffraction peaks can be 

indexed to orthorhombic Co(CO3)0.5(OH)·0.11H2O (a = 8.792 Å, b = 10.150 Å and c 

= 4.433 Å; JCPDS No. 048-0083). The Co(CO3)0.5(OH)·0.11H2O has a layered 

structure and consists of positively charged Co-OH layers and counter anions located 

between the Co-OH layers, which can be easily converted into the Co3O4 [35]. The 

crystalline structure of the product was changed after it was annealed at 350 oC for 2 

hours in air. All the diffraction peaks as shown in Fig. 2b can be indexed to spinel 

Co3O4 (JCPDS No. 42-1467) with the calculated lattice parameters of 8.084 Å. No 

other peaks of impurities are observed, indicating that the cobalt carbonate hydroxide 

precursor was completely transformed into crystalline Co3O4 after the calcination. 

Furthermore, the crystal size of the Co3O4 was estimated to be 20.0 nm according to 

the standard Scherrer formula: 

L = Kλ/cosθ         (1) 

where λ is the wavelength of the X-ray radiation (0.15406 nm for CuKα); K is a 

constant taken as 0.89; β is the line width at half maximum height and θ is the 

diffracting angle. 

Fig. 3 presents typical SEM and TEM images of the network nano-sheet Co3O4 

arrays. It can be seen from Fig. 3a and (b) that the Co3O4 nano-sheets have an average 

thickness of 39.5 nm, grown uniformly on the alumina tube. The thickness of the 
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nano-sheet Co3O4 arrays on alumina tube is 5.2 μm. The nano-sheet structure looks 

like maple leaves with one layer structure. Most of the nano-sheets are grown 

perpendicularly to the substrate surface, forming a network-like structure with cavities 

between the adjacent sheets. Naturally, these nano-sheets present a large effective area, 

leading to a significant enhancement of the target gas activities. A fraction of the 

nano-sheet was analyzed using TEM analysis and the results are shown in Fig. 3c. 

The as-synthesized nano-sheets consist of nanoparticles with an average diameter of 

20.0 nm, which is consistent with the calculation results from the XRD analysis. High 

resolution TEM (HRTEM) image (Fig. 3d) shows a well-defined crystalline structure 

with an average lattice spacing of 0.243 nm corresponding to the value of the (311) 

planes of the Co3O4 phase.  

The pore distribution curve of the nano-sheet Co3O4 sample is shown in Fig. 4. It 

can be found that the nano-sheet Co3O4 nanostructures have a mesoporous structure, 

with an average pores diameter of 16.39 nm and the total pore volumes of 0.3526 

cm3/g. The specific surface area obtained using the BET method for this sample is 

61.69 m2·g-1. 

On the basis of these characterization results and previous literature related to 

cobalt hydroxide-carbonate nanoparticles [35], we proposed a possible formation 

mechanism of the Co(CO3)0.5(OH)·0.11H2O precursors. At the beginning of the 

hydrothermal reactions, Co2+ ions were coordinated with F− ions to form CoFx(x-2)− 

complexes in the homogeneous solution. After the temperature of the reactant solution 

was increased to 130 °C, the hydrolysis process of the urea took place and a number 
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of CO3
2− and OH− anions were formed gradually, which could help to release Co2+ 

ions from the CoFx
(x-2)- complexes. As a result, the CO3

2− reacted with OH− and 

CoFx
(x−2)− to form cobalt−hydroxide−carbonate precursors [31]. All the involved 

chemical reactions are based on the following formulas: 

  Co2+ + xF- → CoFx
(x-2)-              (2) 

 H2NCONH2 + H2O → 2NH3 + CO2      (3) 

  CO2 + H2O → CO3
2- + 2H+           (4) 

  NH3·H2O →NH4
+ + OH-              (5) 

CoFx
(x-2)- + 0.5 CO3

2- + OH- + 0.11H2O → Co(CO3)0.5(OH)·0.11H2O + xF-  (6) 

The heat treatment stage at 350 oC was mainly associated with the decomposition 

of the Co(CO3)0.5(OH)·0.11H2O precursors and thermal formation of the Co3O4, 

which can be explained using the following formula: 

6Co(CO3)0.5(OH)·0.11H2O + O2 → 2Co3O4 + 3.11 H2O + 3CO2  (7) 

Chemical states of the samples were analyzed using the XPS. Fig. 5 shows the XPS 

spectra of Co 2p and O 1s for the Co3O4. The binding energy data obtained from the 

XPS analysis are calibrated for specimen charging by referencing the C1s peak to 

284.80 eV. As indicated in Fig. 5a, two major peaks are obtained which are centered 

at 780.18 and 795.93 eV, corresponding to the binding energies of the Co 2p3/2 and Co 

2p1/2, respectively, with a spin orbit splitting of 15.0 eV, agreed with the previous 

reports [24,25, 36]. The asymmetric O 1s peak in the surface can be fitted with three 

nearly Gaussian components, centered at 530.09, 531.63 and 532.90 eV, respectively, 

as shown in Fig. 5b. The first peak at the low binding energy side of 530.09 eV is 
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attributed to the O2- ions in the Co3O4 which are surrounded by Co atoms. Whereas 

the peaks located at the higher binding energy values of 531.63 eV and 532.90 eV can 

be assigned to oxygen species in adsorbed Co-OH and H2O molecules, respectively 

[37]. 

Co3O4 is a p-type semiconductor and its optical band gap is strongly influenced by 

the size, shape, and dimensions of its crystals. Fig. 6a shows the UV-vis absorbance 

spectrum of the Co3O4 nano-sheets. There are three broad absorption bands centered 

at 245 nm, 456 nm and 759 nm, respectively, which are consistent with the published 

reports on the optical properties for the spinel type Co3O4 thin films [38]. The band 

gap Eg can be calculated from the following equation: 

(αhν)n = A(hν − Eg )          (8) 

where hν is the photon energy, α is the absorption coefficient, A is a constant 

characteristic to the material, Eg is the band gap, and n equals either 1/2 for an indirect 

transition, or 2 for a direct transition. The calculated (αhν)2 versus hν curve is shown 

in Fig. 6b. The value of hν extrapolated to α=0 gives the absorption band gap energy. 

The curve in Fig. 6b can be linearly fitted into 2 lines with the intercepts at 2.46 eV 

and 1.80 eV. As has been reported in the literature [39-40], the larger band gap of 

2.46 eV should be associated with the O−II→CoII charge transfer process (basic 

optical band gap energy or valence to conduction band excitation), whereas the band 

gap of 1.80 eV should be related to the O−II→CoIII charge transfer (with CoIII located 

below the conduction band). The best fitting of Eq. (8) to the absorption spectrum of 

the product gives n=2, which suggests that the as-synthesized Co3O4 nanocrystals are 
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semiconducting with a direct transition at these energies. 

3.2 Gas sensing properties 

The gas sensing performance of the sensors based on Co3O4 nano-sheets was 

characterized. Fig. 7 plots typical current-voltage (I-V) curves between the two 

neighboring platinum electrodes bridged by the Co3O4 nano-sheets at room 

temperature. The currents are increased linearly with the applied bias voltage (from -9 

V to 9 V), indicating that good ohmic contacts are established between the Co3O4 

nano-sheets layer and electrodes.  

The response and recovery behaviors of the gas sensor operated at room 

temperature were investigated using different concentrations of the NH3 gas, and the 

results are shown in Fig. 8a. It can be seen that the response is increased with 

increasing NH3 concentration. Even at a low NH3 concentration of 0.2 ppm, the 

Co3O4 nano-sheet based sensor still shows a good response. The electrical resistance 

values of the sensor quickly decrease as soon as the NH3 gas are injected into 

chamber and then quickly recover to its initial values once the test chamber is 

refreshed with dry air, indicating the good repeatability and reversibility of the NH3 

sensor. The operating temperature is one of important sensing properties of a gas 

sensor and a low operating temperature such as room temperature in this study is 

preferable for its practical applications. 

The response sensitivity of the Co3O4 nano-sheets sensor to the NH3 (0.2–100 ppm) 

was calculated and the results are shown in Fig. 8b. The response sensitivity of the 

sensor increases with the concentration of the NH3, but the sensor still has a good 
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response to the concentration as low as 0.2 ppm. A linear plot between the increase of 

the sensitivity and NH3 concentration is obtained with the dynamic detection range 

from 1 ppm to 100 ppm as shown in Fig. 8b, revealing that the sensor presents a good 

linearity characteristic to the detection of NH3. The equation fitted for the response 

sensitivity (S) and NH3 concentration (CNH3) was obtained based on the data in Fig. 

8b: 

S = 0.0819 CNH3+1.09128      （9） 

Where S is the response sensitivity, CNH3 is the NH3 concentration (in ppm). The 

constant of 0.0819 (in ppm-1) and 1.09128 are the slope and altitude intercept of the 

fitted line. 

Fig. 9 shows the response time and recovery time of the Co3O4 nano-sheets based 

sensor as a function of NH3 concentration. The time resolution is 1 s. Here, the 

response time and recovery time are defined as the time to reach 90% of the 

maximum sensing response upon injection of the NH3 gas and the time to fall to 10% 

of the maximum sensing response upon air purging. As can be seen from Fig. 9, the 

response time and recovery time show variations upon exposure to different 

concentrations of the NH3 gas. The response time and recovery time are obviously 

shorter at lower concentrations of the NH3 (i.e., less than 1 ppm) than those at higher 

concentrations (i.e., more than 1 ppm). For the 0.2 ppm NH3, the senor shows fast 

response and recovery, and the response time and recovery time are only 9 s and 134 s, 

respectively.  

Most reports on the NH3 sensors [3,9,13] were focused on high temperature sensing 
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applications, whereas the NH3 sensors applied to room temperature are quite limited. 

For example, Zeng et al reported that the response of their sensor based on 

Pd-sensitized ZnO nanostructures towards 50 ppm NH3 is 3.4 at 100 oC with the 

response and recovery time of 20 and 60 s, respectively [3]. Although the sensor has 

also been tested at room temperature, its recovery time (>40 min) is quite long for the 

practical applications [3]. Bedi and Singh reported that the gas sensor based on the 

CuO film showed a respond sensitivity of 9 toward 100 ppm NH3 at room temperature, 

but its signal seemed not fully recovered [41]. Hoa et al reported that a sensor based 

on nanocomposite of carbon nanotubes and SnO2 showed a response time of 100 s 

and a recovery time of 3.2 min respectively, but the sensor only detected the 

concentration of NH3 down to 10 ppm at room temperature [42]. Kshirsagar et al 

reported that the respond sensitivity of a ZnO films NH3 sensor to 400 ppm of NH3 

gas is only 1.15 at room temperature with a response time of 240 s and a recovery 

time of 900 s, respectively [43]. The NH3 sensor based on the network Co3O4 

nano-sheet array in this study showed excellent sensitivity, rapid response/recovery 

time. It could detect the concentration of NH3 down to 0.2 ppm at room temperature. 

Fig. 10 displays the real-time transient for the NH3 sensing of the sensor based on 

Co3O4 nano-sheets when it was exposed to 20 ppm NH3 gas at room temperature. The 

response curve indicates that the sensor has a rapid response to the NH3 gas. When the 

sensor was exposed to the purged air, the response of the sensor could be returned 

near to the baseline level. The response time and recovery time were determined to be 

204 s and 835 s, respectively. 
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Once the Co3O4 nano-sheets are exposed to the air, oxygen adsorption plays an 

important role in electrical transport properties of the Co3O4 nano-sheets. At room 

temperature, the surface oxygen species O2
- is the most active one [24].             O2(g) → O2(ad)                                       

(10)             O2(ad) + e− → O2(ad)−                                             

(11) 

Surface acceptor states are created by the oxygen adsorption and trapped electrons, 

and in turn both the accumulation of holes and the electrical carrier concentrations are 

enhanced. These changes result in an increase in the conductivity of the gas sensor 

and the downward bending of energy band, thus producing an accumulation layer of 

holes [13] on the surface and generating a barrier Δ as shown in Fig. 11b. It is 

different with the energy band in an Ar atmosphere (as shown in Fig. 11a). 

When the NH3 gas molecules contact with the oxygen species covered on the oxide 

surface, the reactions between the NH3 and adsorbed oxygen are triggered based on 

the following chemical reactions [44]: 

   NH3(gas) → NH3ads                                                 (12) 

4NH3ads + 3O2
- → 2N2 + 6H2O + 3e-                                  (13) 

As a consequence, when the sensor is exposed to NH3 gas, the electrons trapped by 

the adsorptive states will be released to combine with the holes, which results in the 

accumulation layer of holes reduced. Therefore the potential barrier (Δ) is increased 

as shown in Fig. 11c, leading to an increase in sensor resistance. This is opposite to 
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the n-type semiconductor gas sensors [45,46]. 

The nano-sheet surface structures are advantageous to achieve quick and significant 

gas responses via effective and rapid diffusion of gas onto the sensor surfaces. It can 

supply multiple-transportation and diffusion paths for the target gas molecules, thus 

enhancing gas diffusion and mass transportation through the nano-sheet sensing 

material. Moreover, the surface of sheets can promote the formation of more 

chemisorbed oxygen species. Thus, the ammonia molecules can efficiently react with 

the oxygen species on the sensor surface, which can change the electrical resistance 

significantly, thus increasing the sensitivity to the target NH3 gas. 

 Apart from the high sensitivity, another important property is the reproducibility 

of the Co3O4 nano-sheets sensor. By successively exposed to the NH3 gas with a 

concentration of 20 ppm for 5 cycles at room temperature, the Co3O4 nano-sheets 

based sensor shows a good reproducibility as demonstrated in Fig. 12a. During the 

repeated NH3 gas injection and dry air purging processes, the response-recovery 

curves of the sensor are almost identical. No apparent resistance attenuation is 

detected after the repeated testing. It shows a stable response curve with a maximum 

response of 2.30 when it is exposed to 20 ppm NH3. The response time and recovery 

time are almost identical for the five repeated tests, and the fluctuation of response 

values are less than 3%, indicating the good reproducibility characteristics of the 

Co3O4 nano-sheets based gas sensor. 

Long-term stability, other critical parameters for the sensor during the practical 

application, has been investigated as shown in Fig. 12b. For the stability test, the 
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response of the gas sensor to the NH3 was recorded once in a day for 23 days. From 

Fig. 10b, it can be concluded that the responses of the gas sensor are constant and the 

deviation of sensor’s response to 100 ppm NH3 was lower than 3% after repeated 

testing for 23 days, indicating that the sensor possesses an excellent long-term 

stability for NH3 detection. 

For practical application, the selectivity of the gas sensor is another critical parameter. A 

poor selectivity of a gas sensor would lead to a false alarm, thus severely limiting its 

industrial applications. Therefore, the sensing responses of the Co3O4 nano-sheets based 

sensor to several common reducing gases (including NH3, H2S, CO, H2 and C2H5OH) were 

measured at the same gas concentration of 100 ppm at room temperature. The measurement 

results are shown in Fig. 13a. Clearly, the Co3O4 nano-sheets based sensor displays a 

remarkably higher response to NH3 gas than those to other gases at the same test conditions. 

Fig. 13b shows the sensitivity data of the sensor exposed to the different target gases. As 

shown in Fig. 13b, the response sensitivity to H2S, CO, H2, C2H5OH are 2.0, 1.4, 1.2 and 

1.5, respectively. These values are far less than the response sensitivity towards the NH3 gas, 

which reaches 9.5 at the same concentration of 100 ppm. It means that the gas response to 

NH3 was 4.65, 6.64, 7.75 and 6.20 times higher than that those to H2S, CO, H2, and 

C2H5OH, respectively. It suggests that the sensor has an excellent selective toward the NH3. 

 

4. Conclusions  

In summary, network nano-sheet arrays of Co3O4 on alumina ceramic tube were 

prepared using a facile hydrothermal process without any template or surfactant. The 

network pristine Co3O4 nano-sheet array showed a uniform nano-sheet array structure 
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with a thickness of 39.5 nm, which is consisted of nanoparticles with an average 

diameter of 20 nm. Gas sensor based on the network Co3O4 nano-sheets array showed 

excellent sensitivity, rapid response/recovery time and low detection limit (0.2 ppm) 

towards NH3 gas at the room temperature. Therefore, the Co3O4 nano-sheet array 

investigated in this study can be efficiently used for high-performance NH3 gas 

sensor. 
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Figure Captions 

Fig. 1 (a) Schematic gas sensor based on Co3O4 nano-sheet array. (b) The 

measurement electric circuit for the gas sensor. 

Fig. 2 XRD spectra of products (a) before calcination and (b) after calcination at 350 

oC for 2 hours in air. 

Fig. 3 (a) SEM image of samples with magnification of 10000 times (inset indicates 

the panoramic image of the Co3O4 on the surface of alumina tube), (b) SEM 

images with magnification of 40000 times,(c) TEM image of Co3O4 nano-sheet 

(d) HRTEM image showing the crystalline framework. 

Fig. 4 Pore size of distribution curves of the nano-sheet Co3O4 samples. 

Fig. 5 XPS spectra of (a) Co 2p and (b) O 1s for Co3O4 nano-sheets. 

Fig. 6 (a) UV–vis absorption spectra of Co3O4 nano-sheets (b ) Optical band gap 

energy of Co3O4 nano-sheets obtained by extrapolation to α = 0. 

Fig. 7 The I-V characteristics between the two neighboring electrodes bridged by the 

Co3O4 nano-sheets at room temperatures. 

Fig. 8 (a) Dynamic response-recovery curve and (b) Response sensitivity of the Co3O4 

nano-sheets based sensor to NH3 gas at the room temperature. 

Fig. 9 Response time and recovery time of the Co3O4 nano-sheets based sensor to 

NH3 gas at the room temperature. 

Fig. 10 Real-time gas sensing transients of the sensor based on Co3O4 nano-sheets to 

20 ppm NH3 gas at room temperature. 

Fig. 11 Band diagrams and schematic images of the surface reactions at different 
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surroundings: (a) in Ar atmosphere, (b) exposed in air, (c) in the presence of 

NH3 gas. 

Fig. 12 (a) Reproducibility to 20 ppm NH3 gas and (b) Long-term stability to 100 ppm 

NH3 gas of the gas sensor based on Co3O4 nano-sheets at room temperature. 

Fig. 13 (a) Response and (b) Sensitivity histogram of Co3O4 nano-sheets gas sensor 

towards different gases at the same concentration of 100 ppm. 

 

 

Fig. 1 (a) Schematic gas sensor based on Co3O4 nano-sheet array. (b) The 

measurement electric circuit for the gas sensor. 

 

 

Fig. 2 XRD spectra of products (a) before calcination and (b) after calcination at 350 

oC for 2 hours in air 
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Fig. 3 (a) SEM image of samples with magnification of 10000 times (inset indicates 

the panoramic image of the Co3O4 on the surface of alumina tube), (b) SEM images 

with magnification of 40000 times,(c) TEM image of Co3O4 nano-sheet (d) HRTEM 

image showing the crystalline framework. 

 

Fig. 4 Pore size of distribution curves of the nano-sheet Co3O4 samples using the 

Barrett-Joyner-Halenda (BJH) method. 
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Fig. 5 XPS spectra of (a) Co 2p and (b) O 1s for Co3O4 nano-sheets 

 

 

 

Fig. 6 (a) UV–vis absorption spectra of Co3O4 nano-sheets (b ) Optical band gap 

energy of Co3O4 nano-sheets obtained by extrapolation to α = 0. 
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Fig. 7 The I-V characteristics between the two neighboring electrodes bridged by the 

Co3O4 nano-sheets at room temperatures 

 

 

 

Fig. 8 (a) Dynamic response-recovery curve and (b) Response sensitivity of the Co3O4 

nano-sheets based sensor to NH3 gas at the room temperature. 

 

 

Fig. 9 Response time and recovery time of the Co3O4 nano-sheets based sensor to 

NH3 gas at the room temperature. 
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Fig. 10 Real-time gas sensing transients of the sensor based on Co3O4 nano-sheets to 

20 ppm NH3 gas at room temperature. 

 

 

Fig. 11 Band diagrams and schematic images of the surface reactions at different 

surroundings: (a) in Ar atmosphere, (b) exposed in air, (c) in the presence of NH3 gas. 

  

Fig. 12 (a) Reproducibility to 20 ppm NH3 gas and (b) Long-term stability to 100 
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ppm NH3 gas of the gas sensor based on Co3O4 nano-sheets at room temperature 

 

  

Fig. 13 (a) Response and (b) Sensitivity histogram of Co3O4 nano-sheets gas sensor 

towards different gases at the same concentration of 100 ppm. 

 


