

QUT Digital Repository:
http://eprints.qut.edu.au/

Tian, Guo-Song and Tian, Yu-Chu and Fidge, Colin J. (2008) High-precision relative
clock synchronization using time stamp counters. In: 13th IEEE International
Conference on Engineering of Complex Computer Systems, 31 March-4 April 2008,
Beflast, UK.

 © Copyright 2008 IEEE

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

High-Precision Relative Clock Synchronization Using Time Stamp Counters

Guo-Song Tian, Yu-Chu Tian and Colin Fidge
Faculty of Information Technology,

Queensland University of Technology, Brisbane, QLD 4001, Australia

Abstract

In this paper we show how to use a computer proces-

sor’s Time Stamp Counter register to provide a precise and

stable time reference, via a high-precision relative clock

synchronization protocol. Existing clock synchronization

techniques, such as the Network Time Protocol, were de-

signed for wide-area networks with large propagation de-

lays, but the millisecond-scale precision they offer is too

coarse for local-area applications such as instrument mon-

itoring systems, high-quality digital audio systems and sen-

sor networks. Our new clock synchronization technique

does not require specialized hardware but instead uses the

Time Stamp Counter already available in the widely-used

Intel Pentium processor. Experimental results show that

we can achieve a synchronization precision in the order of

10 microseconds in a small-scale local area network using

TSC registers, which is much higher than can be achieved

by using a computer processor’s Time-Of-Day clock.

1 Introduction

With the emergence of new time-critical distributed com-
puting paradigms, such as distributed control converters,
human-robot physical interaction and ad hoc networks com-
posed of large numbers of disposable sensors, clock syn-
chronization is again becoming a critical issue in distributed
computing environments [1, 3, 6, 9, 14, 15]. In a typical
business application network, the only synchronization re-
quirement is the need to keep clocks in a Wide-Area Net-
work (WAN) loosely synchronized with an absolute Time-
Of-Day reference. By contrast, distributed control systems
require strong, relative clock consistency in a Local-Area
Network (LAN) [4].

Relative clock synchronization refers to the mechanisms
and protocols used to maintain mutually-consistent clocks
in a coordinated network of computers. That is, relative
clock synchronization focuses on the time difference be-
tween clocks, not the offset of each clock against absolute
time (sometimes called ‘wall clock time’). The accuracy re-

quirements for relative clock synchronization in control sys-
tems are of the order of millisecond or even sub-millisecond
precision. For instance, real-time controllers typically as-
sume that important events occur at predetermined times,
and the system’s calculations might be wrong if sensors are
not sampled at the assumed rate or if signals are not sent to
actuators at the expected times.

High-precision clock synchronization can be achieved
either by hardware or software clocks. The clocks may
be Time-Of-Day (TOD) clocks using an oscillator that is
consistent with Coordinated Universal Time or a software
clock using other absolute time sources such as Internet
time servers or a satellite radio clock. In this paper, how-
ever, our clock synchronization method is relative only, so
does not rely on an external high-precision hardware timer.

Generally, the precision of network clock synchroniza-
tion depends on two aspects: determining the one-way
transmission delay of timestamp messages and the preci-
sion of a local clock. The well-known four-timestamp
offset-calculation mechanism of the Network Time Proto-
col (NTP) is widely used by synchronization protocols to
improve the accuracy of estimated one-way transmission
delays. Networks using NTP-like synchronization mech-
anisms typically provide precision of the order of one mil-
lisecond [12]. In our work, the adopted timestamp mecha-
nism is derived from NTP.

One of keys to achieving high-precision relative clock
synchronization is the use of high accuracy local clocks
because the goal of the synchronization is to correct local
clocks accurately before they drift out of acceptable range.
Unfortunately, Time-Of-Day clocks rely on potentially un-
stable crystal oscillators [9]. Compared with an oscillator,
however, we note that a computer processor’s Time Stamp
Counter (TSC) register has several advantages for achiev-
ing high precision relative clock synchronization. The TSC
register counts processor cycles and is normally used for
measuring short time intervals. Its time resolution is much
higher than an oscillator’s. For example, for a processor
running at a frequency of 800MHz, its TSC register can pro-
vide a time resolution of 1.25 nanoseconds. Also, the time
required to read from a TSC register is far less than that of

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.39

69

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.39

69

reading from the computer’s TOD clock. Finally, a com-
puter’s Central Processing Unit (CPU) frequency is usually
more stable than that of the oscillator used to drive the TOD
clock.

In this paper we present a high-precision relative clock
synchronization protocol with a master-slave synchroniza-
tion structure. The protocol is intended to support high-
precision real-time calculations in Local-Area Networks,
rather than the usual low-precision timestamping mecha-
nism supported in Internet applications. Since we are in-
terested in intra-network clock consistency, rather synchro-
nizing clocks against an absolute time standard, the pro-
tocol does not require a high-precision time server whose
precision has to be guaranteed by additional hardware
clocks [3, 12]. The protocol is suitable for use with net-
works of processors that provide access to a TSC register.
Thanks to the stability of the TSC register, the precision
achieved by our protocol can be much greater than that of
synchronization methods using Time-Of-Day functions, as
we demonstrate by experiments performed under a simple
synchronization structure.

2 TOD clock and TSC clock characterization

This section introduces the characteristics of both Time-
Of-Day and Time Stamp Counter clocks, and compares the
performance of timing measurement using a TOD clock and
a TSC-based clock. Also the effects of clock skew are mea-
sured using TSC-based clocks.

Maintaining a TOD clock requires the computer to gen-
erate a clock-tick signal at a predetermined rate. The source
of a computer’s system timer is a basic uncompensated
quartz crystal oscillator whose frequency is 14.31818 MHz.
Dividing the basic frequency by 12 gives 1.19318 MHz
(thus the period is 0.8381 microseconds), which is the clock
frequency used by the computer’s system timers [2].

The precision of a TOD clock is affected by not only
the resolution of the computer’s system timer but also the
periodic timer interrupt. The Time-Of-Day function in
general-purpose computers is commonly implemented us-
ing clock readings from an uncompensated quartz crystal
oscillator and counter, which delivers a pulse train with
a period ranging from 10 to 1 milliseconds. Each pulse
causes a timer interrupt, which increments a software logi-
cal clock variable by a fixed value scaled in microseconds
or nanoseconds. Therefore, the precision of a TOD clock
may be greater than 0.8381 microseconds, even as much
as 10 milliseconds for conventional Linux systems, which
represent wall time as two 32-bit words in seconds and mi-
croseconds/nanoseconds from UTC midnight, 1st of Jan-
uary 1970, with no provision for leap seconds [13].

In this paper, a TSC-based clock is defined as a software
clock based on a computer processor’s TSC register. Many

Table 1. Test configuration
Hardware Intel Pentium III 800MHz

256M/512M SDRAM Memory
Operating systems Fedora 3/Linux kernel 2.6.12.1
Network adapter Network adapter 3COM 3c59x

Fast Ethernet Card
Ethernet switch Baystack 303 Ethernet Switch

processors contain a timer that operates at the clock cycle
level. The timer is a special register that gets incremented
every single clock cycle. Although there is no uniform,
platform-independent interface by which programmers can
make use of these counters, it is easy to create a program in-
terface for any specific machine with just a small amount of
assembly code. The Time Stamp Counter is a cycle counter
used in the P6 microarchitecture (the PentiumPro and its
successors). It is a 64-bit unsigned number, which counts
the number of cycles since the CPU was powered up or last
reset. Although the CPU chip’s frequency is affected by ex-
ternal factors, such as age and operating temperature, higher
CPU speeds allow finer time resolution of this counter.

The current “time” of a TSC clock tt, relative to the
CPU’s last start-up or reset, can be calculated easily from
the value of the TSC register T and the measured CPU fre-
quency fm as follows.

tt =
T

fm
(1)

The value of the TSC register can be read by an ‘rdtsc’ in-
struction. Unfortunately in non-real-time operating system,
it is hard to measure the CPU’s frequency exactly without
an external high-precision timer, because of effects such as
context switching, caching and branch predication. For ex-
ample, the precision achieved by a coarse CPU frequency
measurement may be as much as 1.0% [2]. Therefore, a
(relative) TSC-based clock tt and an (absolute) TOD clock t
may run at a different speeds.

The precision of a software clock is determined by at
least two factors: the time cost of reading the hardware
clock and the hardware clock’s intrinsic frequency error.
The time required to read a hardware clock can be affected
by factors such as the scheduling characteristics of the oper-
ating system and the CPU’s computational capabilities. The
intrinsic frequency error of the hardware clock further de-
teriorates the precision of the derived software clock, and
accumulated errors cause clock drift.

To inform our synchronization protocol, we need to un-
derstand the magnitude of these errors in the system con-
figuration of interest. In the remainder of this section we
present the results of experiments we conducted to measure
how long it takes to read from hardware clocks and the ef-
fects of clock drift. Table 1 summarises the configurations

7070

465

466

467

468

469

470

 0 1000 2000 3000 4000 5000

m
ea

su
re

d
 t

im
e

in
te

rv
al

 (
m

ic
ro

se
co

n
d
)

number of tests

TSC clock
TOD clock

Figure 1. Comparison in timing measurement
using a TOD clock and using a TSC register

of the machines used in all experiments in this paper.

2.1 Time cost of clock reading

As noted earlier, the overhead of reading a clock is one
of the factors that affects the precision of timing measure-
ments, particularly when the measurement interval is very
small. For conventional Linux systems, the overhead com-
monly consists of two parts: the time cost of reading the
hardware clock and context switching. It is known that the
value of the Time Stamp Counter register can be read eas-
ily by executing an ‘rdtsc’ instruction and its time cost is
almost constant and comparatively small [10]. Therefore,
to compare the performance of timing measurements using
TSC registers and Time-Of-Day clocks in a conventional
Linux system, we designed a simple experiment.

We wrote a program based on the assumption that the
time cost of executing ‘nop’ instruction repeatedly 50000
times is constant. To reduce the error caused by other tasks
and variability in the tick interval (i.e., the separation of
timer interrupts), only the testing program was executed
during the experiment and the time difference between tests
was set to 20 milliseconds, which is larger than the proces-
sor’s tick interval of 10 ms. TSC-based and time-of-day
clocks were used to measure the time interval respectively.
The number of tests performed was 5000.

The scatterplot in Figure 1 shows that the fluctuation
range of the measured time interval using a TSC register
was much smaller than that using a TOD clock. That is, the
time cost of reading a TSC register is more stable than that
of reading a TOD clock in a conventional Linux system.

2.2 Measuring clock drift

All clocks inevitably drift from absolute time and from
one another due to their intrinsic frequency error. There-
fore, clock drift affects the precision of our relative clock

synchronization, so we also need to examine its impact on
the TOD clock and the TSC register.

The oscillators used to implement TOD clocks usually
have an intrinsic frequency error resulting in linear clock
drift on the order of several parts per million (PPM) in the
normal course of operation [9]. There are no explicit means
to control crystal ambient temperature, power level, voltage
regulation or mechanical stability. For instance, in a survey
of about 20,000 Internet hosts synchronized by the Network
Time Protocol, the median intrinsic frequency error was
78 PPM, with some hosts having as much as 500 PPM [13].
That is, when the intrinsic frequency error is 500 PPM, the
absolute clock deviation may be as much as 500 μs per
second. For relative clock synchronization, this means the
time difference between two clocks caused by intrinsic fre-
quency error may be as much as 1 ms.

The drift of a TSC register-based clock will be caused
by errors in the measured CPU frequency. Because a mod-
ern microprocessor’s CPU frequency is almost constant, we
expect that TSC-based clock drift caused by intrinsic fre-
quency error will be strictly linear.

To confirm this, we designed an experiment to measure
the impact of clock drift on relative clock synchronization
using TOD clocks or TSC registers separately. The time
difference between two clocks in two computers was mea-
sured and used to determine the relative drift between the
clocks. The computers were interconnected by Ethernet and
a single switch. The hardware configurations are shown in
Table 1. To avoid interference, the traffic load was gener-
ated by the experimental software only. Under these cir-
cumstances, the time required for one-way transmission
is almost constant. At a predetermined interval (usually
100 ms), one machine sent UDP packets to the other ma-
chine continually. The length of packets at the MAC pro-
tocol layer is 64 bytes, which is the minimum in Ether-
net configurations. Sending and receiving timestamps were
recorded by the network interface card (NIC) driver for ac-
curacy. Since Fedora 3 is not a real-time operating system,
and cannot guarantee periodic tasking in the presence of
multiple tasks, only the testing programs were run on the
two machines.

The relative clock drift between two clocks on the com-
municating machines was measured as the time difference
between receiving timestamp tR and sending stamp tS for
each periodic message. Figure 2 shows that the time dif-
ference between two TOD clocks grows linearly, and its
threshold behavior is obvious. Figure 3, which uses a finer
scale, reveals that the time difference may jump by more
than 1 ms during a short time (less than 0.2 s). The same ex-
periment was then implemented using timestamps derived
from TSC register readings. As shown in Figure 4, the TSC-
based clock drifts smoothly with minimal threshold effects.

In summary, relative clock drift when using a TSC-based

7171

23.520

23.540

23.560

23.580

23.600

23.620

23.640

 0 20 40 60 80 100

d
if

fe
re

n
ce

 b
et

w
ee

n
 s

en
d
in

g

 a
n
d
 r

ec
ei

v
in

g
 t

im
es

ta
m

p
s

(s
)

time at time client (s)

TOD clock

Figure 2. Relative Time-Of-Day clock drift dur-
ing an interval of 90 seconds

23.586

23.588

23.590

23.592

23.594

23.596

23.598

23.600

 55 56 57 58 59 60

d
if

fe
re

n
ce

 b
et

w
ee

n
 s

en
d

in
g

 a

n
d

 r
ec

ei
v

in
g

 t
im

es
ta

m
p

s
(s

)

time at time client (s)

TOD clock

Figure 3. Relative Time-Of-Day clock drift in
5 seconds

-3.293000

-3.292950

-3.292900

-3.292850

-3.292800

-3.292750

-3.292700

 55 56 57 58 59 60

d
if

fe
re

n
ce

 b
et

w
ee

n
 s

en
d
in

g

 a
n
d
 r

ec
ei

v
in

g
 t

im
es

ta
m

p
s

(s
)

TSC clock time at time client (s)

TSC clock

Figure 4. Relative Time Stamp Counter clock
drift in 5 seconds

clock is more deterministic and predictable than when using
a TOD clock. This is why a TSC-based clock is a better
choice for a high precision timing measurement when the
measurement interval is small.

3 High precision relative clock synchroniza-
tion protocol

This section discusses the design and implementation of
our relative clock synchronization protocol, based on the
assumption that every computer processor in the synchro-
nization structure is equipped with a Time Stamp Counter
register. In this section, we assume that tx is the absolute
time, and Tx and ttx are the ticks of the TSC register and
the current time of a TSC-based clock, respectively, both
relative to the CPU’s last startup or reset.

Figure 5. Assumed synchronization structure

3.1 Synchronization structure

We adopt a master-slave structure for the clock synchro-
nization protocol. The distributed system consists of a set
of nodes interconnected via an Ethernet switch, as shown in
Figure 5. There are two kinds of nodes, a single master node
(the time server) and several slave nodes (the time clients).
All slave nodes are to be synchronized to the master node.

Normally in clock synchronization protocols it is re-
quired that root time servers are connected to a reliable ex-
ternal time source, such as a satellite radio clock or tele-
phone network time server [12]. Unlike other clock syn-
chronization protocols, however, our relative clock syn-
chronization protocol does not require a high-precision
hardware absolute time source accessible by the master
node.

3.2 Synchronization model

The synchronization model is based on the usual four-
timestamp mechanism of the Network Time Protocol as
shown in Figure 6. This commonly-used mechanism mea-
sures the transmission delay between communicating nodes
and uses this to estimate the offset between their respective
clocks, in order to determine the error in the client node’s

7272

Figure 6. Synchronization model

clock with respect to the time server’s clock. At predeter-
mined intervals, a client sends a request to the time server
and waits for a response. This exchange of messages results
in four clock timestamps, tCS at the first message’s send-
ing time, tSR at its receiving time, tSS at the second mes-
sage’s sending time, and tCR at its receiving time. Times-
tamps tCS and tCR are read from the client node’s clock
and timestamps tSR and tSS are read from the server node’s
clock. The server’s timestamps are sent to the client in the
second message. The client then uses the four timestamps
to calculate the clock offset and roundtrip message delay
relative to the server. The client can then reset its own clock
to compensate for any difference with the server’s clock.

The timestamping mechanism is designed based on an
assumption that the forward and backward communication
delays are symmetric. The time difference td between the
time t(C) on the client and the time t(S) on the time server
can be computed as follows.

td = t(C) − t(S)

=
(tCS + tCR) − (tSS + tSR)

2

=
1
2

[
(TCS + TCR)

fC
− (TSS + TSR)

fS

]
(2)

Here fC and fS are the CPU frequencies of the client and
the server.

Similarly, using TSC-based software clocks the time dif-
ference ttd between the time tt(C) on the client and the
time tt(S) on the server can be computed as follows. This
equation is the basis of our synchronization protocol.

ttd = tt(C) − tt(S)

=
1
2

[
(TCS + TCR)

fmC
− (TSS + TSR)

fmS

]
(3)

Here TCS , TSR, TSS and TCR are timestamps (the ticks of
TSC registers) on the server and the client corresponding to
tCS , tSR, tSS and tCR, and fmC and fmS are the measured

values of the CPU frequencies of the client and the server,
respectively.

Figure 7 shows the time difference td between t(C) and
t(S) that are absolute time at the client and the server, and

Figure 7. Time difference between time client
and server provided by TOD and TSC clocks

the time difference ttd between tt(C) and tt(S) that are the
time of TSC-based clocks at the client and the server, re-
spectively. We assume that there is no intrinsic frequency
error in both clocks in the client and the server. So the ab-

solute time difference td is flat using absolute time clocks.
Unlike absolute time clocks, TSC-based clocks in the server
and the client may run at different speeds, and the rela-

tive time difference ttd between them increases with time.
When measured clock frequency is equal to the real clock
frequency, ttd is equal to td. The error in measured CPU
frequencies and its impact on the precision of relative clock
synchronization will be discussed in Section 4.

3.3 Implementation

In this section we describe our prototype clock synchro-
nization implementation, based on Time Stamp Counter
time differences calculated as per Equation 3.

3.3.1 Operating system

The prototype protocol is currently implemented in a con-
ventional Linux kernel, rather than a specialised real-time
operating system. The kernel, therefore, guarantees no
bounds on interrupt servicing latencies. The frequency of
timer interrupts in conventional Linux is 100 Hz, i.e., the
tick interval is 10 ms. Both transmission and reception of
timestamp messages are interrupt-driven events. Variations
in interrupt latencies produce errors in the delay estimates
that the synchronization protocol uses to coordinate clocks.
When the CPU is lightly loaded, the error in time measure-
ments caused by variability in the tick interval is very small,
even negligible. Therefore, with some care, the precision
achieved for relative clock synchronization using conven-
tional Linux for our experiments was considered satisfac-
tory.

3.3.2 The TSC-based clock

To compute the time for a TSC-based clock, an rdtsc in-
struction is used to read the local TSC register and a kernel

7373

module was developed for measuring the CPU frequency.
When booting up a Linux system an attempt is made to

calibrate the CPU frequency by comparing it with the Pro-
grammable Interval Timer (PIT). The calibration result is
in the format of TSC ticks per microsecond. This 50 ms
calibration is coarse, with a precision of 100 parts per mil-
lion because it is flawed by the I/O delays in accessing the
PIT. The measured CPU frequency can be read from the file
‘/pro/cpuinfo’.

Using the same method, we programmed a CPU fre-
quency test as a module that runs in the kernel. The module
performs a 50 ms test repeatedly, 100 times. The fluctua-
tion range of the measured CPU frequency during 100 tests
is about 50 PPM. Although the program runs in kernel space
and disables some interrupts, such as the speaker’s, the ex-
pected 50 ms interval between two consecutive readings of
the TSC register may be prolonged by enabled interrupts.
Therefore, the maximum measured CPU frequency among
100 tests is close to the true CPU frequency, and is used
as the measured CPU frequency fm to compute the time of
TSC clock tt.

Figure 8. Synchronization message’s format

3.3.3 Synchronization message’s format

We send all synchronization messages via the UDP proto-
col under Linux, because this protocol is a better choice for
real-time applications than the TCP protocol [1,5]. Figure 8
shows the synchronization message including two times-
tamps, a message identifier and information fields. Two
timestamps are 64-bit words whose values are set using
TSC register values. The message’s identifier is used to
match timestamps in the time server and time client, and
detect packet loss. The time difference is computed in the
client. The time server learns of the computed time differ-
ence via the time difference field received from the time
client. Finally, the four ‘reserved’ bytes will be used to
change the frequency of message transmission in terms of
achieved precision of synchronization in future work.

3.3.4 Operating system modification

As a multi-tasking computing environment, conventional
Linux provides two modes of background process, user
space and kernel space. For accuracy, the synchronization
protocol relies on simple kernel-space routines for the mes-
sage timestamps.

Our program interfaces with the kernel through stan-
dard Linux system calls. The sending and receiving times-
tamps are recorded in the NIC driver, via an rdtsc instruc-
tion, and the timestamps are passed to the user space by an
IOCTL() call. The entire modification is small, requiring
only a few tens of lines of code. The timestamping mecha-
nism can be implemented in Linux kernel 2.4 and 2.6.

4 Error analysis

As well as implementing the synchronization process, it
is important that we understand the worst-case accuracy of
the result. In this section we therefore analyze the potential
errors in the time difference measurements that are used in
the synchronization protocol.

As shown in Figure 6, DS and DR are the one-way trans-
mission delay of the two synchronization messages. Let
DS−R denote DS minus DR. Then the absolute time dif-
ference between the client and server is related to the four
timestamps of the message and one-way transmission delay
of the messages as follows.

td =
1
2

[
(TCS + TCR)

fC
− (TSS + TSR)

fS

]
+

DS−R

2
(4)

We assume that the errors in these measurements are
ΔfmC and ΔfmS . Let ΔfX be CPU frequency fX minus
measured value of CPU frequency fmX . Then the mea-
sured TSC-based time difference between the client and
time server can be computed by the client using the follow-
ing formula.

ttmd =
1
2

[
(TCS + TCR)

fmC
− (TSS + TSR)

fmS

]

=

[
ΔfC

fmC
− ΔfS

fmS

1 + ΔfC

fmC

](
TCS

fmC
+ tmRRT

)
+

fS

fmS
td − fS

fmS

(
DS−R

2

) (5)

where the round trip time tmRRT measured by the client is
the difference between two time stamps using TSC regis-
ter at the client (TCR − TCS), divided by measured CPU
frequency of the client fmC .

We observe that one term of the measured time differ-
ence, [

ΔfC/fmC − ΔfS/fmS

1 + ΔfC/fmC

] (
TCS

fmC

)
,

7474

is time-varying if the CPU frequencies of the server and the
client, and their measured values are constant. Therefore,
the measured time difference is expected to be proportional
to the time of TSC-based clock TCS/fmC at the client. The
slope of the drift is

K =
Δfc/fmC − ΔfS/fmS

1 + Δfc/fmC
.

It is clear that the drift results from the different speeds at
which the two TSC-based clocks in the client and the server
run. The difference between speeds is called clock skew [7].
When the measurement period is long enough, this non-zero
slope can be estimated accurately by some clock frequency
synchronization methods such as a skew estimation algo-
rithm [7,11,16,17]. For simplicity, linear regression is used
for clock skew correction in this paper.

When the measured CPU frequency of the time client is
corrected based on the estimated slope, the speeds of the
two TSC-based clocks in the client and server are synchro-
nized. We assume that the time of the two TSC-based clocks
in the client and the server are tt(C) and tt(S). Figure 9
shows the process of clock skew correction. Two TSC-
based clocks in the client and the server run at different
speeds, so measured time difference ttd drifts. Also the
measured CPU frequency of the client is regulated using
the estimated slope, so the time of the TSC-based clock in
the client is changed from tt(C) to tt′(C) correspondingly,
which is computed by the measured CPU frequency and the
value of TSC register. After clock skew correction, the drift
caused by the clock skew is eliminated and the measured
time difference becomes constant from ttd to tt′d, as shown
in Figure 9.

Figure 9. TSC clock of time client correction

A simple experiment was designed to verify the expected
drift, and validate the clock skew correction. Similar to
the experiment in Section 2.2, two machines were intercon-
nected via Ethernet and a switch. At a predetermined inter-
val (usually 100 ms) one machine transmits UDP packets to
the other machine continuously, 5000 times. In terms of the
timestamps mechanism, four timestamps were acquired by
the TSC-based clock at the Network Interface Card driver
for accuracy.

2.500

2.505

2.510

2.515

2.520

 0 100 200 300 400 500

m
ea

su
re

d
ti

m
e

di
ff

er
en

ce
 u

si
ng

 T
S

C
 c

lo
ck

(s
)

TSC clock time at client (s)

TSC clock

Figure 10. Measured time difference between
time client and server using TSC clocks

3.256760

3.256770

3.256780

3.256790

3.256800

 0 100 200 300 400 500
m

ea
su

re
d

ti
m

e
di

ff
er

en
ce

 u
si

ng
 T

S
C

 c
lo

ck
(s

)

TSC clock time at client (s)

TSC clock

Figure 11. Measured time difference between
time client and server using TSC clock after
correction

Measured time difference ttmd is computed by four
timestamps. The TSC-based clock at time client is set to
zero when the experiment starts. Figure 10 shows the drift
caused by the clock skew between the client and the server
is linear as expected and Figure 11 indicates the drift caused
by the clock skew is almost eliminated.

After the clock skew is corrected, the measured time dif-
ference ttmd between the time client and time server can be
estimated by the following formula.

ttmd =

[
ΔfC

fmC
− ΔfS

fmS

1 + ΔfC

fmC

]
tmRRT +

fS

fmS
td −

fS

fmS

(
DS−R

2

)
(6)

The measured time difference ttmd can be used to esti-
mate the absolute time difference td. Its accuracy, however,
cannot be guaranteed, particularly when the absolute time
difference td is very large. For example, assume that the
error in the measured CPU frequency is 50 PPM, and the
absolute time difference is 10000 s, then the error in the

7575

measured time difference may be as much as 500 ms. For-
tunately, the deviation of absolute time difference Δtd can
be estimated accurately by the deviation of measured time
difference Δttmd when the synchronization update interval
is small enough. The error ETSC between Δttmd and Δtd
is measured as the precision of synchronization, and can be
computed by the following formula.

ETSC = Δttmd − Δtd

=

[
ΔfC

fmC
− ΔfS

fmS

1 + ΔfC

fmC

]
(ΔtmRRT) +

ΔfS

fmS
Δtd − fS

fmS

(
ΔDS−R

2

)
(7)

Because the measured CPU frequencies of the time
client and server have been coordinated, the main source
of error is asymmetric one-way transmission delays. This
error ETSC can be estimated as follows.

ETSC ≈ − fS

fmS

(
ΔDS−R

2

)

≈ −ΔDS−R

2
(8)

By contrast, when the software clocks in the client and
the server are TOD clocks, the precision of synchronization
using a timestamp exchange mechanism is −ΔDS−R

2 . The
practical performance comparison of relative clock syn-
chronization using TOD clocks versus TSC-based clocks is
discussed in the next section.

5 Performance tests

In this section we summarise the results of several ex-
periments conducted to assess the performance of our clock
synchronization protocol.

5.1 Test set-up

The hardware configuration of the time client and server
is shown in Table 1, and the structure of the computers
used in the experiments was the same as the synchroniza-
tion structure, as explained in Section 3.1. Beside the time
client and server, one computer was used as a traffic gener-
ator, running Windows XP on on Intel Pentium 4 processor
with a 2.0 GHz CPU and 1 GB DDRAM memory. To re-
duce interference from other software processes, most of
the background processes and tasks were shut down dur-
ing the experiments. The sending and receiving timestamps
were recorded at the NIC driver via the modified Linux ker-
nel. The software clocks on the time server and time clients
were TSC register-based as defined in Section 2.

5.2 The precision of relative clock syn-
chronization

The two main sources of synchronization error are asym-
metric one-way transmission times and the intrinsic fre-
quency errors of the CPUs, as per the error analysis in Sec-
tion 4. In this section we analyze the precision achieved
by relative clock synchronization under different traffic pat-
terns.

Two experiments were designed to analyze the impact
of two kinds of transmission delay on the precision of rel-
ative clock synchronization: delay in the network device
(switch), and delay in the network interface cards (NIC).
Delays in the NIC result from traffic jams when the NIC

is sending or receiving too many packets. It is related to
the processing capacity of the NIC and the operating sys-
tem. Because the time server can easily modulate packet
transmission by methods such as traffic smoothing [8], we
only analyzed the delay in the NIC when the time server is
receiving packets from the traffic generator.

The deviation E between two consecutive measured
clock differences ttmd is defined as the precision of relative
clock synchronization. In experiments, a time client and its
time server were interconnected via an Ethernet switch. The
traffic generator was used to simulate multiple time clients’
environments, and different traffic patterns. The time client
initiates synchronization requests and periodically sends a
request message to its time server. Once the time server re-
ceives the request message, it responds with a message that
contains two TSC timestamps. Because the timestamp in-
formation is caught at the NIC, not at the application layer, it
has to wait for transmission until the next cycle. That is, the
last two TSC timestamps in reply messages are recorded.
Finally, the time difference is computed in the time client,
and then transmitted to the time server if necessary.

In all experiments, the message interval was 100 ms, and
the number of messages was 10000. Because the round trip
time of a message in a LAN is normally less than 100 ms
and the traffic stream caused by the designed protocol is
almost negligible (less than 1 kbps), this message interval
is practical in a LAN. Because some time clients may need
to synchronize with the time server at the same time, the
traffic generator sent multiple requests to the time server
to simulate multiple time clients’ environments during the
experiments. The traffic load was about 33 Kbps.

In the first experiment, the deviation E between two con-
secutive measured time differences was measured when the
switch is under traffic load (9.8 Mbps) and no traffic load.
Their confidence limits under different confidence intervals
are shown in Table 2. The precision of relative clock syn-
chronization is about 10 μs with an above 95% confidence
interval whether the switch is under traffic load or not.

The second experiment measured the synchronization

7676

Table 3. Precision achieved when the time server is under different traffic loads
Traffic load Packet loss CL ± 10 us ±20 us ±50 us
117 kbps 0 CI 94.76% 97.00% 97.30%
286 kbps 0 CI 91.15% 94.78% 95.10%
523 kbps 0 CI 81.53% 83.61% 84.47%
1.1 Mbps 0 CI 69.52% 71.46% 72.86%
2.3 Mbps 0 CI 44.97% 46.39% 47.65%
9.8 Mbps 1.16% CI 0.66% 1.62% 4.01%
CL: Confidence limit CI: Confidence interval

Table 2. Precision achieved when the switch
is under different traffic loads

Traffic load CL ±10 us ±20 us ±50 us
None CI 97.54% 99.72% 99.86%
9.8 Mbps CI 97.40% 99.76% 99.88%
CL: Confidence limit CI: Confidence interval

Table 4. Precision achieved using a TOD
clock without traffic load

Confidence limit ±10 us ±20 us ±50 us
Confidence interval 68.01% 84.70% 88.22%

precision when the time server was under different traffic
loads. Table 3 indicates that the traffic jam at the NIC in-
fluences the precision of synchronization badly, and even
causes synchronization message losses. The experimen-
tal results reveal that the synchronization precision can be
guaranteed statistically when the speed of receiving packets
in the time server is restricted to low enough. It is not hard
to implement the necessary traffic restriction on the switch’s
port.

5.3 Synchronization using TOD clocks

The characteristics of a software clock implemented us-
ing a Time-Of-Day function were analyzed in Section 2.
Similar to the first experiment in Section 5.2, an experiment
was implemented to measure the precision of relative clock
synchronization using a TOD clock. No traffic load was
generated other than synchronization messages. The syn-
chronization request interval was 100 ms, and the number
of messages was 10000. The difference ETOD between two
consecutive measured time differences tmd was measured
as the synchronization precision. Table 4 shows that the
confidence of the synchronization precision is much worse
than the precision achieved by using a TSC-based clock as
per Table 2.

Table 5. Precison achieved by the NTP proto-
col

CL ±10 us ±20 us ±50 us
Computer A CI 69.72% 91.96% 98.66%
Computer B CI 64.28% 88.94% 96.26%
CL: Confidence limit CI: Confidence interval

As the most widely used clock synchronization protocol,
NTP software uses the TOD function to access the time, and
piggybacked timestamps to achieve absolute synchroniza-
tion with respect to a time server. To deal with the clock
drift caused by intrinsic frequency errors, the hybrid kernel
Phase-Locked Loop/Frequency-Locked Loop (PLL/FLL)
was designed by David Mills for the NTP project [13]. At
the specified time interval (between 64 s and 1024 s), the
NTP program updates the time client relative to the time
server.

A simple experiment was designed to test the precision
of synchronization achieved by the NTP. The timer server
and experiment machines are in the same LAN. The NTP
program ran continuously on two computers (A and B)
whose hardware configuration is shown in Table 1. The
clock update by the NTP program was performed 5000
times. The time adjustment by the NTP program at each
computer was recorded during the experiment. As shown
in Table 5, it is clear that the confidence of the synchro-
nization precision achieved by the NTP program was much
lower than that achieved by our method using TSC registers.

6 Conclusion and future work

To support time-critical computations in Local-Area
Networks, we have presented a high-precision relative clock
synchronization protocol built using the Intel Pentium pro-
cessor’s Time Stamp Counter register, rather than the Time-
Of-Day clock usually used for this purpose. It was shown
that a high precision of (relative) clock synchronization
could be achieved using TSC registers, significantly outper-
forming the (absolute) synchronization possible under the

7777

widely-used Network Time Protocol. This outcome offers
a low cost time synchronization solution rather than using
expensive customised hardware, such as a satellite radio re-
ceiver, while still providing high accuracy.

The precision of a local clock is influenced by the intrin-
sic frequency error of the hardware oscillator used, which
may cause non-deterministic clock drift [9]. Although pre-
vious work has compensated for this problem as far as pos-
sible [13], a TOD clock is hard to use for high precision
(sub-millisecond) timing measurements. Compared with a
TOD clock, a clock derived from a Time Stamp Counter
register is more stable and easier to read. Our experiments
showed that for relative clock synchronization, the degree
of confidence of the precision achieved using a TSC-based
clock is much higher than that using traditional TOD clocks.

In future work, our method will be evaluated and im-
proved in complex network architectures, because the sym-
metric delay assumed in this paper may not hold under
large-scale network architectures with time-varying traffic
load. The synchronization implementation will be pack-
aged as a library routine, and may be integrated into one
of the Linux-based operating systems.

Acknowledgement This work was supported in part by
the Australian Research Council under Linkage Projects
grant number LP0776344 to C. Fidge, by the Australian
Government’s Department of Education, Science and Train-
ing under International Science Linkages Scheme grant
number CH070083 to Y.-C. Tian, and by the Natural Sci-
ence Foundation of China under grant number 60774060 to
Y.-C. Tian.

Thanks to the anonymous ICECCS 2008 reviewers for
their helpful suggestions about future work.

References

[1] P. Blum and L. Thiele. Clock synchronization using packet
streams. In Proc. of. 16th International Symposium on

Distributed Computing 2002, pages 1–8, Toulouse, France,
June 2002.

[2] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A

Programmer’s Perspective. Prentice Hall, 2003.
[3] K. Correll, N. Barendt, and M. S. Branicky. Design consid-

erations for software-only implementations of the ieee 1588
precision time protocol. In Proc. Conference on IEEE-1588

Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems, Winterthur,
Switzerland, October 10-12 2005.

[4] J.-D. Decotignie. Ethernet-based real-time and industrial
communications. In Proceedings of the IEEE Special Issue

on Industrial Communication Systems, volume 93, pages
1102–1117, 2005.

[5] L. Fu and G. Dai. Delay characteristics and synchroniza-
tion architecture of networked control system. In 1st Inter-

national Symposium on Systems and Control in Aerospace

and Astronautics ISSCAA 2006, pages 1056–1060, Harbin,
China, Jan 2006.

[6] M. Hashimoto, H. Hashizume, and Y. Katoh. Design of
dynamics for synchronization based control of human-robot
interaction. In Proceedings of the 2006 IEEE International

Conference on Robotics and Biomimetics ROBIO’06, pages
790–795, Kunming, China, December 17 - 20 2006.

[7] J.-C. G. Hechmi Khlifi. Estimation and removal of clock
skew from delay measures. In Proceedings of the 29th

Annual IEEE International Conference on Local Computer

Networks, pages 144 – 151, New York, USA, Nov 2004.
[8] H.Jin, M.-H. Zhang, and P.-L. Tan. Clock synchronization

integrated with traffic smoothing technique for distributed
hard real-time systems. In Sixth International Conference

on Computer and Information Technology (CIT 2006), page
176, Seoul, Korea, Sept 2006.

[9] Johannessen.S. Time synchronization in a local area net-
work. Control Systems Magazine, 2:61–69, April. 25-28
2004.

[10] W.-W. Li, D.-F. Zhang, G.-G. Xie, and J.-M. Yang. A high
precision approach of network delay measurement based on
general pc. Journal of Software, l.17(2):275–284, Feb 2006.

[11] Z. L. Li Zhang and C. H. Xia. Clock synchronization algo-
rithms for network measurements. In Proceedings of IEEE

INFOCOM ’02, volume 1, pages 160 – 169, New York,
USA, June 2002.

[12] D. L.Mills. Network time protocol (version 3) specification,
implementation and analysis. Network working group report
rfc-1305, University of Delaware, March 1992.

[13] D. L.Mills. The network computer as precision timekeeper.
pages 96–108, Dec 1996.

[14] M.-Y. Ma, L. Hu, J.-D. Wu, X.-N. He, and H. Ma. Synchro-
nization analysis on converters with distributed control. In
IECON 2006 - 32nd Annual Conference on IEEE Industrial

Electronics, pages 2232–2237, Nov 2006.
[15] P. Marti, R. Vill, J. M. Fuertes, and G. Fohler. Networked

Control Systems Overview, volume 1, pages 1–16. CRC
Press, South San Francisco, California, USA, 2005.

[16] M. S. Omer Gurewitz, Israel Cidon. Network clock fre-
quency synchronization. In Proceedings of INFOCOM

2006. 25th IEEE International Conference on Computer

Communications, pages 1–9, New York, USA, April 2006.
[17] D. T. Sue B. Moon, Paul Skelly. Estimation and removal of

clock skew from network delay measurements. In Proceed-

ings of IEEE INFOCOM ’99, pages 227 – 234, New York,
USA, 1999.

7878

