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ABSTRACT Enhancing the accuracy of indoor visible light positioning systems with simple, real-time, and

stable methods is one of the interesting challenges in recent research. In this paper, a relatively minor mean

positioning error of 8 mm and a 42-52% improvement in computational time could be achieved within a real

space of 1.2 m× 1.2 m× 1.2 m by transcending the serious limitations of the traditional k-nearest neighbors

(KNN) algorithm. These disadvantages (slow execution time, high error formation) are a result of finding the

nearest neighbors from all the fingerprints, averaging the Euclidean distances, and the excessive passivity of

the K value. To overcome the above limitations of KNN, we proposed a maximum received signal strength

recognition (MRR) technique and weighted optimumKNN (WOKNN) algorithm, which is a combination of

optimum KNN (OKNN) and weighted KNN (WKNN). While MRR was used to reduce the computational

time, WOKNN was used to solve the remaining problems. Specifically, OKNN was used to automatically

determine the best number of nearest neighbors for each position in the area under consideration, andWKNN

helped improve the errors that come from the Euclidean distance averaging process. Based on positive

experimental results and a meaningful comparison with various versions of KNN, we demonstrated that the

improved conventional KNN algorithm can achieve very high positioning accuracy and is totally suitable for

several specific 2-D indoor positioning applications.

INDEX TERMS Indoor positioning, k-nearest neighbors, visible light positioning, weighted k-nearest

neighbors.

I. INTRODUCTION

Unlike the outdoor environment, where the acceptable posi-

tioning accuracy can range from a few dozen centimeters to

a few meters with the Global Positioning System [1], indoor

positioning activities require a much higher quality position-

ing accuracy, even to the millimeter level. A distinguishing

feature of this type of environment is that objects to be

located often either move in narrow spaces such as corridors,

stairs, aisles, and specialized rooms or stay in a position with

many surrounding obstacles that remain out of sight. These

characteristics make the enhancement of the positioning per-

formance for indoor environment challenging.

Recently, a promising visible light-based positioning sys-

tem (VLPS) has attracted a great deal of attention because

of the extremely low positioning error that this system can
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provide. VLPS continues to emerge as a leading candidate

in the field of indoor positioning because of its advantages

of accuracy, cost effectiveness, and simplicity even though it

faces some difficulties, including multipath reflection, light

interference between Light Emitting Diode (LED) lights, and

noises from sunlight and artificial light sources [2], [3].

To implement positioning operations, some commonmeth-

ods such as angle of arrival [4], time of arrival [5], [6],

time difference of arrival [7], phase difference of arrival

(PDOA) [8], received signal strength (RSS) [9], [10], and

a hybrid of these techniques [11], [12] have been applied.

Each method has its own advantages and disadvantages,

of which RSS is considered as one of the cheapest and

simplest solutions [13]. This solution measures the power

strength of the LED light thanks to a photodetector (PD)

placed on the object. Based on these data, the distance from

the transmitter to the receiver can be estimated by converting

the RSS data into the length between LEDs, or estimated
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locations can be inferred by combining RSS data and the

fingerprinting method [2], [14]. The RSS is a popular, sim-

ple approach that provides acceptable positioning error for

indoor positioning applications [13]; This approach is also

applied for other types of signals such as WIFI [15], [16],

Bluetooth [17], [18], Lorawan [13], and Zigbee [19], [20].

In the VLPS field, recent research based on the RSS platform

have continued to improve [9], [11], [21]. In [9], the authors

presented a Metropolis-Hastings algorithm-based Bayesian

to improve the positioning capability in a 3-D indoor envi-

ronment via computer simulations. In a similar environment,

Zhang et al. [11] improved the robustness of VLPS by cre-

ating a hybrid of RSS and PDOA based on artificial neu-

ral networks. Using simulations, the authors demonstrated

that their approach achieved robust positioning outcomes

under various levels of RSS. In a more realistic approach,

the authors in [21] established two real experimental spaces

for their VLPS. By experimenting with multiple scenarios,

median localization errors of 1.9 cm and 16.1 cm could

be achieved thanks to the connection between RSS and the

spring relaxation algorithm.

The combination of RSS data and machine learning has

been a growing trend in the era of artificial intelligence. Using

machine learning algorithms, many different approaches

have been proposed with the overall goal of optimizing the

location accuracy, complexity, and practical applicability of

these techniques [22]–[24]. Among them, KNN is a pre-

ferred option [25]–[28]. The authors in [25] performed a

field experiment for 3-D space based on RSS, fingerprint

and KNN. The experimental results proved that the above

combination and weighted average method improved the

positioning accuracy up to 0-6 cm. In [26], Fakhrul et al.

also designed a practical VLPS by connecting RSS and the

weighted KNN (WKNN) method. Moreover, an important

improvement from this paper was the reduction in the number

of required fingerprint databases, which was realized using a

fast calibration method. This approach showed that although

the number of fingerprints is reduced, the positioning accu-

racy is relatively high with a mean error of 2.7 cm when

applying to only 12 offline measurements. With a similar

method, Wenge et al. [27] applied a square wave modulation

model to detect the luminaire from each LED using a Fast

Fourier Transform and then compared the difference between

ID vectors in the online mode and the offline mode, resulting

in a mean error of 1.39 cm. In addition to using KNN for

the purpose of estimating location, the authors in [28] used it

as a tool to support the later positioning process. As is well-

known, KNN is a simple machine learning algorithm with

two functions of classification and regression. Taking advan-

tage of the classification function of KNN and two robust

fusion algorithms, Guo et al. demonstrated that their tech-

nique can achieve a mean square positioning error of less than

5 cm. The common feature of these articles is based on the

traditional KNN algorithm and an improved version of KNN,

namely WKNN. WKNN is a considerable improvement of

KNN and can achieve a better positioning accuracy. However,

the full potential of KNN has not been realized due to its own

weaknesses. First, the execution time of the system is directly

proportional to the calculation time of the Euclidean distances

between the considering point and all the fingerprints. More

fingerprints mean a slower execution. Normally this method

is very time-consuming. Secondly, averaging the coordinates

of all the nearest neighbors, regardless of the difference in

each Euclidean distance, causes an error in the final estima-

tion result. Finally, the number of nearest neighbors (K) is

usually chosen manually and a unique K value is fixed for all

fingerprints. This is also a significant drawback because each

fingerprint corresponds to different optimal K value in reality.

There are some points that have the same K value, but not all

points have the same optimal K. In this paper, we address

the above limitations of KNN to achieve better positioning

quality with a simple and stable method.

Our main contributions are as follows:

1) We first propose a Maximum Received Signal Strength

Recognition (MRR) technique to reduce the computa-

tional time when using the KNN algorithm. RSS inten-

sity depends on the distance between the transmitter

and the receiver. There is always amaximumRSS value

at any position (including the center of the floor) in a

practical VLPS, and the maximum RSS value belongs

to the LED that has the closest distance to the PD.

In this method, the peaks of received signals that come

from four LED lights are captured by the receiver at all

reference points. Then, we can divide the entire testbed

floor into 4 specific areas according to the maximum

RSS data. During a real positioning estimation process,

the point under consideration can only be in one of the

four classified areas. Therefore, the process of finding

nearest points only takes place in a small area instead

of the entire floor. This greatly reduces the execution

time for the KNN algorithm.

2) We then designed the weighted optimum

KNN (WOKNN) algorithm to improve the positioning

inaccuracy caused by averaging Euclidean distances

and fixing the number of nearest neighbors. WOKNN

is a combination of optimum KNN (OKNN) and

WKNN, where OKNN automatically optimizes the

K value at each position thanks to a multi-layer per-

ceptron classifier (MLP) model. Then, each Euclidean

distance has an applied weighted factor that is inversely

proportional to the distance obtained by employing the

WKNN method.

The paper is organized as follows. In Section II,

the overview of the proposed visible light system and our

solution are presented. The experimental results and discus-

sion are given in Section III, and some conclusions are drawn

in Section IV.

II. PROPOSED POSITIONING ALGORITHM

To provide a comprehensive overview of the VLPS as well as

our proposed solutions, we first present RSS measurements
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in the visible light positioning systems. Then, the WOKNN

algorithm is illustrated in more detail.

A. RECEIVED SIGNAL STRENGTH MEASUREMENT IN A

VISIBLE LIGHT POSITIONING SYSTEM

In this experimental system, we only consider the line-of-

sight channel without the non-line-of-sight channel due to

the specific characteristics of the experimental model. In this

model, there is a single wall near the experimental area, but

the distance from the wall to this area is quite far (1.2 m),

and there are no obstructions in the experimental area itself.

Therefore, the negative influence of multipath reflection can

be ignored. For the directed optical channel, the received

optical power at the receiver can be expressed as [29]

PiR = PiTH
i
DC (1)

where i is the number of LED lights, PiT is the transmitted

optical power, H i
DC is the channel DC gain, which is defined

as

HDC =
RT (ϕ)AE (δ)

d2
, 0 ≤ δ ≤ δC (2)

Here, ϕ is the irradiance angle, δ and δC are the incidence

angle and the receiver field of view, respectively, and d

presents the distance between receiver and transmitter. The

Lambertian radiant intensity RT (ϕ) and effective signal-

collection area AE (δ) are defined as [30]

RT (ϕ) =
n+ 1

2π
cosn (ϕ) (3)

AE (δ) = A cosn (δ)TF (δ)G (δ) , 0 ≤ δ ≤ δC (4)

where A is the detector physical area and TF (δ) is the gain

of the optical filter. The gain of the optical concentratorG (δ)

and the Lambertian order n are presented as [29], [30]

G (δ) =

(

η

sin δC

)2

(5)

n =
− ln(2)

ln(cos(ϕ1/2))
(6)

where η is the refractive index and ϕ1/2 is the semi-angle of

transmitter

To gather the RSS data set for the training process in the

next part, we set up a 10 cm × 10 cm grid covering the entire

floor of the test space as depicted in Fig. 1. In this paper,

169 fingerprint points were considered. After collecting all

the data, the RSS dataset is expressed as

RSS =









R11 R12 . . . R1n
R21 R22 . . . R2n
. . . . . . . . . . . .

Rm1 Rm2 . . . Rmn









(7)

where m = 13 and n = 13 are the number of rows and

columns of the grid, respectively.

FIGURE 1. Proposed scenario of visible light positioning system.

B. INDOOR POSITIONING WITH WOKNN ALGORITHM

As discussed in Section I, KNN is a simple, stable and popu-

lar technique used for visible light-based indoor positioning

applications. In this paper, we have unleashed the unexplored

potential of the traditional KNN algorithm by fully exploiting

the considerable advantages of the algorithm and overcoming

the inherent limitations of KNN (i.e., problems associated

with time-consuming execution, error formation due to aver-

aging the Euclidean distances, and the passivity of the K

value). Specifically, we proposed the MRR technique and

WOKNN algorithm, where the MRR technique is used to

minimize the computational time and WOKNN maximizes

the positioning accuracy.

1) METHOD OVERVIEW

As illustrated in Fig. 2, the proposed VLPS has three main

categories, which are the optical transmitter, optical receiver,

and positioning process, respectively. In the optical trans-

mitter section, we installed four LEDs on the top of the

testbed frame. Each LED is arranged in a fixed position.

However, a slight deviation in the LED position does not

affect the final positioning result according to the RSS-based

fingerprint method. It is important that LEDs are kept con-

stant throughout the experiment to ensure that stable RSS

values are obtained. In the transmitter section, Arduino Uno

was used to control the operation of LEDs using an LED

driver. In our approach, the time-division multiplexing tech-

nique was employed to help the receiver detect which LED

signal is transmitting [31], as shown in Fig. 3. In the first slot,

we turned off all LEDswithin 2.2ms to create the background

light intensity. After this period, all four LEDs were turned on

and off, respectively, in every cycle of 11 ms.

In addition to separating the transmission signals into

four separate slots in each cycle for the purpose of easier

identification by the PD, the fixed transmission frequency

also helped to fix the light interference among LED groups.
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FIGURE 2. Flowchart of proposed visible light positioning system.

FIGURE 3. Time-division multiplexing scheme.

Furthermore, the selection of maximum RSS value based

on MRR technique is a reliable solution to eliminate the

light interference problem. These approaches maintained the

reliable RSS values collected during the offline and online

modes. Using PD, the receiver easily captures the RSS data

of each LED and recognizes the order in which LEDs come

on due to the transmitting order that was set in the trans-

mitter. The amplifier unit is also a main part of the optical

receiver. While PD is responsible for receiving RSS data, the

amplifier unit acts as a bridge to amplify and convert the PD

current into voltage signals before sending these signals to the

available analog digital converter inside the second Arduino

Uno. To determine the estimated location of the object, all the

digital data are directly sent to a personal computer where

our proposed WKONN is executed. Detailed information

related to the optical transmitter, the optical receiver, and

experimental space are described in Section III.

2) DATA COLLECTION AND PROCESSING IN OFFLINE AND

ONLINE MODES

In the RSS-based fingerprint method, the positioning process

is divided into two distinct modes: offline mode and online

mode.

In the offline mode (Fig. 4), we first collect the RSS data

at all fingerprint points. The final data set is defined as

RSS
off
n(i,j) =











R
off
11 R

off
12 . . . R

off
1j

R
off
21 R

off
22 . . . R

off
2j

. . . . . . . . . . . .

R
off
i1 R

off
i2 . . . R

off
ij











(8)

Then, these data are stored in the memory, and we use them

to perform two important tasks: specific area recognition with

MRR and K value optimization with MLP.

Similar to the offline mode, collecting RSS data for the real

position of the PD is mandatory. Equation (9) shows the RSS

data from 4 LEDs at a certain position

RSSon =
[

Ron1 Ron2 Ron3 Ron4
]

(9)

The offline mode is used to collect, train, and analyze all

the fingerprint data. The execution time of the online mode is

faster, though the online mode undergoes more procedures as

depicted in Fig. 5. This happens because this process utilizes

the results from the previous process, and it only estimates

the coordinate at a certain position under consideration. After

conducting the same process as the offline mode, the final

estimated position is determined using the WOKNN algo-

rithm. Details of the MRR technique, K value optimization,

and WOKNN algorithm are provided below.

FIGURE 4. Offline mode flowchart.

FIGURE 5. Online mode flowchart.

3) MAX RSS RECOGNITION TECHNIQUE

The purpose of MRR is to classify the entire experimental

floor into four specific areas based on the maximumRSS data

at each position. We set up a practical testbed with four LED

groups (LEDs) separately installed on an aluminum frame

at a height of 1.2 m. The distance between two adjacent

LEDs was 0.6 m. The detailed locations of each LED are

clearly shown in Table 1. At each reference point on the floor,

the PD receives the RSS signals from all four LEDs. However,

the actual RSSs at a certain position are not quite the same for

two major reasons. First, although we used the same kinds of

LED, the actual optical intensity distribution of every LED

light is slightly different (Fig. 6) due to the power supply unit,
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TABLE 1. Main parameters of experimental model.

driver boards and minor technical faults of the LED itself.

Therefore, there is always a maximum RSS value at a certain

position, even if the considered point is in the center of the

floor. Secondly, the distances from PD to all four LEDs are

different according to the PD’s current position (except for the

center point of the floor). In addition to the two main reasons

above, the influence of noise due to ambient light is also one

of the possible causes of differing RSS values. In this paper,

theMRR technique is first used to identify the maximumRSS

data at all reference points; then, it can create four specific

areas based on that RSS data as shown in Fig. 7.

From the classification result, theWOKNN algorithm only

finds the nearest points for each real position within one of

four classified areas instead of surveying the entire floor. This

significantly reduces the execution time for WOKNN, which

is also time-consuming due to K optimization with MLP.

To maintain the variation of light intensity, the power

source for all LED drivers is kept as a constant value, and the

transmission frequency is also fixed. Therefore, the overall

variation of the whole system is unchanged. This leads to a

stability in the intensity distribution of each LED light. Based

on this procedure, the RSS data collected at any points on the

floor of the test bed are still stable.

4) OPTIMUM NEIGHBORS CLASSIFICATION WITH MLP

In this part, we clarify the role of K value optimization with

MLP - the second task in offline mode. As we discussed

in Section I, many recent research articles focused on KNN

and WKNN for VLPS applications; however, the constant K

value is a serious limitation. In most cases, the K value is

intentionally fixed after finding the best K value by manually

running this value in a wide range. Obviously, there is not

a unique K value for all cases. The fixed number of nearest

FIGURE 6. Practical optical power distribution of (a) LED 1, (b) LED 2,
(c) LED 3, (d) LED 4.

neighbors, therefore, leads to errors in positioning results.

To address this problem, we classified optimum K values by

applying the MLP model.
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FIGURE 7. Optical power distribution of all LEDs on the entire floor.

FIGURE 8. Mean positioning errors vs. number of the nearest neighbors.

To create a training dataset for MLP, we first determined

the optimum K values at all reference points by running K

from 2 to 7 with a conventional KNN algorithm in the offline

mode. This does not affect the actual execution time during

the online process. We limited the value of K for two main

reasons. First, higher K values resulted in more neighbors and

a longer system execution time. Secondly, as shown in Fig. 8

(where K = 4), a steady increase in K value resulted in

a gradual reduction in the positioning accuracy, especially

when K equals 8 or more. After obtaining the optimum K

values at all survey points, we recognized that 2, 3, 4 were

the best values in Fig. 9, where K = 2 accounts for 47.93%,

K = 3 accounts for 27.22%, and K = 4 accounts for 24.85%.

All these data and corresponding RSS values were used as

training datasets when applying the MLP algorithm in the

next step.

In the proposed model, MLP serves as both a training

process in offline mode and a prediction process in online

mode [32]. The specific purpose of MLP is to estimate

the optimum K value for any given point based on the

results of the training process conducted in offline mode.

In Fig. 10, the proposed MLP model consists of 2 hidden lay-

ers, and 5 neurons for each hidden layer. The ReLU activation

FIGURE 9. Optimum k values at all reference points.

function is used for hidden layers. The input layer receives

RSS signals from 4 LEDs. The output layer is divided into

3 channels when K equals 2, 3, and 4. The result showed that

MLP achieved an accuracy of approximately 94% during the

process of classifying the optimum K values.

FIGURE 10. Optimum k values classification with MLP.

5) WEIGHTED OPTIMUM KNN

It is very important to note that the estimation of positions

based on the average calculation of Euclidean distances is

one limitation of a traditional KNN algorithm besides the

slow running time. In this paper, the Euclidean distance is

described as

di,j =

√

√

√

√

4
∑

n=1

(

RSSonn − RSS
off
n(i,j)

)

(10)

where n is the number of LED lights, RSSonn and RSS
off
n(i,j)

are the RSS data in the online mode and offline mode,

respectively

After computing all the Euclidean distances thanks to the

RSS received from the LED system,we determine the number

of nearest neighbors based on the optimum K values esti-

mated from the MLP in the previous step. The corresponding

coordinates are easily inferred from these nearest points,

and then we can utilize this information to determine the
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estimated position of the object as follows:

xKNN =

K
∑

n=1

xn

K
; yKNN =

K
∑

n=1

yn

K
(11)

where xn, yn are the coordinates corresponding to nearest

neighbors, K is the number of nearest points.

FIGURE 11. Error reduction with WOKNN.

According to (11), a very high accuracy can be set if the

actual point is either at the middle of the line (in the case of

two closest neighbors) or in the center of the figure formed

by the nearest points (in the case of more than two closest

neighbors). In fact, the point under consideration could be

anywhere on the floor, and the average Euclidean distances

can create unexpected errors, as shown in Fig. 11. There-

fore, we apply weighted factors for every Euclidean distance,

in which case these weights are in inverse proportion to the

distances. By employing this method, we can minimize the

positioning inaccuracy caused by averaging the Euclidean

distances. The related formula of weighted factors corre-

sponding to each Euclidean distance di_min is presented as

follows:

wi =

1
di_min

K
∑

n=1

1
di_min

(12)

Whenwe applied these weights to (11), the current position

of the PD was estimated as

xWOKNN =

K
∑

n=1

xnwn

K
∑

n=1

wn

; yWOKNN =

K
∑

n=1

ynwn

K
∑

n=1

wn

(13)

6) FRIEDMAN TEST AND POST-HOC ANALYSIS

To statistically evaluate the performance of our proposed

algorithm and other existing methods, we apply Friedman

test, which is used to rank the algorithms’ performance. The

test statistic suggested by Friedman (14) and F distribution by

Iman and Davenport (15) are as follows [33], [34]:

TF =
12n

m(m+ 1)

[

∑

i=1

R
2
i −

m (m+ 1)

4

2
]

(14)

FF =
TF (n− 1)

n(m− 1) − TF
(15)

where n is the number of datasets, m is the number of com-

pared algorithms, R2i be the average ranks of the i-th of m

algorithms.

According to the null hypothesis, all the compared algo-

rithms have the same rank. Therefore, the null hypothesis is

rejected when the ranks of all algorithms are not equivalent.

In this case, we continue to apply post-hoc analysis to find

which algorithms differ from the others. The algorithms a and

b are considered significantly different when [34]:

|Ra − Rb| ≥ CD; CD = q

√

m(m+ 1)

6n
(16)

where q is the critical value, which can be found in the

studentized range statistic table.

III. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we continue to provide an overview of the

main structure and specifications of the experimental system,

and then some experimental results are discussed in more

detail.

FIGURE 12. Experimental positioning system.

A. EXPERIMENTAL SETUP

To demonstrate the efficiency of the proposed MRR tech-

nique and WOKNN algorithm in real environment, a prac-

tical LED light-based positioning system was established.

As illustrated in Fig. 12, this system consists of a 1.2 m ×

1.2 m × 1.2 m aluminum frame, four LED lights suspended

from the top of the frame, and one optical receiver, which can

freely move around the floor (Fig. 13). The main specifica-

tions of the transmitter and receiver are detailed in Table 1.

FIGURE 13. Receiver circuit board with photodiode and amplifier.
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B. RESULT AND DISCUSSION

In our experiment, RSS data at 51 different points that inten-

tionally form the letters VLP (an abbreviation for Visible

Light Positioning) were collected in the real mode to evaluate

the positioning quality and the ability to shorten execution

time by using our proposed algorithms.

1) POSITIONING ERRORS EVALUTION

Before drawing a comparison of positioning accuracy

between our proposed algorithm and other existing algo-

rithms, we evaluated the performance of the MLP model,

which was used to estimate the optimum K value for the

suggested algorithm, using 10-fold cross validation. In this

procedure, we randomly divided the whole dataset into

10 subsets, and each subset is given the opportunity to be

a testing set one time on each iteration. This process helps

reduce the risk of overfitting problem and estimate the skill

of theMLPmodel. For every iteration, we computed the eval-

uation score based on the percentage of prediction accuracy

as illustrated in Fig. 14. Obviously, the prediction accuracy is

very impressive on each iteration and the mean accuracy of

approximately 94% was, therefore, obtained in total.

FIGURE 14. 10-fold cross validation.

In this experiment, RSS data at 51 different points that

intentionally form the letters VLP were collected in the real

mode. After gathering enough testing datasets, all the above

data were first distributed to individual areas by the MRR

technique. The detailed distribution is depicted in Fig. 15,

in which the blue star signs are actual positions, and the

red plus signs are estimated positions. Next, the estimation

process of MLP for estimating optimal K values takes place.

Then, we apply the WOKNN algorithm to all 51 points under

consideration to determine the estimated track. From the

results in Fig. 15, the best performance is shown in the last

case with WOKNN (Fig. 15d), where the estimated results

are almost identical to the actual data. In contrast, the worse

positioning accuracy distributions are shown in Figs. 15a, b,

and c when the distances between the estimated points and

the actual points are relatively large (especially in the first

case with KNN). This means that the positioning quality of

a traditional KNN-based algorithm is the worst compared to

WKNN, OKNN, and WOKNN.

FIGURE 15. Position estimation by (a) KNN, (b) WKNN, (c) OKNN, and
(d) WOKNN.

The results in Fig. 15 show that a combination of opti-

mum K value and weighted Euclidean distances provides the

highest positioning accuracy. This is understandable because
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FIGURE 16. Mean positioning error with various version of KNN.

the optimum K value is the best value at the considering

location, and the weighted factors help adjust the estimated

position close to the actual position. To clarify the above

conclusion, the mean positioning errors with various versions

of KNN are shown in Fig. 16. In this figure, the degree of

improvement of positioning errors was gradually enhanced

thanks to our proposed techniques. Obviously, in comparison

to other approaches, the traditional KNN algorithm shows the

worst result with an error of 3.11 cm. However, when we

applyWKNN andOKNN, we can easily observe a significant

change in the blue column and green column, which show

errors of 2.04 cm and 1.67 cm, respectively. Finally,WOKNN

reduced the error to less than 1 cm. In our experiment, an error

of 0.8 cm was been achieved by the WOKNN algorithm.

In addition to mean errors, the histograms and standard devia-

tions of positioning errors are also illustrated in Fig. 17, where

we presented a detailed comparison between WKNN with

a consistent K value and WOKNN with optimum K values.

We conducted this comparison because WOKNN algorithm

is an obvious connection between WKNN and optimum K

values. In the first three subfigures, we applied a fixed value

of K for each one, while optimum K values was set into

subfigure d, where the considered point was always received

the best value of K. Depending on the location of the object

being considered on the floor, every point in Fig. 17d has a

different K value, and it is also called the optimum K value.

In four mentioned cases, the second case (Fig. 17b) and third

case (Fig. 17c) show better performance than the first case

(Fig. 17a) in both the distribution of error, mean positioning

error (47.5% and 21.1%), and standard deviation (46.5%

and 40.3%). The best result was obtained using optimum K

values, Fig. 17d, with the best error distribution, the lowest

mean positioning inaccuracy (0.8 cm) and the lowest standard

deviation (0.59 cm). This means that the combination of

WKNN and optimum K values significantly improve posi-

tioning accuracy.

For further evaluation of the performance of our proposed

algorithm in term of the positioning accuracy, the Friedman

test and post-hoc analysis was investigated in detail (Table 2).

In the first step, we computed the average ranks of each con-

sidering algorithm (i.e., RKNN , ROKNN , RWKNN , and RWOKNN )

FIGURE 17. Histogram of positioning error with WKNN by (a) K = 2,
(b) K = 3, (c) K = 4, and (d) Optimum K.

TABLE 2. Parameters of Friedman test and post-hoc analysis.

TABLE 3. A comparison of post-hoc rank with CD = 0.612.

and the mean rank Rmean of algorithms. Then, we computed

the values of TF (14), FF (15), and the critical value of F

distribution for significant level of 0.05. With 4 algorithms

and 51 data points, the critical value of F distribution is 2.79,

which is greater than the mean rank Rmean. Therefore, the null

hypothesis was rejected. Finally, we applied post-hoc analysis

method to compare the performance of our proposed algo-

rithm with the existing algorithms thanks to the difference

in ranks between them. The results in Table 3 showed that

the traditional KNN is the worst algorithm compared with the

others because

|RKNN − ROKNN | = 1.089 > 0.612

|RKNN − RWKNN | = 0.941 > 0.612

|RKNN − RWOKNN | = 2.196 > 0.612

Using the same procedure, we also recognized that our pro-

posed algorithms WOKNN achieved the highest rank. This

means that this solution performed significantly better than

the remaining

|RKNN − RWOKNN | = 2.196 > 0.612

|ROKNN − RWOKNN | = 1.098 > 0.612

|RWKNN − RWOKNN | = 1.225 > 0.612
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FIGURE 18. Comparison of computational time with and without MRR.

2) COMPUTATIONAL TIME

In addition to a noticeable enhancement in the positioning

accuracy thanks to the WOKNN algorithm, the improvement

in the computational time to meet real-time requirements is

also addressed. We significantly reduced the execution time

of the proposed algorithm by developing the MRR technique

as discussed in Section 2. The results in Fig. 18 show that the

total running time of each area decreased from approximately

42% to 52% reduction (compared with the entire floor before

applying MRR) for all values of K (K runs from 2 to 6).

As far as we known, the MRR method helped to classify the

floor into four distinct areas, and each different area has a

different number of reference points. Thus, the computational

time for each area was not the same. However, the improve-

ment in each area is consistent and significant. Obviously,

theMRR technique paved theway for theWOKNNalgorithm

to become more feasible for indoor positioning applications

that require high accuracy and real-time operation.

IV. CONCLUSION

In this paper, we developed a high precision indoor visible

light positioning system by using the WOKNN algorithm,

which resulted in a very low mean positioning error (0.8 cm).

To improve the complexity cost, which is considered to be one

of the most serious limitations of the KNN-based algorithm,

the MRR technique was applied in the second step after

collecting the RSS data and before employing WOKNN.

This method helped to reduce the running time by 42-52%

compared to the total execution time before applying MRR.

These positive results confirmed the advantages of KNN,

and also opened up the possibility of enhancing positioning

accuracy by improving the inherent limitations of traditional

positioning algorithms. The motivation for this approach was

to obtain a model which could apply for mini mobile robots

with a very high positioning accuracy in a specific space.

However, our proposed solution could be a potential solution

for larger experiment environment because of its simplicity

and low positioning error. Finally, future research could also

employ the proposed solution for more practical space where

the negative impact of multipath reflection and noises due to

furniture, surfaces of rooms, and humans are fully considered.

In addition, localization in the 3-D environment could also be

a key research direction in the near future.
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