
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High pressure synthesis of late rare earth RFeAs(O,F)
superconductors; R = Tb and Dy

Citation for published version:
Bos, J-WG, Penny, GBS, Rodgers, JA, Sokolov, DA, Huxley, AD & Attfield, JP 2008, 'High pressure
synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy', Chemical Communications, vol.
2008, no. 31, pp. 3634-3635. https://doi.org/10.1039/b808474b

Digital Object Identifier (DOI):
10.1039/b808474b

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemical Communications

Publisher Rights Statement:
Copyright © 2008 by the Royal Society of Chemistry. All rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1039/b808474b
https://doi.org/10.1039/b808474b
https://www.research.ed.ac.uk/en/publications/f6458c76-895d-48cd-a832-f66ee66645a6


 

High pressure synthesis of late rare earth RFeAs(O,F) 

superconductors; R = Tb and Dy † 

Jan-Willem G. Bos,
1,2

 George B. S. Penny,
1,2

 Jennifer A. Rodgers,
1,2

 Dmitry A. Sokolov,
1,3

 

Andrew D. Huxley
1,3

 and J. Paul Attfield
1,2,

* 

 

[1]
Centre for Science at Extreme Conditions, University of Edinburgh, King’s Buildings, Mayfield Road, 

Edinburgh, EH9 3JZ, UK. 

[2]
EaStCHEM, School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, 

Edinburgh, EH9 3JJ, UK. 

[3]
SUPA, School of Physics, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, 

UK. 

[
*

]
Corresponding author; e-mail: j.p.attfield@ed.ac.uk 

Supporting information: 
[
†

]
Electronic supplementary information (ESI) available: Plots of the fitted X-ray diffraction profile and 

resistivity for DyFeAsO0.9F0.1. See http://dx.doi.org/10.1039/B808474B 

  

Post-print of a peer-reviewed article published by the Royal Society of Chemistry. 

Published article available at: http://dx.doi.org/10.1039/B808474B 

 

Cite as: 

Bos, J-W. G., Penny, G. B. S., Rodgers, J. A., Sokolov, D. A., Huxley, A. D., & Attfield, J. P. (2008). 

High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy. Chemical 

Communications, 2008(31), 3634-3635. 

 

Manuscript received: 19/05/2008; Accepted: 06/06/2008; Article published: 30/06/2008 

j.p.attfield@ed.ac.uk
http://dx.doi.org/10.1039/B808474B
http://dx.doi.org/10.1039/B808474B


Page 1 of 6 

Abstract 

New TbFeAs(O,F) and DyFeAs(O,F) superconductors with critical temperatures Tc = 46 and 45 K and very 

high critical fields, ≥100 T, have been prepared at 1100–1150 °C and 10–12 GPa, demonstrating that high 

pressure may be used to synthesise late rare earth derivatives of the recently reported RFeAs(O,F) (R = La–

Nd, Sm, Gd) high temperature superconductors. 

 

Main text 

A breakthrough in high temperature superconductivity has recently occurred with the discovery that rare earth 

oxypnictides RFeAsO (first reported for R = La, Ce, Pr, Nd, Sm and Gd)
[1]

 can show critical temperatures 

surpassed only by the high-Tc cuprates. These materials have a tetragonal, layered crystal structure as depicted 

in the inset to Fig. 1. Superconductivity has been induced by the partial substitution of fluoride into the RO 

layers, which leads to electron doping (reduction of iron) in the electronically active FeAs slabs. The first 

report of superconductivity was in LaFeAsO1−xFx samples with Tc values up to 26 K,
[2]

 increasing to 43 K at 4 

GPa pressure.
[3]

 Superconductivity has subsequently been induced in the other members of the RFeAsO series 

using fluoride doping, with ambient pressure Tc values of 41 K for R = Ce,
[4]

 52 K for Pr
[5]

 and Nd,
[6]

 43–55 K 

for Sm samples,
[7]

 and 36 K for Gd.
[8] 

 

 

Figure 1. Rietveld fit to the X-ray diffraction profile of TbFeAsO0.9F0.1, with Bragg reflection markers shown 

below those for the minority phase TbAs. An additional impurity peak is observed at 38° 2θ. Refinement 

residuals are Rwp = 2.63%, Rp = 2.00% and χ
2
 = 1.64 for 24 variables. Atom positions (x, y, z) and isotropic-U 

values; Tb (¼, ¼, 0.1447(4)), 0.003(1) Å
2
; As (¼, ¼, 0.6654(6)), 0.009(2) Å

2
; Fe (¾, ¼, ½), 0.003(1) Å

2
; O,F 

(¾, ¼, 0), 0.07(1) Å
2
. The inset shows the structure. 
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High pressure and temperature synthesis is known to stabilise many late rare earth analogues of early rare 

earth solid compounds. This approach has been used to explore the stabilisation of TbFeAs(O,F) and 

DyFeAs(O,F) phases. Polycrystalline samples of nominal compositions RFeAsO1−xFx (R = Tb, Dy; x = 0, 0.1, 

0.2) were synthesised from stoichiometric amounts of RAs, Fe2O3, FeF2 and Fe. TbAs and DyAs were 

prepared from a stoichiometric mixture of the elements heated to 500 °C for 5 h and then 900 °C for 10 h in 

an evacuated quartz tube. All chemicals were obtained from Sigma Aldrich with at least 99.9% purity. The 

reactants were mixed and ground in a glove box, sealed in a BN capsule , and subjected to pressures of 10 

GPa (R = Tb) or 12 GPa (R = Dy) using a Walker two-stage multianvil within a 1000 tonne press. Once at 

pressure, the samples were heated to 1100–1150 °C in 10 min, held at this temperature for 20 min, and then 

quenched to room temperature, followed by release of the pressure. The products were dense, black, sintered 

polycrystalline pellets and were characterised by powder X-ray diffraction , (Fig. 1) magnetisation (Fig. 2) 

and resistivity (Fig. 3) measurements.‡ 

 

 

 

 

← Figure 3. Temperature 

dependence of the resistivity of 

TbFeAsO0.8F0.2. The lower inset 

shows the superconducting 

transitions in zero and 9 T fields, 

and the upper inset shows the onset 

(0%) of the transition and the zero 

resistance point (100%) indicative of 

the upper critical field (Bc2). The 

coherence length is obtained from 

the fit to the latter values. 

Figure 2. → Ac magnetic volume 

susceptibility vs. temperature plot for 

RFeAs(O,F) (R = Tb, Dy) samples; χ′ = 

−1 corresponds to full diamagnetism. 
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The R = Tb samples all contained the tetragonal RFeAsO type phase with traces of TbAs (Fig. 1). The 

synthesis of DyFeAsO was unsuccessful but DyFeAsO1−xFx phases were obtained for x = 0.1, and 0.2 with 

DyAs also present.
[1]

 All four fluoride-doped samples show both magnetic and resistive superconducting 

transitions, with critical temperatures of 40–46 K. Fig. 2 shows that the samples are bulk superconductors, 

with some reduction from the theoretical full diamagnetism due to the presence of impurities and field 

penetration into small grains. The refined lattice parameters and Tc values are shown in Table 1. We also 

synthesised a new TbFeAsO0.9 analogue of the reported oxygen-deficient RFeAsO0.85 superconductors at 10 

GPa.
[9]

 This sample is superconducting with Tc = 50 K; further details will be reported elsewhere. 

RFeAs(O,F) a/Å c/Å Volume/Å
3
 Tc(χons)/K Tc(ρmid)/K 

TbFeAsO 3.8632(8) 8.322(3) 124.20(8) — — 

TbFeAsO0.9F0.1 3.8634(3) 8.333(1) 124.38(3) 45.5 43.8 

TbFeAsO0.8F0.2 3.860(2) 8.332(6) 124.2(2) 45.2 45.9 

DyFeAsO0.9F0.1 3.8425(3) 8.2837(8) 122.30(3) 45.3 45.4 

DyFeAsO0.8F0.2 3.8530(3) 8.299(1) 123.21(2) 43.0 43.0 

 

Table 1. Cell parameters and volume and Tc values from the onset of diamagnetism and the resistive transition 

mid-point for RFeAs(O,F) 

 

The resistivities show clear transitions to zero resistance (Fig. 3) with a smooth negative curvature of the 

resistivity in the normal state. This differs from data for other superconducting oxypnictides that appear to 

show higher temperature transitions.
[10]

 Changes in this behaviour are theoretically predicted to be very 

sensitive to competing energy scales controlling the physics of these materials.
[11]

 The resistive transition 

width increases with magnetic field for all samples as observed in other oxypnictides,
[12] 

consistent with a 

large anisotropy of the critical field, reflecting the structural and electronic anisotropy. The upper critical field 

Bc2 increases to 9 T in <2 K below Tc for TbFeAsO0.8F0.2 (Fig. 3 upper inset) and, in BCS (Bardeen–Cooper–

Schrieffer) theory neglecting paramagnetic limitation, this corresponds to Bc2 exceeding 100 T at low 

temperatures. Taking the onset of the transition to give the upper critical field for superconductivity in the 

most favourable direction (parallel to the FeAs planes) an upper estimate for the superconducting coherence 

length perpendicular to this direction is 13(1) Å. This corresponds to the geometric mean of the in-plane and 

out-of-plane coherence lengths. Given that the anisotropy is large, the out-of-plane value is therefore likely to 

be significantly smaller than the FeAs layer spacing, demonstrating that superconductivity is strongly 2-

dimensional. The zero resistance transition field has a noticeably more marked upward curvature at low field 

than observed for the transition onset. This might reflect a transition to a vortex liquid state, which is well 

known in the high-Tc copper oxide superconductors, or be an indication of multiple band superconductivity as 

established in MgB2.
[13] 
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The Tc values of the RFeAsO1−xFx (R = Tb, Dy, x = 0.1, 0.2) samples do not differ greatly and there is no clear 

trend in the lattice parameters with x, showing that the actual range of doping may be more limited that in the 

nominal compositions. Further work will be needed to determine the precise range of x and optimise phase 

purity. It is notable that the Tc values of TbFeAs(O,F) and DyFeAs(O,F) are comparable to those of the early 

R = Ce, Pr, Nd, Sm materials. The lower value of 36 K reported for GdFeAs(O,F)
[8]

 suggested that 

superconductivity might be suppressed as the rare earth size decreases, but the present results show that the 

superconducting properties change little between Ce and Dy. It will be important to explore further 

RFeAs(O,F) superconductors of the heavy rare earths to discover how superconductivity develops across the 

entire series. 

‡Powder X-ray diffraction data were collected on a Bruker AXS D8 diffractometer using Cu Kα1 radiation. 

Data were recorded at 10 ≤ 2θ ≤ 100° with a step size of 0.007° for Rietveld analysis. The ac magnetic 

susceptibility was measured from 3 to 50 K with a field of 0.5 Oe oscillating at 117 Hz using a Quantum 

Design superconducting quantum interference device magnetometer . The electrical resistivity was measured 

by the conventional four-probe method between 1.7 and 300 K using a Quantum Design physical property 

measurement system. 
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