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Objectives: This study aimed to identify and characterize extended-spectrum β-lac-
tamase (ESBL) producing Enterobacteriaceae among clinical samples of companion 
animals.

Methods: A total of 346 non-duplicate Enterobacteriaceae isolates were collected 
between 2012 and 2016 from diseased cats (n = 115) and dogs (n = 231). The presence 
of blaESBL, PMQR genes, and the azithromycin resistance gene mph(A) was confirmed by 
PCR and sequencing of bla genes. Isolates were further characterized by antimicrobial 
resistance profiling, multilocus sequence typing, phylogenetic grouping, identification of 
mutations in the QRDR of gyrA and parC, and screening for virulence-associated genes.

results: Among the 346 isolates, 72 (20.8%) were confirmed ESBL producers [58 
Escherichia coli (E. coli), 11 Klebsiella pneumoniae (K. pneumoniae), and 3 Enterobacter 
cloacae]. The strains were cultured from urine (n = 45), skin and skin wounds (n = 8), 
abscesses (n = 6), surgical sites (n = 6), bile (n = 4), and other sites (n = 3). ESBL genes 
included blaCTX-M-1, 14, 15, 27, 55, and blaSHV-12, predominantly blaCTX-M-15 (54.8%, 40/73), and 
blaCTX-M-1 (24.7%, 18/73). Further genes included qnrB (4.2%, 3/72), qnrS (9.7%, 7/72), 
aac(6’)-Ib-cr (47.2%, 34/72), and mph(A) (38.9%, 28/72). Seventeen (23.6%) isolates 
belonged to the major lineages of human pathogenic K. pneumoniae ST11, ST15, and 
ST147 and E. coli ST131. The most prevalent ST was E. coli ST410 belonging to phy-
logenetic group C.

conclusion: The high prevalence of ESBL producing clinical Enterobacteriaceae from 
cats and dogs in Switzerland and the presence of highly virulent human-related K. 
pneumoniae and E. coli clones raises concern about transmission prevention as well as 
infection management and prevention in veterinary medicine.
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inTrODUcTiOn

Members of the family of the Enterobacteriaceae, although 
natural inhabitants of the intestinal tracts of mammals, may cause 
urinary tract, skin, ear, soft tissue, and respiratory infections in 
cats and dogs (1). For uncomplicated infections, first-line thera-
peutic options are ampicillin, amoxicillin-clavulanate or first- and 
second-generation cephalosporins, while amikacin, third-
generation cephalosporins or fluoroquinolones (enrofloxacin or 
ciprofloxacin) remain appropriate for severe infections (1, 2). One 
of the most important mechanisms of antimicrobial resistance in 
Enterobacteriaceae is the enzymatic inactivation of penicillins and 
cephalosporins by means of plasmid-mediated extended-spectrum 
β-lactamases (ESBLs), such as the TEM-, SHV-, or cefotaxime 
(CTX)-M-group enzymes (3). The emergence of ESBL producing 
Enterobacteriaceae in healthy and in diseased companion animals 
constitutes an increasing challenge to infection management in 
veterinary therapy. Moreover, resistance caused by ESBLs is often 
associated with resistance to other classes of antibiotics like ami-
noglycosides, fluoroquinolones, and sulfamethoxazole/trimetho-
prim (SXT), which are antimicrobials that are critically important 
in human medicine (4, 5). Additionally, previous studies have 
shown that multidrug resistant, highly virulent human-related 
clonal lineages of Enterobacteriaceae, such as Escherichia coli (E. 
coli), belonging to sequence type (ST)131 and ST648, or Klebsiella 
pneumoniae (K. pneumoniae) ST11, ST15, and ST147 may be 
isolated from companion animals (6, 7). Consequently, there is 
growing concern that ESBL producers in companion animals 
pose a potential health hazard to humans, either through direct 
transmission of resistant pathogens from animals to humans, or 
indirectly through transmission of resistance genes (8, 9). Recent 
data on the prevalence of ESBL producers in clinical isolates of 
cats and dogs and the phenotypes and genotypes of such isolates 
are scarce for Switzerland, and it remains unclear to what extent 
clinically relevant phylogenetic or clonal lineages occur.

Here, we analyze a collection of clinical feline and canine 
Enterobacteriaceae obtained during 2012–2016 by (i) identifying 
ESBL producers within the strain collection, (ii) assessing their 
antimicrobial resistance profiles, (iii) determining their blaESBL 
genes and screening for plasmid-mediated fluoroquinolone 
and azithromycin resistance genes, and by (iii) characterizing 
E. coli and K. pneumoniae strains by multilocus sequence typ-
ing (MLST), and E. coli strains by phylogenetic grouping and 
virulence gene profiling.

MaTerials anD MeThODs

Bacterial isolates
Between 2012 and 2016, 346 clinical Enterobacteriaceae were 
isolated from diseased cats (n = 115) and dogs (n = 231) admitted 
to the veterinary clinic of the University of Zürich. The isolates were 
cultured from urinary samples (n = 273), samples obtained from 
surgical sites (n = 26), abscess samples (n = 16), skin and skin wound 
samples (n = 14), bile samples (n = 7), and samples from other sites 
(n = 10). Strain identification and routine antimicrobial suscep-
tibility profiling was performed using the VITEK® two compact 
system with AST GN38 cards (Biomérieux, Nürtingen, Germany) 

according to the manufacturer’s instructions. The identity of 
Enterobacter cloacae (E. cloacae) was confirmed by matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF–MS, Bruker Daltronics, Bremen, Germany). ESBL 
producers were screened by using the chromogenic medium 
Brilliance™ ESBL Agar (Oxoid, Hampshire, UK), according to 
the manufacturer’s recommendations. All non-duplicate isolates 
growing on ESBL agar were further analyzed. In accordance with 
local legislation, ethics approval was not required for this study.

identification of blaesBl genes and 
antibiotic susceptibility Testing
The presence of blaESBL genes was established by PCR, and ampli-
cons were sequenced as described previously using primers listed 
in Table S1 in Supplementary Material (10–12). For the detection 
of the CTX-M-25 enzyme group, the newly designed primers 
Gr. 25 CTX-M fw CCTGTGTTTCGCTGCTGTTGG and Gr. 25 
CTX-M rv GGCTCTCTGCCTTCGGCTCC, were used.

Antimicrobial susceptibility testing was performed according 
to Clinical and Laboratory Standards Institute (CLSI) perfor-
mance standards (13), using the disk-diffusion method and the 
antibiotics ampicillin (AM), amoxicillin with clavulanic acid 
(AMC), azithromycin (AZM), cefazolin, cefepime, CTX, chloram-
phenicol (C), ciprofloxacin (CIP), fosfomycin (FOS), gentamicin 
(G), kanamycin (K), nalidixic acid (NA), nitrofurantoin (F/M), 
streptomycin (S), SXT, and tetracycline (TE) (Becton Dickinson, 
Allschwil, Switzerland). Results were interpreted according to 
CLSI standards (13). For azithromycin, an inhibition zone of 
≤12 mm was interpreted as resistant. Isolates displaying resistance 
to three or more classes of antimicrobials (counting β-lactams as 
one class) were defined as multidrug-resistant (MDR).

identification of additional antimicrobial 
resistance genes
The plasmid-mediated fluoroquinolone resistance genes aac(6')-
Ib-cr, qnrA, qnrB, qnrC, qnrD, qnrS, and qepA, and the plasmid-
mediated azithromycin resistance gene mph(A) were detected by 
PCR as described elsewhere using primers listed in Table S1 in 
Supplementary Material (14, 15).

Quinolone-resistant E. coli strains were examined for muta-
tions in the quinolone resistance-determining regions (QRDRs) 
of gyrA and parC, using PCR amplification and sequencing 
primers as described previously using primers listed in Table S1 
in Supplementary Material (14).

Synthesis of primers and DNA custom sequencing was car-
ried out by Microsynth (Balgach, Switzerland) and nucleotide 
sequences were analyzed with CLC Main Workbench 6.6.1. For 
database searches, the BLASTN program of NCBI1 was used.

Phylogenetic characterization and MlsT
Phylogenetic classification of the E. coli isolates into one of the 
eight groups, including A, B1, B2, C, D, E, F, (E. coli sensu stricto), 
or Escherichia clade I, was performed as described by Clermont 
et al. (16).

1 http://www.ncbi.nlm.nih.gov/blast/ (Accessed: May 17, 2017).
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TaBle 1 | Percent and distribution of extended-spectrum β-lactamases (ESBL) producers among clinical Enterobacteriaceae from cats and dogs in Switzerland, 
2012–2016.

host source Escherichia coli Klebsiella pneumoniae Enterobacter cloacae Other speciesa Total enterobacteriaceae

no. no.  
esBl

%  
esBl

no. no.  
esBl

%  
esBl

no. no.  
esBl

%  
esBl

no. no.  
esBl

%  
esBl

no. no.  
esBl

%  
esBl

Cats Urine 74 1 1.4 6 2 33.3 10 0 0 6 0 0 96 3 3.1
Cats Surgical sites 4 1 25 0 0 0 2 0 0 0 0 0 6 1 16.6
Cats Abscess 3 1 33.3 0 0 0 2 0 0 0 0 0 5 1 20
Cats Wound/skin 3 1 33.3 0 0 0 0 0 0 0 0 0 3 1 33.3
Cats Bile 3 0 0 0 0 0 0 0 0 0 0 0 3 0 0
Cats Other 2 1 50 0 0 0 0 0 0 0 0 0 2 1 50
Dogs Urine 131 34 26 25 5 20 10 3 30 11 0 0 177 42 23.7
Dogs Surgical sites 13 5 38.5 3 0 0 4 0 0 0 0 0 20 5 25
Dogs Abscess 6 4 66.7 3 1 33.3 0 0 0 2 0 0 11 5 45.5
Dogs Wound/skin 6 5 83.3 2 2 100 1 0 0 2 0 0 11 7 63.6
Dogs Bile 4 4 100 0 0 0 0 0 0 0 0 0 4 4 100
Dogs Other 5 1 20 1 1 100 2 0 0 0 0 0 8 2 25

aOther species included Citrobacter freundii, Citrobacter koseri, Proteus mirabilis, and Proteus vulgaris.
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Sequence type determination of the E. coli isolates was carried 
out as described by Wirth et al. (17). Sequences were imported 
into the E. coli MLST database website2 to determine MLST types. 
Alleles and STs that had not been previously described were 
termed new ST, but not assigned new numerical designations by 
the database.

Sequence type determination of the K. pneumoniae isolates 
was performed according to previously described methods (18). 
STs were determined according to the Klebsiella MLST database.3

Virulence Factor (VF) Determination in 
Uropathogenic E. coli isolates
Escherichia coli isolated from urinary samples were tested by con-
ventional PCR for the presence of virulence-associated genes that 
mediate adhesion (p-fimbrial adhesion genes papAH and papEF, 
and the chaperone-usher fimbria yfcv), toxins (α-hemolysin 
hlyA), siderophores (the ferric yersiniabactin uptake protein 
fyuA), serum resistance (traT), and the right-hand terminus 
of pathogenicity island (PAI) from E. coli strain CFT073, using 
primers listed in Table S1 in Supplementary Material and condi-
tions described previously (19, 20). The aggregate VF score was 
defined as the number of unique VF detected for each isolate, 
counting the PAI marker as one.

resUlTs

During 2012–2016, 20.8% (72/346) of clinical Enterobacteriaceae 
isolated from cats and dogs were ESBL producers. The isolates 
originated from 7 cats and 65 dogs, amounting to 6% (7/115) of 
the feline and 28.1% (65/231) of the canine isolates, respectively. 
The prevalence of ESBL producers was remarkably higher among 
isolates from dogs than from cats. Overall, ESBL producers (58 
E. coli, 11 K. pneumoniae, and 3 E. cloacae) were cultured from 
16.5% (45/273) of the urinary samples, 57.1% (8/14) of the skin 
and skin wound samples, 37.5% (6/16) of abscess samples, 23% 

2 http://enterobase.warwick.ac.uk (Accessed: June 6, 2017).
3 http://bigsdb.pasteur.fr/klebsiella/ (Accessed: June 24, 2017).

(6/26) of the samples obtained from surgical sites, 57.1% (4/7) 
of bile samples, and 30% (3/10) of the samples from other sites 
(Table 1). Among the E. coli from urinary samples, 17% (35/205) 
were ESBL producers (Table 1).

In addition to their resistance to penicillins and extended-
spectrum cephalosporins, the isolates were frequently resistant to 
quinolones and fluoroquinolones, with 88.9% (64/72) resistant to 
NA and 83.3% (60/72) resistant to ciprofloxacin. They were also 
resistant to SXT (76.4%, 55/72), TE (72.2%, 52/72), aminoglyco-
sides streptomycin (45.8%, 33/72), gentamycin (37.5%, 27/72), 
kanamycin (19.4%, 14/72), chloramphenicol (25%, 18/72), as 
well as to azithromycin (22.2%, 16/72), and to nitrofurantoin 
(12.5%, 9/72). One K. pneumoniae isolate (1.4%) was resistant 
to fosfomycin. Overall, 73.6% (53/72) were MDR and none was 
pansusceptible (Table S2 in Supplementary Material).

In total, 73 ESBL genes were detected among the 72 isolates, 
including in 1 K. pneumoniae isolate co-harboring blaCTX-M-15 
and blaSHV-12 (Table 2). Among the ESBL genes, blaCTX-M-15 pre-
dominated (54.8%, 40/73), followed by blaCTX-M-1 (24.7%, 18/73). 
Other ESBL genes included blaCTX-M-55 (6.8%, 5/73), blaCTX-M-14 and 
blaSHV-12 (each 5.5%, 4/73), and blaCTX-M-27 (2.7%, 2/73).

In addition to blaESBLs, other plasmid-mediated resistance 
genes detected among the 72 isolates included aac(6’)-Ib-cr 
(47.2%, 34/72), mph(A) (38.9%, 28/72), qnrS (9.7%, 7/72), qnrA 
and qnrB (each 4.2%, 3/72) (Table 2).

The majority of the aac(6’)-Ib-cr genes (88.2%, 30/34), the 
mph(A) genes (62%, 18/29), the qnrB (66.7%, 2/3), and qnrS genes 
(85.7%, 6/7) was detected in isolates harboring blaCTX-M-15. All 
qnrA were detected together with blaSHV-12 in E. cloacae (Table 2).

Phylogenetic analysis of the 58 E. coli isolates revealed a predomi-
nance of group C (32.8%, 19/58), followed by group A (31%, 18/58), 
group B2 and group F (each 12%, 7/58), group B1 (8.6%, 5/58), and 
group D (3.4%, 2/58) (Table S2 in Supplementary Material).

Among the 58 E. coli isolates, 23 different STs and three 
new STs were identified (Table  2; Table S3 in Supplementary 
Material). Most frequently, isolates belonged to ST410 (27.6%, 
16/58), followed by a collective of STs occurring only once or 
twice (24.1%, 14/58), ST361 (13.8%, 8/58), ST131 (12%, 7/58), 
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TaBle 3 | Amino acid substitutions in the QRDR of 51 quinolone-resistant extended-spectrum β-lactamases producing Escherichia coli from cats and dogs in 
Switzerland, 2012–2016.

host (n = 51) QrDr

gyrA parC

ser83→leu  
n (%)

asp87→asn  
n (%)

asp87→Tyr  
n (%)

ser80→ile  
n (%)

glu84→Val  
n (%)

glu84→gly  
n (%)

Cats (n = 4) 4 (100) 3 (75) 0 (0) 0 (75) 0 (0) 0 (0)
Dogs (n = 47) 47 (100) 44 (93.6) 2 (4.3) 46 (97.9) 7 (14.9) 1 (2.1)

Asn, asparagine; Asp, aspartic acid; CIP, ciprofloxacin; Glu, glutamic acid; Gly, glycine; gyrA, DNA gyrase (type II topoisomerase) gene; Ile, isoleucine; Leu, leucine; parC, 
topoisomerase IV gene; QRDR, quinolone resistance determining region; Ser, serine; Tyr, tyrosine; Val, valine.

TaBle 2 | Type and distribution of extended-spectrum β-lactamases (ESBL) genes and other plasmid-mediated resistance genes among 72 clinical Enterobacteriaceae 
isolated from cats and dogs in Switzerland, 2012–2016.

host species no. of 
isolates

source (n) MlsT (n) blaesBl additional plasmid-
mediated aMr 
determinants

Cat Escherichia coli (E. coli) 1 Urine (1) 10 (1) blaCTX-M-1 −
Cat E. coli 1 Other (1) 23 (1) blaCTX-M-1 mph(A), qnrS

Cats E. coli 3 Abscess (1), wound (1), surgical site (1) 361 (2), 648 (1) blaCTX-M-15 mph(A), aac(6')-Ib-cr

Cat Klebsiella pneumoniae  
(K. pneumoniae)

1 Urine (1) 15 (1) blaCTX-M-15 aac(6')-Ib-cr

Cat K. pneumoniae 1 Urine (1) 147 (1) blaCTX-M-15 qnrS

Dogs E. coli 13 Urine (9), abscess (1), wound (1), surgical 
site (2)

58 (1),101 (2), 117 (1), 410 (5), 
617 (2), 1431 (1), new ST (1)

blaCTX-M-1 −

Dog E. coli 1 Surgical site (1) 3,889 (1) blaCTX-M-1 mph(A),

Dog E. coli 1 Bile (1) 90 (1) blaCTX-M-1 mph(A), aac(6')-Ib-cr

Dog K. pneumoniae 1 Urine (1) 788 (1) blaCTX-M-1 mph(A), qnrB

Dogs E. coli 2 Urine (2) 744 (2) blaCTX-M-14 −
Dogs E. coli 2 Urine (1), wound (1) 744 (1), 131 (1) blaCTX-M-14 mph(A)

Dogs E. coli 3 Urine (3) 131 (1), 354 (1), 648 (1) blaCTX-M-15 −
Dog E. coli 1 Urine (1) 533 (1) blaCTX-M-15 mph(A)

Dogs E. coli 10 Urine (7), bile (1), wound (1), surgical site (1) 131 (3), 410 (7) blaCTX-M-15 aac(6')-Ib-cr

Dogs E. coli 12 Urine (5), abscess (3), bile (1), wound (1), 
surgical site (1), other (1)

131 (1), 167 (2), 361 (6),  
410 (2), new ST (1)

blaCTX-M-15 mph(A), aac(6')-Ib-cr

Dog E. coli 1 Urine (1) New ST (1) blaCTX-M-15 mph(A), aac(6')-Ib-cr, 
qnrB

Dogs K. pneumoniae 4 Urine (3), other (1) 147 (4) blaCTX-M-15 qnrS

Dogs K. pneumoniae 2 Wound (2) 15 (2) blaCTX-M-15 aac(6')-Ib-cr

Dog K. pneumoniae 1 Abscess (1) 11 (1) blaCTX-M-15 mph(A), aac(6')-Ib-cr, 
qnrB

Dog K. pneumoniae 1 Urine (1) 147 (1) blaCTX-M-15, blaSHV-12 qnrS

Dog E. coli 1 Urine (1) 131 (1) blaCTX-M-27 mph(A)

Dog E. coli 1 Bile (1) 648 (1) blaCTX-M-27 mph(A), aac(6')-Ib-cr

Dogs E. coli 3 Urine (2), wound (1) 457 (2), 1177 (1) blaCTX-M-55 −
Dogs E. coli 2 Urine (2) 410 (2) blaCTX-M-55 mph(A), aac(6')-Ib-cr

Dogs Enterobacter cloacae 3 Urine (3) – blaSHV-12 qnrA

aac(6’)-Ib-cr, aminoglycoside 6′-N-acetyltransferase variant; AMR, antimicrobial resistance; bla, β-lactamase gene; MLST, multilocus sequence typing; mph(A), macrolide 
2′-phosphotransferase gene; qnr, quinolone resistance gene; –, not determined; −, not present.

4

Zogg et al. ESBLs From Cats and Dogs

Frontiers in Veterinary Science | www.frontiersin.org March 2018 | Volume 5 | Article 62

and ST648, ST744, and new STs (each 5.2%, 3/58). E. coli ST410 
and human-related pandemic clone E. coli ST131 were detected 
only in isolates from dogs. E. coli ST410 was isolated from 33.3% 
of the urine samples from dogs.

Among the 11 K. pneumoniae isolates, 4 different STs were 
detected (Table  2; Table S2 in Supplementary Material). The 
majority (54.5%, 6/11) of the isolates belonged to ST147. Other STs 
included ST15 (27.3%, 3/11), ST11, and ST788 (both 9.1%, 1/11).

Among the 51 E. coli isolates displaying quinolone resist-
ance, all revealed chromosomal mutations that result in amino 
acid substitutions in GyrA and ParC. Unusual point mutations 
Asp87→Tyr in GyrA and Glu84→Gly in ParC were noted for two 
E. coli ST457 isolates harboring blaCTX-M-55 (Table 3; Table S2 in 
Supplementary Material).

Virulence factors were distributed unequally among the 35 
uropathogenic E. coli isolates (Table 4).

https://www.frontiersin.org/Veterinary_Science
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TaBle 4 | Virulence-associated genes detected in 35 uropathogenic extended-spectrum β-lactamases producing Escherichia coli from cats and dogs in Switzerland, 
2012–2016.

host no. of isolates Pg sT cc papAH papEF yfcv hlyA fyuA traT Pai Plasmid-mediated resistance gene(s)

Dog 1 A 617 10 + + − + + + + blaCTX-M-1

Dog 1 A 617 10 + + − − + + + blaCTX-M-1

Dog 2 A 361 – − − − − − − − aac(6')-Ib-cr, blaCTX-M-15, mph(A)
Dog 1 A 361 – − − − − + + − aac(6’)-Ib-cr, blaCTX-M-15, mph(A)
Dog 1 A 744 – – − − − − + − mph(A), blaCTX-M-14

Dog 2 A 744 – − − − − − − blaCTX-M-14

Dog 1 B1 533 – − − − − − + − mph(A), blaCTX-M-15

Dog 1 B1 1431 – − − − + + + − blaCTX-M-1

Dog 2 B2 131 131 + + + + + + + aac(6’)-Ib-cr, blaCTX-M-15

Dog 1 B2 131 131 + + + + + + + blaCTX-M 15

Dog 1 B2 131 131 − − + − + + + mph(A), blaCTX-M-27

Cat 1 C 23 23 − − − − + − − blaCTX-M-1

Dog 5 C 410 23 − − − − − − − blaCTX-M-1

Dog 5 C 410 23 − − − − − − − aac(6’)-Ib-cr, blaCTX-M-15

Dog 1 C 410 23 + − − − + − − aac(6’)-Ib-cr, blaCTX-M-15, mph(A)
Dog 1 C 410 23 − − − − − − − aac(6’)-Ib-cr, blaCTX-M-15, mph(A)
Dog 2 C 410 23 − − − + − − − aac(6’)-Ib-cr, blaCTX-M-55, mph(A)
Dog 1 C nd nd − − − + − − − aac(6’)-Ib-cr, blaCTX-M-15, mph(A), qnrB
Dog 1 D 1177 – − − − − + + − blaCTX-M-55

Dog 1 F 117 – − − − − − + − blaCTX-M-1

Dog 1 F 354 354 − − + − − + − blaCTX-M-15

Dog 1 F 457 – − − + − − + + blaCTX-M-55

Dog 1 F 648 648 − − + − + + + blaCTX-M-15

aac(6’)-Ib-cr, aminoglycoside 6'-N-acetyltransferase variant; bla, β-lactamase gene; CC, clonal complex; fyuA, ferric yersiniabactin uptake protein gene; hlyA, α-hemolysin 
gene; mph(A), macrolide 2′-phosphotransferase gene; nd, not determined; PAI, right-hand terminus of pathogenicity island; papAH and papEF, p-fimbrial adhesion genes; PG, 
phylogenetic group; qnrB, quinolone resistance gene; ST, sequence type; traT, serum resistance gene; yfcv, chaperone-usher fimbria gene; +, presence of a trait; −, absence of a 
trait; –, not applicable.
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For 42.9% (15/35) of E. coli urinary isolates, no VF was 
detected. Strains with aggregate VF score ≥1 were identified 
in 34.5% (57.1%/35) of the isolates. VF scores were highest for 
isolates belonging to ST617 (median 5.5, range 5–6) and ST131 
(median 7, range 4–7).

DiscUssiOn

This study identified a high prevalence (20.8%) of ESBL-producing 
Enterobacteriaceae derived from clinical samples of cats and 
dogs collected during 2012–2016 at the veterinary clinic of the 
University of Zürich, Switzerland. This is considerably higher than 
that found in similar studies from pets in the UK (7%) (21), the 
Netherlands (2%) (22), and France (3.7%) (23), and remarkably 
higher than the prevalence of 1.6% detected in a European col-
lection of Enterobacteriaceae obtained from diseased companion 
animals in 2015 (6). In addition, among the uropathogenic E. coli 
analyzed in this study, the observed prevalence of 16.8% of ESBL 
producers is considerably higher than that found previously in 
cats and dogs in Switzerland between 2010 and 2012 (7.5%) (24). 
Although our data are single-institution based and thus limited, 
they provide important information on the trends in the burden 
of infections due to ESBL producers in veterinary medicine in 
Switzerland.

Overall, a diversity of blaESBL genes was found within three 
bacterial species. The predominance of blaCTX-M-15, which is highly 
prevalent in ESBL producers in humans, is comparable to what is 
found in other studies on isolates from companion animals (21, 23, 
25). This gene was the only one that was detected in cats and dogs 

in Switzerland between 2010 and 2012 (24). Our study shows that 
in the following years, blaCTX-M-1, blaCTX-M-14, blaCTX-M-27, blaCTX-M-55, 
and blaSHV-12 harboring Enterobacteriaceae have emerged in cats 
and dogs in Switzerland.

Second to blaCTX-M-15, blaCTX-M-1 was the most frequent variant 
identified in this study. The blaCTX-M-1 gene is the most prevalent 
blaESBL gene among ESBL-producing Enterobacteriaceae isolated 
food-producing animals and food, in particular chicken and 
chicken meat (26, 27). Consumption of raw meat represents 
a risk factor for dogs acquiring pathogenic E. coli, including 
ESBL producers (28, 29). Moreover, a recent study detected 
a high prevalence (77.8%) of ESBL producers in raw cat food 
and demonstrated a strong association of consumption of raw 
cat food with shedding of ESBL producers by household cats in 
the Netherlands (30). Further studies are needed to investigate 
the possibility of raw meat as an origin of the high prevalence 
of ESBL and the occurrence of CTX-M-1 producers in isolates 
from companion animals in Switzerland. Similarly, CTX-M-55 
has been widely reported in food-producing animals and pets in 
mainland China (31). This ESBL variant has rarely been detected 
outside China and its emergence in pets in Switzerland, possibly 
due to international food and animal trade, warrants attention.

This study identified 17 (23.6%) isolates belonging to major 
lineages of human pathogenic K. pneumoniae and E. coli. CTX-
M-15 producing K. pneumoniae ST11, ST 15, and ST147 represent 
major international high-risk nosocomial clones (32). K. pneumo-
niae ST11 and ST15 from companion animals have been involved 
in nosocomial events in veterinary clinics (7, 33). By contrast, K. 
pneumoniae ST147 has only very recently been detected in pets 
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in Europe and in Japan (34, 35), and this is to our knowledge the 
second report on this ST isolated from dogs in Europe.

Pandemic human pathogenic E. coli ST131-producing CTX-
M-15 has disseminated globally in hospital and community 
settings causing a wide spectrum of infections, including urinary 
tract infection, cystitis, pyelonephritis, and bacteremia, with 
transmission between humans and their companion animals 
(cats and dogs in particular) was well documented (36). Since 
the earlier study period 2010–2012 (24), the prevalence of ESBL-
producing uropathogenic E. coli ST131 among feline and canine 
samples in Switzerland has increased from 0 to 1.5% (4/273), and 
includes E. coli ST131-CTX-M-15 as well as ST131-CTX-M-27, 
which is currently emerging in human medicine in Germany, 
France, and Japan (37, 38).

Other human-related strains detected in this study included 
E. cloacae harboring blaSHV-12 together with the plasmid-mediated 
quinolone resistance gene qnrA. The combined presence of 
blaSHV-12 and qnrA has been described in human clinical E. cloacae 
isolates in hospitals in France and the UK (39, 40). Although 
data on ESBL-producing E. cloacae in animals are scarce (22, 41), 
our results provide evidence that this important pathogen has 
emerged in companion animals in Switzerland, illustrating their 
potential for increased dissemination.

In this study, the identification of phylogenetic groups among 
the E. coli isolates was performed based on the new Clermont 
scheme (16). Consequently, a number of STs from this study 
were classified as phylogenetic group F from their original D 
designation, including E. coli ST117 which is a recognized avian 
pathogenic lineage (42), E. coli ST354 and ST648, which are fre-
quently detected in humans and animals (9, 43), and the rarely 
described E. coli ST457. In this study, we detected two isolates 
belonging to ST457, both harboring the uncommon blaCTX-M-55. E. 
coli ST457-CTX-M-55 harboring the carbapenemase gene blaKPC-3 
was isolated in Italy from a human diagnosed with pneumonia 
(44), but to our knowledge, this ST has not been associated with 
disease in companion animals before.

A large number (26.4%, 19/72) of isolates changed designation 
from the original phylogenetic group A to group C. Most isolates in 
this group belonged to ST410 and were of low virulence. However, 
the panel of VFs selected for this study was limited in number and 
represents only a subset of known VFs. Other important determi-
nants of virulence may have been missed due to this limitation. 
Nevertheless, the pathogenic potential of ST410 has been docu-
mented previously, together with strong evidence for clonal dis-
semination of E. coli ST410 between the avian wildlife, humans, and 
companion animals in Germany (45, 46). CTX-M-15-producing E. 
coli ST410 was also identified as a veterinary hospital strain in the 
UK (21). Although currently available reports on blaESBLs in ST410 
are limited to blaCTX-M-15, our results demonstrate that this ST can 
also harbor blaCTX-M-1 and blaCTX-M-55, both variants that occur 
among food-producing animals (26, 31). Here, we provide further 

evidence for the pathogenic potential of this ST in companion ani-
mals and suggest that, in addition to its potential as an international 
clone for the dissemination of blaCTX-M-15, it may contribute to the 
dispersion of other resistance genes, including other blaESBL vari-
ants, aac(6’)-Ib-cr, and mph(A). The high prevalence (38.9%) of iso-
lates harboring plasmid-mediated mph(A) which confers reduced 
susceptibility to azithromycin is of concern, since this macrolide 
is considered a last-resort antimicrobial agent for shigellosis (47). 
Furthermore, azithromycin represents an option for the treatment 
of Gram-negative rods expressing MDR, including carbapenem-
resistant isolates of Pseudomonas aeruginosa, K. pneumoniae, and 
Acinetobacter baumannii (48), and is the only antimicrobial under 
consideration for the treatment of enterohemorrhagic E. coli in 
humans (49).

In conclusion, this study provides information on the preva-
lence, the blaESBL variants and the genotypes of ESBL-producing 
isolates in cats and dogs in Switzerland. The occurrence of 
potentially high-risk human-related K. pneumoniae and E. coli 
clones, as well as E. cloacae harboring blaSHV-12 and qnrA genes, 
previously described in humans suggests transmission events 
between companion animals as well as the possibility of the pres-
ence of a common source. This collection of ESBL-producing 
Enterobacteriaceae from cats and dogs identifies E. coli phylo-
group C ST410 as a frequent MDR, ESBL-producing clone among 
clinical isolates from dogs in Switzerland that warrants further 
attention. The clinical significance of phylogroup C strains as 
etiological agents of extraintestinal disease and disseminators 
of antimicrobial resistance in companion animals remains to be 
investigated. Understanding the epidemiological and molecular 
features of ESBL-producing Enterobacteriaceae in companion 
animals can be helpful for infection management and prevention 
in veterinary as well as in human medicine.
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