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Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes
nosocomial infections and contributes to substantial morbidity and mortality. We sought
to investigate the antibiotic resistance profile, pathogenic potential and the clonal
relationships between K. pneumoniae (n = 25) isolated from patients and sources at
a tertiary care hospital’s intensive care units (ICUs) in the northern region of Brazil. Most
of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR)
with high-level resistance to β-lactams, aminoglycosides, quinolones, tigecycline, and
colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing
(ESBL), including carbapenemase producers, and carried the blaKPC (100%), blaTEM

(100%), blaSHV variants (n = 24, 96%), blaOXA−1 group (n = 21, 84%) and blaCTX−M−1

group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates,
and the K1 was not detected. The virulence-associated genes found among the 25
isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10,
40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane
porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35
(n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine
the clonal relationship between the different isolated strains. The obtained ERIC-PCR
patterns revealed that the similarity between isolates was above 70%. To determine
the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The
results indicated the presence of high-risk international clones among the isolates. In our
study, the wide variety of MDR K. pneumoniae harboring β-lactams and virulence genes
strongly suggest a necessity for the implementation of effective strategies to prevent
and control the spread of antibiotic resistant infections.
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INTRODUCTION

Klebsiella pneumoniae is a Gram-negative opportunistic
bacterium that causes infections in hospitalized or otherwise
immunocompromised individuals (Gorrie et al., 2017).
Currently, K. pneumoniae is showing a high resistance to a
broad spectrum of drugs including beta-lactam antibiotics,
fluoroquinolones, and aminoglycosides (Fair and Tor, 2014;
Dsouza et al., 2017). This resistance is resulting in a growing
worldwide problem regarding the choice of effective antibiotic
treatment for hospital-acquired infections (Davies and Davies,
2010).

Antibiotics of the β-lactam group are commonly prescribed
worldwide and include penicillins, cephalosporins, monobactams,
and carbapenems (Samaha-Kfoury and Araj, 2003; Ur Rahman
et al., 2018). The production of β-lactamase enzymes by
the presence of β-lactam-insensitive cell wall transpeptidases,
or the active expulsion of β-lactam molecules from Gram-
negative bacteria represent the main indications of β-lactam
antibiotic resistance (Wilke et al., 2005). Carbapenems are the
β-lactams of choice for the treatment of infections caused by
extended-spectrum beta-lactamase (ESBL)-producing bacteria
(Karuniawati et al., 2013; Okoche et al., 2015), such as
K. pneumoniae. These antibiotics are also considered the last resort
for the management of life-threatening health-care-associated
infections (Amjad et al., 2011). Unfortunately, bacterial resistance
to carbapenems has been increased and is well documented
(Paterson and Bonomo, 2005; World Health Organization
[WHO], 2014), and has also been further complicated by the
production ofβ-lactamases, efflux pumps, and mutations that alter
the expression and/or function of porins and penicillin-binding
proteins (PBPs) (Papp-Wallace et al., 2011).

Antimicrobial resistance is commonly related to the spread
of transmissible plasmids and the acquisition of resistance genes
that normally occur by horizontal gene transfer, which may
also carry virulence determinants (Derakhshan et al., 2016). For
pathogen survival, the acquisition of resistance and virulent
traits is necessary (Da Silva and Mendonça, 2012), and some
reports suggest that such may have an essential role in the
pathogenesis of K. pneumoniae infections (Vila et al., 2011).
Capsule, lipopolysaccharide (LPS), fimbriae (types 1 and 3),
and siderophores are virulence factors that contribute to the
pathogenicity of K. pneumoniae. K. pneumoniae strains can
synthesize capsules of any of the serotypes K1 to K78; however,
K1 and K2 can also be associated with increased pathogenicity
(Paczosa and Mecsas, 2016).

Here, we show the antibiotic resistance profile, pathogenic
potential, and clonal relationships among K. pneumoniae isolated
from patients and sources at a tertiary care hospital’s intensive
care units (ICUs) in the northern region of Brazil.

MATERIALS AND METHODS

Bacterial Strains
Twenty-five K. pneumoniae clinical isolates were collected from
patients and devices at a tertiary care hospital’s ICUs in the state

of Tocantins, located in the northern region of Brazil, between
January 2014 and May 2015. All K. pneumoniae were collected
at the bed-side, and then transported to the microbiology
laboratory immediately for inoculation on proper culture media
and preliminary analysis. Thereafter, the bacterial cultures were
sent to the Central Laboratory of Public Health of Tocantins
(LACEN/TO), a reference unit from the Brazilian Ministry of
Health that receives samples for surveillance of antimicrobial
resistance and which is usually located in the capital city of
each federal state of Brazil. Strains were isolated from the
following sources: tracheal aspirate, rectal swab, surgical drain,
wound, catheter tip, cerebrospinal fluid, abscess, urine, and
sputum.

Ethics Statement
In this work, all K. pneumoniae and the anonymous archival
data related patient age, gender, and sample type were obtained
from LACEN/TO (data’s owner). The study was approved by
the Committee of Ethics in Human Research of the Federal
University of São Carlos (no. 1.088.936). Permission to conduct
the present study was obtained from the Health Department
of the State of Tocantins (Secretaria da Sauìde do Estado do
Tocantins – SESAU) and LACEN/TO. Patient consent was not
required, since the data presented in this study do not relate to
any specific person or persons.

Phenotypic Detection of Antibiotic
Resistance and Carbapenemase
Productions
The identification of K. pneumoniae and the evaluation
of their susceptibility profiles were performed using the
VITEK 2 system (bioMérieux, Inc., Hazelwood, MO,
United States) following the Clinical and Laboratory
Standards Institute guidelines (Clinical and Laboratory
Standards Institute [CLSI], 2017). All K. pneumoniae was
tested for their resistance against the following 15 antibiotics:
ampicillin/sulbactam (SAM), piperacillin/tazobactam
(TZP), cefuroxime (CXM), cefoxitin (FOX), ceftazidime
(CAZ), ceftriaxone (CRO), cefepime (FEP), ertapenem
(ERP), imipenem (IMP), meropenem (MEM), amikacin
(AMK), gentamicin (GEN), ciprofloxacin (CIP), tigecycline
(TGC), and colistin (CST). Susceptibility to TGC was
interpreted using breakpoints proposed by the European
Committee on Antimicrobial Susceptibilities Testing
(EUCAST)1.

Determination of the production of carbapenemase was
carried out by modified Hodge test, synergy test, and the
ethylenediaminetetraacetic acid (EDTA) test under the CLSI
guidelines (Clinical and Laboratory Standards Institute [CLSI],
2017) and as described elsewhere (Miriagou et al., 2010;
Nordmann et al., 2011; Okoche et al., 2015).

Multidrug-resistant (MDR) K. pneumoniae isolates were
defined by non-susceptibility to at least one agent in three or
more antibiotic categories (Magiorakos et al., 2012).

1http://www.eucast.org/clinical_breakpoints/
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Genomic DNA Extraction
Genomic DNA was extracted from an overnight culture
using the Wizard R© Genomic DNA Purification Kit (Promega,
Madison, WI, United States). The concentration of the DNA
extract and purity was determined by measuring absorbance
at wavelengths of 260 nm and 280 nm (NanoVue Plus; GE
Healthcare Life Sciences, Marlborough, MA, United States).
The integrity of genomic DNA was tested by way of
electrophoresis.

Detection of Multidrug Resistance Genes
The detection of resistance genes was performed by polymerase
chain reaction (PCR) and their identities confirmed by
sequencing. Isolates were screened by PCR amplification
using specific primers for the detection of ESBL-encoding
genes (blaTEM; blaSHV; blaCTX−M; and blaOXA1,4,and30),
carbapenemases genes (blaKPC, blaVIM, blaIMP, blaNDM , and
blaOXA48), a tetracycline resistance gene (tetB), and a CST
resistance gene (mcr-1). Moreover, efflux pump (AcrAB, mdtK,
and ToIC), and porin-coding (OmpK35 and OmpK36) genes
were also investigated. The specific primers (Exxtend, São Paulo,
Brazil) and the length of expected PCR products are presented in
Table 1. Amplicons were analyzed by gel electrophoresis in 1.5%
agarose and visualized under ultraviolet (UV) light. The forward
primers were used for DNA sequencing.

Serotypes and Virulence-Associated
Genes Detection
Polymerase chain reaction was used to detect the presence
of capsule serotypes (K1 and K2), and virulence-associated
genes. These virulence-associated genes included those encoding
for regulators of mucoid phenotype A (rmpA), type 1 and
type 3 adhesins (fimH-1 and mrkD), enterobactin (entB),
yersiniabactin (YbtS), and aerobactin siderophore system (iutA).
Isolated DNA samples were screened using specific primers
(Exxtend, São Paulo, Brazil) for the detection of virulence
genes (Table 2). The forward primers were used for DNA
sequencing.

Sequence Analysis of Resistance and
Virulence Genes
The PCR products were extracted from agarose gels, using
the Illustra GFX PCR DNA and Gel Band Purification Kit
(GE Healthcare, Chicago, IL, United States), and some of
them were randomly selected for DNA Sanger sequencing
(Macrogen Inc., Korea). The nucleotide sequences of the
corresponding genes of the isolates were submitted to the
GenBank database with accession numbers MK106173 to
MK106187. The sequences were edited with Ugene v1.18.0
(Okonechnikov et al., 2012). Each sequence was compared using
BlastN tools2 with the K. pneumoniae genome as the reference.
Access to genetic heritage was approved by the National
System for the Management of Genetic Heritage (SisGen) (no.
AFF27ED).

2https://blast.ncbi.nlm.nih.gov/

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR)
analysis was performed to evaluate the genetic similarity among
the bacterial isolates used in this study. ERIC-PCR reactions were
executed as previously described by Versalovic et al. (1994), using
the primers ERIC1R (5′-ATGTAAGCTCCTGGGGATTCAC-
3′) and ERIC2 (5′-AAGTAAGTGACTGGGGTGAGCG-3′). All
amplifications were carried out in a total volume of 50
µL, using the enzyme TaKaRa Ex Taq R© DNA Polymerase
(Takara Bio, Kusatsu, Japan), while standardizing the amount
of 100 ng of DNA template for each isolate. The amplified
products were separated by 1.5% agarose gel electrophoresis
and stained with ethidium bromide using UV radiation for
visualization of the bands. The band profile analysis was
performed using the BioNumerics program version 5.1 (Applied
Maths, Keistraat, Belgium) for construction of the similarity
dendrogram by the unweighted pair group mean method, Dice’s
similarity coefficient, and 1% band position tolerance. Only
bands representing amplicons between 300 bp and 3,000 bp
were considered for this analysis. The ERIC-PCR assays were
performed in triplicate.

MLST
Ten isolates belonging to the main clusters of the dendrogram
obtained by ERIC-PCR were selected for multilocus sequence
typing (MLST). Information on the methodology used, including
the primers and PCR reaction conditions, is available in the
MLST database for K. pneumoniae3. The alleles and sequence
types (STs) of each isolate studied by MLST were determined
using the MLST database platform for K. pneumoniae.

The determination of the clonal and epidemiological
relationships and the formation of clonal complexes (CCs), were
completed by analyzing a genetic similarity diagram constructed
with the aid of the eBURSTv3 program (eBURSTv3 has been
developed and is hosted at The Department of Infectious Disease
Epidemiology Imperial College London) (Feil et al., 2004).

Statistical Analysis
The statistical analysis was performed using Fisher’s exact test
(p ≤ 0.05).

RESULTS

Antibiotic Resistance Patterns
In the present study, a total of 25 K. pneumoniae strains were
isolated from samples collected from ICUs patients and devices
of a tertiary hospital located in the northern region of Brazil.
Most K. pneumoniae isolates were obtained from a rectal swab
(56%; n = 14), followed by tracheal aspirate (16%, n = 4), urine
(4%, n = 1), cerebrospinal fluid (4%, n = 1), wound (4%, n = 1),
sputum (4%, n = 1), abscess (4%, n = 1), surgical drain (4%, n = 1),
and catheter tip (4%, n = 1). A statistical difference was found

3http://www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html
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TABLE 1 | Sequences of primes used for detection of resistance genes and outer membrane porins.

Resistance targeted Sequence (5’–3’), F/R Tm (◦C) Amplicon size (bp) Reference

blaKPC CGTCTAGTTCTGCTGTCTTG
CTTGTCATCCTTGTTAGGCG

61,3 797 Poirel et al., 2011

blaTEM TGCGGTATTATCCCGTGTTG
TCGTCGTTTGGTATGGCTTC

63 296 Xiong et al., 2007

blaCTX−M−1group, (including
blaCTX−M−1,3, 10, 11and12)

ACAGCGATAACGTGGCGATG
TCGCCCAATGCTTTACCCAG

64 216 Xiong et al., 2004

blaSHVvariants AGCCGCTTGAGCAAATTAAAC
ATCCCGCAGATAAATCACCAC

55,6 712 Dallenne et al., 2010

blaOXA−1,4and30 GGCACCAGATTCAACTTTCAAG
GACCCCAAGTTTCCTGTAAGTG

63 563 Dallenne et al., 2010

blaOXA−48 GCGTGGTTAAGGATGAACAC
CATCAAGTTCAACCCAACCG

55 438 Poirel et al., 2011

blaIMP CTACCGCAGCAGAGTCTTTGC
ACAACCAGTTTTGCCTTACC

55 587 Martins et al., 2007

blaVIM AAAGTTATGCCGCACTCACC
TGCAACTTCATGTTATGCCG

55 865 Yan et al., 2001

blaNDM GCAGCTTGTCGGCCATGCGGGC
GGTCGCGAAGCTGAGCACCGCAT

60 782 Doyle et al., 2012

gyrA TACCGTCATAGTTATCCACGA
GTACTTTACGCCATGAACGT

61,3 387 Wiuff et al., 2000

tetB CAGTGCTGTTGTTGTCATTAA
GCTTGGAATACTGAGTGTAA

59,7 571 Call et al., 2003

mcr-1 CGGTCAGTCCGTTTGTTC
CTTGGTCGGTCTGTAGGG

51,6 309 Liu et al., 2015

AcrAB ATCAGCGGCCGGATTGGTAAA
CGGGTTCGGGAAAATAGCGCG

58 312 Wasfi et al., 2016

TolC ATCAGCAACCCCGATCTGCGT
CCGGTGACTTGACGCAGTCCT

61 525 Wasfi et al., 2016

mdtK GCGCTTAACTTCAGCTCA
GATGATAAATCCACACCAGAA

52 453 Wasfi et al., 2016

OmpK35 CTCCAGCTCTAACCGTAGCG
GGTCTGTACGTAGCCGATGG

58 241 Wasfi et al., 2016

OmpK36 GAAATTTATAACAAAGACGGC
GACGTTACGTCGTATACTACG

48 305 Wasfi et al., 2016

TABLE 2 | Sequences of primers used for detection of virulence genes.

Gene Primer sequence (5’–3’), F/R Amplicon size (bp) Tm (◦C) Reference

rmpA ACTGGGCTACCTCTGCTTCA
CTTGCATGAGCCATCTTTCA

535 54 Siu et al., 2011

fimH-1 TGCTGCTGGGCTGGTCGATG
GGGAGGGTGACGGTGACATC

550 61 Schembri et al., 2005

mrkD CCACCAACTATTCCCTCGAA
ATGGAACCCACATCGACATT

226 54 El Fertas-Aissani et al., 2013

iutA GGGAAAGGCTTCTCTGCCAT
TTATTCGCCACCACGCTCTT

920 56 Compain et al., 2014

entB CTGCTGGGAAAAGCGATTGTC
AAGGCGACTCAGGAGTGGCTT

385 57 Wasfi et al., 2016

ybtS GACGGAAACAGCACGGTAAA
GAGCATAATAAGGCGAAAGA

242 52 Compain et al., 2014

K1 GGTGCTCTTTACATCATTGC
GCAATGGCCATTTGCGTTAG

1283 47 Fang et al., 2007

K2 GGATTATGACAGCCTCTCCT
CGACTTGGTCCCAACAGTTT

908 45 Fang et al., 2007
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only between the rectal swab and tracheal aspirate for isolates
with resistance to the antibiotic TGC (Supplementary Table S1).
Patients ages ranged from 1 day to 75 years (median age: 39 years
old), and no significant differences were found regarding age
group or gender and anti-microbial resistance. K. pneumoniae
strains tested were resistant to all β-lactams (SAM, TZP, CXM-
S, CXM, FOX, CAZ, CRO, FEP, ETP, IPM, MEM). These isolates
also showed different degrees of resistance to other antibiotics
like GEN (80%, n = 20), CIP (64%, n = 16), TGC (52%,
n = 13) CST (36%, n = 9), and AMK (4%, n = 1). Demographic
characteristics of the patients and antibiotic resistance profiles of
the K. pneumoniae isolates to the 16 antibiotics tested are shown
in Table 3.

Detection of Genes Coding for Outer
Membrane Porins and
Multidrug-Resistant Efflux Pumps and
Antimicrobial Susceptibility
The majority of isolates (84%, 21/25) were classified as MDR
with high-level resistance to at least one agent in three or
more antibiotic categories. Among the MDR K. pneumoniae, all
(100%, 21/21) isolates contained both ArcAB and TolC efflux
pumps genes; 86% (18/21) had AcrAB, mdtK, and ToIC genes,
simultaneously; and only 14% (3/21) of isolates did not present
with the mdtK multidrug efflux gene. PCR results showed that
33% (7/21) of isolates lacked both OmpK35 and OmpK36 porin
genes, while 38% (8/21) of isolates lacked the OmpK36 gene.

Of the four isolates (Kp2, Kp67, Kp74, and Kp75) that
did not show MDR profiles, three (Kp2, Kp74, and Kp75)

had the AcrAB, mdtK and ToIC genes but not the OmpK35
and OmpK36 porin genes and one isolate (Kp67) carried both
the AcrAB, and mdtK efflux pumps genes and the OmpK35
and OmpK36 porin genes. The antibiotic resistance profiles
of the K. pneumoniae isolates are presented in Table 4. PCR
amplification results for these genes are shown in Supplementary
Figure S1.

Antibiotic Resistance and
Virulence-Associated Genes Detection
The distributions of the antibiotic resistance gene and virulence
factors are shown in Table 5. All the 25 isolates were positive
for the blaKPC gene. In addition, the K. pneumoniae isolates
carried the blaTEM (100%, n = 25), blaSHV group (96%,
n = 24), blaOXA−1 group (84%, n = 21), and blaCTX−M−1
group (72%, n = 18) ESBL-encoding genes. The blaIMP,
blaOXA−48, blaNDM , blaVIM, mcr-1 and tet(B) genes were
not detected. It was found that a high number of blaSHV
in this study that may be associated with the presence of
blaSHV−1, which it is reported to be universal in K. pneumoniae
infection (Babini and Livermore, 2000). Additional
PCR amplification results are shown in Supplementary
Figures S2, S3.

Polymerase chain reaction analysis demonstrated that
the fimH-1 and mrkD genes, encoding type 1 and type
3 fimbrial adhesins, were present in 88% (22/25) and
96% (24/25) of isolates, respectively. Additionally, the
enterobactin (entB) gene was found in 100% (25/25), the
yersiniabactin (ybtS) gene in 60% (15/25) and the aerobactin
siderophore system (iutA) gene in 40% (10/25) of isolates.

TABLE 3 | Characteristics of the patients and antibiotic resistance profile of the K. pneumoniae.

Characteristic % (n) Antibiotics % (n) profile

Sex Beta lactams

Female 44.0 (11) (SAM, TZP, CXM-S, CXM, FOX, CAZ, 100.0 (25) R

Male 56.0 (14) CRO, FEP, ETP, IPM, MEM)

Age (years)

0–18 28.0 (7) Gentamycin 80.0 (20) R

19–59 36.0 (9) (GEN) 20.0 (5) S

60 or more 36.0 (9)

Sample type Amikacin 4.0 (1) R

Tracheal aspirate 16.0 (4) (AMK) 96.0 (24) S

Rectal swab 56.0 (14)

Drain 4.0 (1) Ciprofloxacin 64.0 (16) R

Wound 4.0 (1) (CIP) 36.0 (9) S

Catheter tip 4.0 (1)

Cerebrospinal fluid 4.0 (1) 52.0 (13) 48.0 (12)

Abscess 4.0 (1) Tigecycline R

Urine 4.0 (1) (TGC) S

Sputum 4.0 (1)

Colistin 36.0 (9) R

(CST) 64.0 (16) S

Antibiotics: SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam), CXM-S (cefuroxime sodium), CXM (cefuroxime axetil), FOX (cefoxitin), CAZ (ceftazidime), CRO
(ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem), GEN (gentamicin), AMK (amikacin), CIP (ciprofloxacin), TGC (tigecycline), CST
(colistin). Profile: R, resistance rate; S, sensitivity rate; n, number.
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TABLE 4 | Antimicrobial resistance of Klebsiella pneumoniae isolates and presence of genes coding for outer membrane porins and efflux pumps.

Isolate no. Antimicrobial resistance MDR Genes coding for porins and efflux pumps

OmpK35 OmpK36 TolC AcrAB mdtK

Kp1 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp2∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp3 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, amk, gen, cip, tgc, cst

+ + − + + +

Kp4 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp6 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + − + + +

Kp7 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp8 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + − + + +

Kp16 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + + + + +

Kp17 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp21 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + + + + −

Kp25 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc, cst

+ − − + + +

Kp27 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc, cst

+ + − + + +

Kp39 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ + − + + +

Kp53 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc, cst

+ − − + + +

Kp60 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp62 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip, tgc

+ − − + + +

Kp66 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + − + + −

Kp67∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem

− + + − + +

Kp68 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + + + + +

Kp69 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ − − + + +

Kp70 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, cip, tgc

+ + + + + +

Kp73 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cst

+ + − + + +

Kp74∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp75∗ sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen

− − − + + +

Kp77 sam, tzp, cxm, cxm-s, fox, caz, cro, fep,
etp, ipm, mem, gen, cip

+ + − + + −

Antibiotics. β-lactams: SAM (ampicillin-sulbactam), TZP (piperacillin-tazobactam), CXM-S (cefuroxime sodium), CXM (cefuroxime axetil), FOX (cefoxitin), CAZ (ceftazidime),
CRO (ceftriaxone), FEP (cefepime), ETP (ertapenem), IPM (imipenem), MEM (meropenem); aminoglycosides: GEN (gentamicin) and AMK (amikacin); quinolones: CIP.
(ciprofloxacin); glycylcycline: TGC (tigecycline) and polymyxin E: CST (colistin). MDR (multidrug-resistant) = resistance to at least one agent in three or more antibiotic
categories. ∗ Isolates that did not susceptible to at least three categories of antimicrobials.
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The regulators of the mucoid phenotype A (rmpA) gene
were not detected. Only one isolate (4%), recovered from
swab rectal, presented the capsular serotype K2, and the
capsular K1 was not found (Table 5 and Supplementary
Figure S1).

Enterobacterial Repetitive Intergenic
Consensus Polymerase Chain Reaction
Genetic similarity among isolates was evaluated via ERIC-
PCR, and the results indicated the vast majority of the isolates
presented a rate of genetic similarity above 70%, separated into
two main clusters (A and B) (Figure 1). Three isolates (Kp53,
Kp60, and Kp62) showed 100% genetic similarity. Only four
isolates (Kp4, Kp7, Kp17, and Kp67) were genetically more
distant and did not cluster with the other isolates.

MLST
Multilocus sequence typing analysis demonstrated five different
STs among 10 selected isolates (Figure 1). Four isolates (Kp4,
Kp17, Kp60, and Kp65) belonged to ST29, which was the most
predominant group. Furthermore, two isolates (Kp7 and Kp66)
belonged to ST392, one isolate (Kp27) belonged to ST25, and
another one (Kp3) belonged to ST11. The isolate Kp68 presented
a novel ST by way of a new allele combination, which was named
ST3373. It was not possible to analyze the isolate Kp67 by MLST
because it did not show amplification for the tonB gene, even after
several attempts and adjustments in the reaction.

The eBurst analysis showed that most of the STs (STs 11,
25, 29, and 3373) found were distributed in a more massive
clonal complex called CC258 (also called CC258/11). Only the
ST392 group, including isolates Kp7 and Kp66, was present into
a smaller clonal complex, called CC147 (Figure 2).

DISCUSSION

Although K. pneumoniae is considered to be an important
opportunistic pathogen and a frequent cause of hospital-
acquired infections (Struve and Krogfelt, 2004), it is also found
in non-clinical habitats, which include the mucosal surfaces
of humans and animals, and environmental sources such as
water, soil, sewage, and vegetation (Bagley, 1985; Podschun
et al., 2001). Previous studies have shown that K. pneumoniae
strains of environmental origin are similar to those strains of
clinical origin in terms of biochemical patterns, virulence, and
pathogenicity (Podschun et al., 2001; Struve and Krogfelt, 2004);
however, clinical K. pneumoniae are significantly more resistant
to antibiotics as compared with environmental K. pneumoniae
(Matsen et al., 1974).

In our study, the vast majority (84%, 21/25) of K. pneumoniae
isolates showed MDR patterns including a high resistance
rate to the common antibiotics used either alone or in
association with one another to treat K. pneumoniae infections,
such as β-lactams (including carbapenems), aminoglycosides,
quinolones, glycylcycline, and polymyxin E. Although the high
prevalence of MDR K. pneumoniae patterns was similar to other
results in previous studies (Pereira et al., 2013; Paneru, 2015;

Wasfi et al., 2016), this is the first report of a high incidence of
MDR K. pneumoniae in the state of Tocantins, Brazil. There are
many possible contributing factors to the emergence, rise, and
spread of antibiotic resistance, including the new acquisition of
resistance genes; transfer of antibiotic resistance genes; healthcare
exposure; use of indwelling medical devices; limited diagnostic
facilities; lack of effective and reliable surveillance systems;
immunosuppressed states; travel to areas with a high endemicity
of MDR bacteria; lack of new antimicrobial therapeutics; and
inappropriate and excessive antibiotic use in health care, food-
producing animals, and agriculture (Fletcher, 2015; Vila, 2015;
Ayukekbong et al., 2017; Martin and Bachman, 2018; Patolia
et al., 2018). Therefore, many of these risk factors may have
contributed to the high rates of antibiotic resistance found in our
study.

The high rates of resistance to polymyxin E (i.e., CST) and
glycylcycline (i.e., TGC) found in our study deserves particular
attention because these antibiotic categories have typically been
used as the drugs of last resort for the treatment of severe
infections caused by Klebsiella pneumoniae carbapenemase
(KPC)-producing organisms (Pereira et al., 2013). Previous
studies have reported that high levels of CST are frequently
administered in Brazilian ICUs, mainly after bacteria isolates have
become resistant to almost all other available antibiotics (Furtado
et al., 2007; Rossi, 2011). Therefore, the overuse and misuse of
antibiotics can be associated with an increase of the occurrence
of CST resistance found in the current study. The TGC resistance
might be due to the presence of the AcrAB gene, which encodes
the efflux pump AcrAB and is considered to be one of the main
contributors to a reduced susceptibility to TGC in K. pneumoniae
clinical isolates (Bialek-Davenet et al., 2015; Wang et al., 2015;
Elgendy et al., 2018). In this study, we also found that several
TGC-resistant bacteria were isolated from rectal swabs, showing
an important association between pathogen-specific and local
antibiotic resistance patterns.

K. pneumoniae produces two classics trimeric porins, OmpK35
and OmpK36, which allow the passage of small hydrophilic
molecules such as iron, nutrients, and antibiotics through the
outer cell membrane (Tsai et al., 2011). In our study, 28% of all
K. pneumoniae isolates lacked the OmpK36 gene. Our findings
are in agreement with those of other authors who reported
that the absence of OmpK35 or OmpK36 can be responsible
for resistance to carbapenems in K. pneumoniae that produced
ESBL (Hernandez-Alles et al., 1999; Wang et al., 2009; Skurnik
et al., 2010). The loss of both porins OmpK35 and OmpK36
produces an increase in carbapenem, CIP, and chloramphenicol
resistance (Kaczmarek et al., 2006). However, some of our
results are not in complete agreement with the literature, as
the presence of OmpK35 and OmpK36 genes were correlated
with both carbapenem and CIP resistance, in 28% of MDR
K. pneumoniae isolates. In contrast, other studies have suggested
that the presence of both porins (OmpK35 and OmpK36) in MDR
isolates can be associated with the presence of point mutations,
disruption in the protein coding sequence, or promoter region
mutations (Doumith et al., 2009; Wasfi et al., 2016). Further
investigations should be performed to evaluate the presence of
the mutations in bacteria strains isolated in this study.
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FIGURE 1 | Dendrogram representing the genetic relationship among the 25 Klebsiella pneumoniae studied. Clusters were determined using the Unweighted Pair
Group Mean (UPGMA) method and the Dice similarity coefficient. Similarity (%) among patterns is represented by the numbers beside the nodes. For each isolate
typed by MLST, their respective sequence types (STs) are represented. ∗NT, not typed by MLST.

Efflux pump systems have been reported as essential
mechanisms of resistance and cause of MDR in K. pneumoniae
(Mahamoud et al., 2007; Meletis et al., 2012). In K. pneumoniae,
the AcrAB and mdtK complexes are the best-characterized
efflux pumps (Wasfi et al., 2016). Notably, in our research,
the presence of AcrAB-TolC and mdtK genes were strongly
associated with MDR K. pneumoniae patterns. These results are
consistent with other previous studies, that demonstrated that the
multidrug efflux pump system (AcrAB-TolC) in K. pneumoniae
was responsible for resistance to quinolones, tetracyclines, TGC,
and beta-lactams in various MDR isolates (Padilla et al., 2010;
Yuhan et al., 2016).

In K. pneumoniae, the genes fimH and mrkD encode adhesins
of type 1 and type 3 fimbriae, which mediate binding to the
extracellular matrix; promote biofilm development (Hornick
et al., 1992; Struve et al., 2008; Alcántar-Curiel et al., 2013;

Fu et al., 2018); and may play a key role in colonization, invasion
and pathogenicity (Shah et al., 2017). In the current study, the
majority of the MRD K. pneumoniae isolates carried both fimH-1
and mrkD virulence genes. Although studies have reported that
many clinical K. pneumoniae isolates normally express both type
1 and type 3 fimbrial adhesins (Sahly et al., 2008; Struve et al.,
2009; Wasfi et al., 2016), one of the most important steps in the
progression to K. pneumoniae infection is related to its ability to
adhere to host surfaces and demonstrate persistent colonization.
MrkD specifically mediates binding to the extracellular matrix,
facilitating the adherence of K. pneumoniae to damaged tissue
and coating indwelling devices (François et al., 1998; Paczosa
and Mecsas, 2016), such as urinary catheters (Schroll et al.,
2010; Stahlhut et al., 2012) and endotracheal tubes (François
et al., 1998). Type 3 fimbriae were found to play an essential
role in K. pneumoniae biofilm formation (Langstraat et al., 2001;
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FIGURE 2 | eBURST diagram generated with the MLST data, representing the five different sequence types (STs) obtained in this study (indicated by arrows),
distributed in two clonal complexes: CC258, with the STs 11, 29, 25 and the novel ST3373 and CC147, with the ST392. The remaining STs were omitted from the
diagram to facilitate visualization. Each dot represents an ST.

Di Martino et al., 2003; Jagnow and Clegg, 2003; Schroll et al.,
2010) and they can also mediate the binding of K. pneumoniae
to endothelial cells and to epithelial cells of the respiratory
and urinary tracts (Würker et al., 1990; Hornick et al., 1992;
Tarkkanen et al., 1997). Type 1 fimbriae are expressed in 90% of
both clinical and environmental K. pneumoniae isolates (Stahlhut
et al., 2009); however, their precise role in the production of
biofilms remains unclear (Paczosa and Mecsas, 2016). Type 1
fimbriae expressed by K. pneumoniae in particular cause urinary
tract infections (Struve et al., 2008), and may play an important
role in colonization of the intestine and in the delivery, entry, and
persistence of K. pneumoniae in ventilator-associated pneumonia
(Kollef, 2004; Struve et al., 2008; Kalanuria et al., 2014).
Additionally, the presence of mrkD and fimH-1 has previously
been associated with KPC-positive K. pneumoniae (De Cássia
et al., 2014), which is in accordance with our findings. Although
little is known regarding the potential virulence characteristics
of KPC-producing K. pneumonia (Andrade et al., 2014; Liu Y.
et al., 2014), studies have reported that ESBL-producing isolates
of K. pneumoniae are able to produce more fimbrial adhesins,
are more invasive, and are more resistant to the normal human
serum bactericidal effect (Sahly et al., 2004). Therefore, the high
frequency of fimH-1 (88%) and mrkD gene (96%) found in our
results, illustrates the importance of evaluating these virulence
factors.

The capsule is one of the most important virulence factors
(Martin and Bachman, 2018) that protects K. pneumoniae from
lethal serum factors and phagocytosis (Hsu et al., 2011). In K
pneumoniae, capsular serotypes K1 and K2 have been considered
as predominant virulent strains (Fung et al., 2002; Chuang
et al., 2006). Studies using clinical samples have proposed that
virulence factors such as K1, K2, K5, rmpA and the aerobactin
gene, are absent in KPC-producing isolates (Siu et al., 2012).

In agreement with these previous studies, our results showed that
K1 and rmpA were not detected, K2 was present in only one
isolate, K5 was not investigated, and all isolates were identified
as KPC-producing K. pneumoniae. It is important to note that
genes encoding rmpA, K1, or K2 were highly associated with
the hypervirulent (hypermucoviscous) variant of K. pneumoniae
(hvKP) (Fang et al., 2004; Yeh et al., 2007; Arena et al., 2017;
Martin and Bachman, 2018), which causes serious community-
acquired infection, and has emerged as a carbapenem-resistant
hypervirulent K. pneumoniae (CR-HvKP) that can be found in
clinical settings (Shon et al., 2013; Liu Y.M. et al., 2014; Zhang
et al., 2015; Zhang Y. et al., 2016; Zhang R. et al., 2016). Therefore,
this observation suggests that the K. pneumoniae in this study
did not present molecular characteristics of the hypervirulent
(hypermucoviscous) K. pneumoniae.

Siderophores are high-affinity, iron-chelating molecules that
are critical for bacterial growth, replication, and virulence
(Lawlor et al., 2007; Bachman et al., 2015; Holden and Bachman,
2015). The repertoire of siderophores differs among different
strains (Behnsen and Raffatellu, 2016); thus, the role of each
siderophore in virulence potential can vary (Paczosa and
Mecsas, 2016; Lam et al., 2018). Siderophore-associated genes,
such as entB, ybtS and iutA are widely disseminated among
K. pneumonia strains (Compain et al., 2014). However, entB is
only characterized for virulence when it occurs in association
with iutA, ybtS, or kfu (Daehre et al., 2018). In agreement
with previous studies, all K. pneumoniae carried the entB gene
(Lavigne et al., 2013; Fu et al., 2018); however, the presence of
the genes encoding entB in combination with iutA and ybtS was
found in only 40%, while entB with ybtS were found in 60%
of all the strains, respectively. Although K. pneumoniae secretes
a specific combination of siderophores, which can affect tissue
localization, systemic spreading, and host survival, the effect of
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these molecules on the host during infection is not clear (Holden
et al., 2016).

Carbapenems are the antibiotic class of choice for the
treatment of severe infections caused by Enterobacteriaceae-
producing ESBLs (Jacoby and Munoz-Price, 2005). The primary
determinant of carbapenem resistance in K. pneumoniae is
KPC-type carbapenemases (Nordmann et al., 2011), which are
encoded by the gene blaKPC and located mainly on a Tn3-
based transposon, Tn4401 (Bina et al., 2015), demonstrating
exceptional potential to spread throughout the world. In our
findings, the presence of blaKPC in all K. pneumoniae isolates
is in agreement with previous investigations, that suggest the
wide dissemination of KPC-producing isolates in various regions
of Brazil (Castanheira et al., 2012; Pereira et al., 2013; Biberg
et al., 2015; Gonçalves et al., 2017). Besides, PCR analysis
demonstrated that most bacteria (84%) coproduced the blaKPC
and blaOXA−1 group resistance genes. In Brazil, several studies
have reported the co-occurrence of blaKPC with the blaOXA−1
group in K. pneumoniae (Fehlberg et al., 2012; Flores et al., 2016).
Furthermore, blaIMP, blaVIM, blaOXA48, and blaNDM are also
genes that produce carbapenemases in K. pneumoniae (Lascols
et al., 2012; Seibert et al., 2014); however, these genes were not
found in our study.

Some reports have suggested that TEM (Temoniera), SHV
(sulfhydryl variable), and CTX-M (cefotaxime-beta lactamases)
are the primary genetic groups of ESBLs among clinically
critical Gram-negative bacteria (Bradford, 2001; Paterson and
Bonomo, 2005). Additional studies have indicated the presence
of blaCTX−M, blaTEM, and blaSHV genes in K. pneumoniae
(Monteiro et al., 2009; Peirano et al., 2009; Seki et al., 2011;
Fehlberg et al., 2012), which is in accordance with our results.
Globally, the CTX-M type has appeared as the most common
type of ESBL, and its incidence is easily surpassing those of SHV
and TEM ESBLs in most locales (Jorgensen et al., 2010; Bora
et al., 2014). Although our PCR analysis revealed that blaTEM
(100%) was the most frequent gene, followed by blaSHV (96%),
the presence of the blaCTX−M (72%) group was also high, and can
be related to the fluoroquinolone and aminoglycoside resistance
(Pitout et al., 2005) found in this study. The co-production of
blaKPC with blaTEM was detected in all isolates, while blaKPC,
blaOXA, blaTEM, blaSHV, and blaCTX−M were observed in 72%
and blaKPC, blaTEM, blaSHV, and blaCTX−M were found in 68% of
the K. pneumoniae isolates, respectively. Our results suggest that
the high antimicrobial resistance found in this study can also be
associated with the presence of these β-lactams genes.

Our ERIC-PCR results indicated that, although bacteria were
isolated from different patients, the circulating K. pneumoniae
in this hospital have a high genetic relationship to each other.
Ten isolates belonging to the main ERIC-PCR clusters were
analyzed by MLST, and four of them (Kp4, Kp17, Kp60, and
Kp65) belonged to ST29. ST29 has previously been reported in
K. pneumoniae strains from various parts of the world, such
as Europe, Asia, Oceania, and also in Brazil. Uz Zaman et al.
(1994) found ST29 in MDR K. pneumoniae carrying the OXA-
48 gene that showed variations in outer membrane protein 36,
causing an outbreak in a tertiary care hospital in Saudi Arabia.
However, the isolates from our study with ST29 were negative

for OmpK36 and OXA-48 (Tables 4, 5). The ST25 has been
described as being associated with virulent clones, especially
belonging to the capsular serotypes K1 and K2 (McCulloh and
Opal, 2018). In our study, the only isolate that presented the
K2 antigen (Kp27) and various virulence genes also presented
the ST25; thus, our findings corroborate with the prior research
(Table 5). ST11, found in the isolate Kp3, has been described as
widespread in Brazil and is considered an international high-risk
clone (Gonçalves et al., 2017).

eBURST analysis showed that, except for ST392, all other
STs belong to the large clonal complex CC258. Commonly,
K. pneumoniae isolates grouped into CC258 are associated with
the production of carbapenemases and harbor many virulence
genes (Gonçalves et al., 2017), which corroborates with our
results (Table 5). Moreover, the ST392, found in the Kp66 isolate,
is part of CC147, which is a small internationally successful
clonal complex and has been shown to be an important epidemic
clone. Hasan et al. (2014) described a clonal expansion of CC147
by Verone integron-encoded metallo-beta-lactamase (VIM)-
producing K. pneumoniae strains isolated from Greece. ST392
has been reported worldwide as an emergent clone associated
with the spreading KPC-producing K. pneumoniae (Yang et al.,
2013; Di Mento et al., 2018; Garza-Ramos et al., 2018). In
Brazil, ST392 was previously reported in a KPC-2-producing
K. pneumoniae harboring the mcr-1 gene.

CONCLUSION

Our results revealed a worrying situation concerning
K. pneumoniae that is resistant to the drugs commonly
used to treat infections and as well as those used as a last
resort for life-threatening infections in patients admitted to the
ICU. Additionally, our findings demonstrated the presence of
high-risk international clones among isolates. Therefore, our
data should be interpreted as an alert for need for prevention and
control of the MDR K. pneumoniae in hospital settings. A careful
and continued surveillance system that provides epidemiological
and molecular information is important to limit the risk of
infection and the spread of these strains.
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