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Results are presented from analyses of jet data produced in pp̄ collisions at As5630 and 1800 GeV

collected with the DØ detector during the 1994–1995 Fermilab Tevatron Collider run. We discuss the details

of detector calibration, and jet selection criteria in measurements of various jet production cross sections at
As5630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distribu-

tions, and the ratio of inclusive jet cross sections at As5630 and 1800 GeV are compared to next-to-leading-

order QCD predictions. The order as
3 calculations are in good agreement with the data. We also use the data at

As51800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at

the 95% confidence level.

DOI: 10.1103/PhysRevD.64.032003 PACS number~s!: 12.38.Qk, 12.60.Rc

I. INTRODUCTION

The quark model which suggested that hadrons are com-

posite particles was first proposed in the early 1960s @1# and

was confirmed as the quark-parton model in a series of ex-

periments at the Stanford Linear Accelerator Center in the

late 1960s and early 1970s @2#. The model developed during

the 1970s into the theory of strong interactions, quantum

chromodynamics ~QCD! @3#, which describes the interac-

tions of quarks and gluons ~called partons!. Together with the

theory of electroweak interactions, QCD forms the founda-

tion of the standard model of particle physics ~SM!, which,

thus far, describes accurately the interactions of all known

elementary particles.

Perturbative QCD ~PQCD! @3# predicts the production

cross sections at large transverse momentum (pT) for parton-

parton scattering in proton-antiproton (pp̄) collisions @4–8#.
The outgoing partons from the parton-parton scattering had-

ronize to form jets of particles. High-pT jets were observed

clearly during experimentation at the CERN Intersecting

Storage Rings ~ISR! @9# and the CERN pp̄ collider @10#.
Significant deviations from predictions of PQCD can only be
observed if the uncertainties in both experimental measure-
ments and theoretical predictions are small. Calculations of
high-pT jet production involve the folding of parton scatter-
ing cross sections with experimentally determined parton
distribution functions ~PDFs!. These predictions have re-
cently improved with next-to-leading-order ~NLO! QCD cal-
culations @11–13# and improved PDFs @14,15#. These
O(aS

3) predictions reduce theoretical uncertainties to
;30% @16# ~where aS is the strong coupling parameter!.

In this paper we describe the production of hadronic jets
as observed with the DØ detector at the Fermilab Tevatron

pp̄ collider at center-of-mass ~c.m.! energies of 630 and

1800 GeV. High pT jet production at As51800 GeV probes
the structure of the proton where the interacting partons carry
a fraction of the proton momentum, 0.1&x&0.66, for mo-
mentum transfers ~Q! of 2.53103

&Q2
&2.33105 GeV2,

where Q2
5ET

2 and is equivalent to a distance scale of 1024

fm ~see Fig. 1!. Measurements of the inclusive jet cross sec-
tion, the dijet angular distribution, and the dijet mass spec-
trum, can be used to test the predictions of PQCD. Addition-
ally, new phenomena such as quark compositeness @17#
would reveal themselves as an excess of jet production at
large transverse energy (ET) and dijet mass ~M! relative to
the predictions of QCD.

Previous measurements by the Collider Detector at Fer-
milab ~CDF! Collaboration of the inclusive jet cross section
@6,7# and the inclusive dijet mass spectrum @18# have re-
ported an excess of jet production relative to a specific QCD
prediction. More recent analysis of the dijet angular distribu-
tion by the CDF Collaboration @19# has excluded models of
quark compositeness in which the contact interaction scale is
less than 1.6 TeV at the 95% confidence level.

This paper presents a detailed description of five measure-
ments previously published by the DØ Collaboration: the

inclusive jet cross sections at As51800 GeV @8,20# and 630

GeV @21,22#, the ratio of inclusive jet cross sections at As

5630 and 1800 GeV @21,22#, the dijet angular distribution

@23,24#, and the dijet mass spectrum @25# at As51800 GeV.
In addition to the analyses presented in this paper, DØ has
recently measured the inclusive jet cross section as a func-

tion of ET and pseudorapidity, uhu, at As51800 GeV @26#
where h[2ln@ tan(u/2)# and u is the polar angle.

For jet measurements, the most critical component of the
DØ detector is the calorimeter @28#. A thorough understand-
ing of the jet energy scale, jet resolutions, and knowledge of
biases caused by jet triggering and reconstruction are neces-
sary. After detector calibration, small experimental uncertain-
ties can be achieved and precise statements can be made
about the validity of QCD predictions. These results can then
be used as the basis for searches for physics beyond the
standard model.

In this paper we discuss the theoretical predictions for the
inclusive jet cross section, the inclusive dijet mass cross sec-
tion, and the dijet angular distribution. We describe the vari-
ous measurements undertaken to understand and calibrate the
DØ detector for jet measurements. Finally, four different
physics measurements performed at DØ are presented: the
inclusive jet cross section, the ratio of inclusive jet cross
sections, the dijet angular distribution, and the dijet mass
spectrum. The measurements presented here constitute a
stringent test of QCD, with a total uncertainty substantially
reduced relative to previous measurements. Further, the re-
sults represent improved limits on the existence of phenom-
ena not predicted by the standard model.

II. CALORIMETER

The DØ detector is described in detail elsewhere @28,29#.
The DØ uranium-liquid argon sampling calorimeters are uni-
form in structure and provide coverage for a pseudorapidity
range uhu,4.5. They are nearly compensating with an e/p
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ratio of less than 1.05 above 30 GeV. The central and end
calorimeters are approximately 7 and 9 interaction lengths
deep respectively, ensuring containment of most particles ex-
cept high-pT muons and neutrinos. The calorimeters are seg-
mented into cells of size Dh3Df50.130.1, where f is the
azimuthal angle. These characteristics along with
excellent energy resolution for electrons (;15%/
AE@GeV#) and pions (;50%/AE@GeV#) make the DØ
calorimeters especially well suited for jet measurements.

The calorimeter is divided into three sections ~see Fig. 2!:
a central calorimeter ~CC! covering low values of pseudora-
pidity, two end calorimeters ~EC! covering forward and
backward pseudorapidities, and the Intercryostat Detector
~ICD! covering the gaps between the CC and EC (0.8
<uhu<1.6). The CC and EC calorimeters each consist of an
inner electromagnetic ~EM! section, a fine hadronic ~FH!
section, and a coarse hadronic ~CH! section. Each EM sec-
tion is 21 radiation lengths deep and is divided into four
longitudinal samples. The hadronic sections are divided into
four ~CC! and five ~EC! layers. The ICD consists of scintil-
lator tiles inserted in the space between the CC and EC cry-
ostats. The Tevatron accelerator’s Main Ring, which is used
for preaccelerating protons, passes through the CH calorim-
eters.

III. JET DEFINITIONS

A jet is a collection of collimated particles produced by
the hadronization of a high-ET quark or gluon. In the mea-
surements presented in this paper, we measure the energy

and direction of the jets produced in pp̄ interactions and

compare the measurements to various theoretical predictions.
In addition to the jets produced by the high-pT parton-

parton scattering, there are many particles produced by the
hadronization of the partons in the proton and antiproton that
were not involved in the hard scattering process. Because of
this there is no unequivocal method for experimentally se-
lecting the particles that belong to a jet produced in high-pT

scattering. It is preferable to use a standard definition of a jet
to facilitate comparisons of measurements from different ex-
periments, and with theoretical predictions. In 1990 the so-
called Snowmass Jet Algorithm @30# was adopted as a stan-
dard definition.

A jet algorithm can be run on several different input vari-
ables: calorimeter cells, and particles or partons produced by
a Monte Carlo simulation. To differentiate the results of the
same algorithm being run on these different input we de-
scribe the resulting jets as follows: A jet ~or calorimeter jet!
is the result of the jet algorithm being run on calorimeter
cells; a particle jet is created from particles produced by a
Monte Carlo simulation after the hadronization step; finally,
a parton jet is formed from partons before hadronization
takes place.

A. The Snowmass accord

The Snowmass Jet Algorithm defines a jet as a collection
of partons, particles, or calorimeter cells contained within a
cone of opening angle R. All objects in an event have a

distance from the jet center, Ri[A(h i2h jet)
2
1(f i2f jet)

2,
where h jet and f jet define the direction of the jet and (h i ,
f i), are the coordinates of the parton, particle, or center of

FIG. 1. The x and Q2 range of the data set

analyzed by the DØ experiment at As51.8 TeV

~DØ @8# and CDF @7# inclusive jets with uhu
,0.7) compared with the data used to produce

PDFs @27#. Also shown is the extended x and Q2

reach of the DØ measurement of the inclusive jet

cross section with uhu,3 as presented in Ref.

@26#.
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the calorimeter cell. If Ri<R then the object is part of the
jet. The Snowmass suggested value of R50.7 was used in
these measurements. The ET of the jet is given by

ET[ (
iPRi<R

ET
i , ~3.1!

where i is an index for the ith parton or cell. The direction of
the jet is then given by

h jet5
1

ET
(

iPRi<R
ET

i h i, ~3.2!

f jet5
1

ET
(

iPRi<R
ET

i f i.

The Snowmass algorithm gives a procedure for finding
the jets:

Determine a list of jet ‘‘seeds,’’ each with a location h jet ,
f jet .

Form a jet cone with direction h jet , f jet .
Recalculate the ET and direction of the jet.
Repeat steps 2 and 3 until the jet direction is stable.

The definition of the jet seed is not given by the algorithm.
At the parton level these seeds could be the partons, points
lying between pairs of partons, or even a set of points ran-
domly located in h-f space. Experimentally, the seed could
be defined as any cell above a given ET threshold, all cells in
the calorimeter, or clusters of calorimeter cells. It is up to
each experimentalist or theorist to define a seed.

B. The DØ experiment’s jet algorithm

At the calorimeter level in the DØ experiment, jets are
defined in two sequential procedures. In the first, or cluster-
ing, procedure all the energy depositions that belong to a jet
are accumulated, and in the second the h ,f , and ET of the jet
are defined. The clustering consists of the following steps:

~1! Calorimeter towers ~a set of four calorimeter cells of
size Dh3Df50.230.2) with ET.1 GeV are ordered in
ET . Starting with the highest-ET tower, preclusters are
formed from contiguous towers around these seed towers.

~2! The jet direction (h jet ,f jet) is calculated using Eq.
~3.2! from the energy deposit pattern in a fixed cone of size
R around the precluster center.

~3! The energy deposited in a cone of size R around the
jet axis is summed and the jet direction (h jet ,f jet) is recal-
culated using the Snowmass algorithm @Eq. ~3.2!#.

~4! Step ~3! is iterated until the jet direction is stable. This
is typically achieved in two or three iterations.

~5! Only jets with ET.8 GeV are retained.
~6! Jets are merged or split according to the following

criteria: two jets are merged into one jet if more than 50% of
the ET of the jet with the smaller ET is contained in the
overlap region. If less than 50% of the ET is contained in the
overlap region, the jets are split into two distinct jets and the
energy of each calorimeter cell in the overlap region is as-
signed to the nearest jet. The jet directions are recalculated
using an alternative definition as given in Eq. ~3.3!.

The DØ jet algorithm and the Snowmass algorithm calculate
the final direction of the jet differently. In the DØ jet algo-
rithm the final h and f of the jet are defined as

u jet5tan21FAS (
i

Ex
i D 2

1S (
i

Ey
i D 2

(
i

Ez
i

G
f jet5tan21S (

i
Ey

i

(
i

Ex
i
D ~3.3!

h jet52ln@ tan~u jet/2!#

where i corresponds to all towers whose centers are within

the jet radius R, Ex
i
5E i sin ui cos fi , Ey

i
5E i sin ui sin fi ,

and Ez
i
5E i cos ui .

Applying the 8 GeV ET threshold to jets before merging
and splitting has two important consequences. The first is
that two jets of ET,8 GeV cannot be merged into a single
jet to create a jet with ET.8 GeV. The second is that jets
may have ET,8 GeV if they were involved in splitting.

C. Corrected jets

In this paper a ‘‘true’’ or corrected jet is the jet that would
be found by the DØ jet algorithm if it was applied to the
particles produced by the high-pT parton-parton scattering
before they hit the calorimeter. The jet does not include the
particles produced by hadronization of the partons not in-
volved in the hard scattering ~the underlying event!. The dif-
ferences between jets observed in the calorimeter and the
‘‘true’’ jets are determined using Monte Carlo ~MC! simula-

tions of pp̄ interactions. The direction and ET of the ‘‘true’’

FIG. 2. A schematic view of one quarter of the DØ calorimeters.

The shading pattern indicates the distinct readout cells. The rays

indicate the pseudorapidity intervals defined from the center of the

detector.
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jets are calculated using the Snowmass definition @see Eqs.

~3.1! and ~3.2!# and are denoted by ET
ptcl , hptcl, and fptcl

~where ptcl denotes particle!.

D. Differences between the DØ and Snowmass

algorithms in data

Because the DØ and Snowmass algorithms calculate the

location, and hence angle, of the jet differently, a study to

measure the differences was performed. The same data

events were reconstructed using the two different algorithms

and the differences in location were compared. There were

no differences in the ET or f of the jets. However, there

were small differences in the jet uhu, which increase as a

function of the uhu of the jets and decrease as the transverse

energy of the jets increases. Figure 3 shows the average dif-

ference between the uhu of jets with ET.40 GeV recon-

structed using the two different algorithms. As can be seen,

the difference is small, even at a large uhu.

E. Jet algorithms at NLO

In PQCD calculations of parton-parton scattering at lead-

ing order @LO, O(aS
2)] there can only be two partons in the

final state. These partons are well separated and always form
two jets when the Snowmass algorithm is applied. At next-

to-leading order @NLO, O(aS
3)], three partons can be pro-

duced in the final state. The Snowmass algorithm at the NLO
parton level is illustrated in Fig. 4~a!. For any two partons in
the final state, the seeds direction is given by applying Eq.
~3.2! to the two partons. If the partons lie within a distance R

from the seed’s direction the two partons are combined to
form a jet.

In the Snowmass algorithm the partons contributing to a
single jet can have a maximum separation of 2R. Consider a
two parton final state with the partons separated by 2R. The
experimentally observed energy pattern will be determined
by the parton showering, hadronization, and calorimeter re-
sponse. Application of the DØ jet algorithm to the calorim-
eter energy deposition that results from the hadronization of
the two partons will produce one or two jets depending on
the splitting and merging criteria. The Snowmass algorithm
is only capable of finding one jet, and hence cannot match
the experimental measurement.

This example illustrates the different treatment of jets at
the parton and calorimeter level. To accommodate the differ-
ences between the jet definitions at the parton and calorim-
eter levels, an additional, purely phenomenological param-
eter has been suggested in Ref. @31#. The variable is called
Rsep and is the maximum allowed distance (DR) between
two partons in a parton jet, divided by the cone size used:
Rsep5DR/R. This algorithm is illustrated in Fig. 4~b! and is
referred to as the modified Snowmass algorithm.

The value of Rsep depends on details of the jet algorithm
used in each experiment. At the parton level Rsep is the dis-
tance between two partons when the clustering algorithm
switches from a one-jet to a two-jet final state, even though
both partons are contained within the jet defining cone. The
value of Rsep depends on the experimental splitting or merg-

ing scheme. After several studies an Rsep value of 1.3 was
found to best simulate the DØ merging and splitting criteria
@32#.

F. Jet reconstruction efficiency

The jet algorithm does not reconstruct all jets with the
same efficiency. Primarily this is due to calorimeter energy
clusters not containing a seed tower of ET greater than 1
GeV. Since the jet algorithm explicitly depends on the ET of
a seed tower used to begin searching for a jet, the seed tower
distributions are studied to determine if jets are likely to have
seed towers below threshold. Figure 5 shows the seed-tower-
ET distribution of jets for an ET range of 18 to 20 GeV ~other
ET ranges have similar distributions!. The distribution is fit-
ted with

A expF20.5~2W1eW!

A2l
G ~3.4!

where W5(ET2x)/l , and A, x , and l are free parameters
in the fit. Assuming that the seed towers are smoothly dis-
tributed in ET , the fraction of jets not containing a seed
tower exceeding 1 GeV is determined from the fit and used
to calculate the jet reconstruction efficiency. Figure 6 shows
the reconstruction efficiency for jets as a function of jet ET .
For jets with an ET of 20 GeV and R50.7, the reconstruc-
tion efficiency is 99%.

G. Biases in the jet algorithm

The h dependence of the calorimeter energy response to-
gether with algorithm related effects may result in a differ-
ence ~bias! between the h position of the jet at particle level
and the jet reconstructed in the calorimeter. The h of the jet,
assuming perfect position resolution, is

FIG. 3. The average difference between the uhu of jets recon-

structed using the DØ algorithm and the Snowmass algorithm for

DØ data.
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hptcl
5h1r~E ,h ! ~3.5!

where r(E ,h) is the possible bias. To measure the bias, the
HERWIG @33# Monte Carlo event generator and the DØ detec-
tor simulation, DØGEANT @34#, are used. Jets are recon-
structed at both the particle and calorimeter level. Statisti-
cally, ^r(E ,h)& can be obtained as ^hptcl

2h& where a
matching criterion is used to associate the particle jet to the
reconstructed calorimeter jet. Figure 7 shows the h bias for
all jet energies as a function of h . The bias in h is less than
0.02 for all h . The magnitude of the bias is greatest when
part of the jet falls into the intercryostat region (0.8,h
,1.6), which is the least instrumented region of the calorim-
eter.

A similar study was performed to measure a possible bias
in f ~azimuth!. Since the calorimeter has a symmetric tower
structure in f , no bias is expected. The bias in f ~azimuth!
was measured to be small — much less than 0.01 radians.
Any bias introduced by this effect will be small for most
physics analyses since the DR between jets is typically used
rather than the absolute f or h position. The analyses pre-
sented in this publication are not corrected for these effects.

IV. THEORETICAL PREDICTIONS

A. NLO QCD predictions

Within the framework of PQCD, high ET jet production
can be described as an elastic collision between a single par-
ton from the proton and a single parton from the antiproton
@3#. After the collision, the outgoing partons form localized
streams of particles called ‘‘jets.’’ Predictions for the inclu-
sive jet cross section, the dijet angular distribution, and the
dijet mass spectrum are in general given by @3#

s5(
i j

E dx1 dx2 f i~x1 ,mF
2 ! f j~x2 ,mF

2 !

3ŝF x1P1 ,x2P2 ,aS~mR
2 !,

Q2

mF
2

,
Q2

mR
2 G ~4.1!

where f i( j)(x1(2) ,mF
2 ) represent the PDFs of the proton ~an-

tiproton! defined at factorization scale mF , ŝ is the parton

FIG. 4. Illustration and description of the jet definitions at NLO

parton level as used by the DØ experiment. ~a! The jet definition in

NLO according to Snowmass. Parton -1- and -2- are combined into

jet -J-, if the parton distance to the jet axis is less than R. The jet

axis is defined by partons 1 and 2, according to the Snowmass

definition. ~b! The jet definition in NLO according to the modified

Snowmass with Rsep . Use the standard Snowmass clustering, but in

addition require the distance between the two partons to be less than

R3Rsep .

FIG. 5. Seed tower distributions for R50.7 cone jets with an ET

range of 18–20 GeV. The data is represented by the solid histogram

and the fit is given by the dashed curve.

FIG. 6. Reconstruction efficiency as a function of jet ET .
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scattering cross section, P1(2) is the momentum of the proton
~antiproton!, x1(2) is the fraction of the proton ~antiproton!
momentum carried by the scattered parton, Q is the hard
scale that characterizes the parton scattering ~which could be
the ET of a jet, the dijet mass of the event, etc.!, and mR is
the renormalization scale.

The parton scattering cross sections have been calculated

to next-to-leading order @NLO, O(aS
3)]. The perturbation se-

ries requires renormalization to remove ultraviolet diver-
gences. This introduces a second scale to the problem, mR .
In addition, an arbitrary factorization scale, mF , is intro-
duced to remove the infrared divergences. Qualitatively, it
represents the scale that separates the short- and long-range
processes. A parton emitted with transverse momentum rela-
tive to the proton less than the scale mF will be included in
the PDF, while a parton emitted at large transverse momen-

tum will be included in ŝ . The scales mR and mF should be
chosen to be of the same order as the hard scale, Q, of the
interaction. The larger the number of terms included in the
perturbative expansion, the smaller the dependence on the
values of mR and mF . If all orders of the expansion could be
included, the calculation should have no dependence on the
choice of scales. In this article the renormalization scale is
written as the product of a constant, D, and the hard scale of
the interaction, m5DQ . Typically, the renormalization and
factorization scales are set to the same value, m5mR5mF .

Several PQCD NLO calculations have been performed
@11–13#. In this paper we use the event generator JETRAD

@13# and a version of the analytic calculation EKS @12# that
integrates the cross section over bins. Both programs require
the selection of a renormalization and factorization scale, a
set of parton distribution functions, and a jet clustering algo-
rithm. Two partons are combined if they are contained within

a cone of opening angle R5ADh2
1Df2

50.7, and are also

within R sep51.3 ~see Sec. III!. The authors of JETRAD have
provided several choices for the renormalization scale. We
have chosen a scale proportional to the ET of the leading jet:

m5DET
max , where D is constant in the range 0.25<D

<2.00. An alternative scheme sets the scale to be propor-
tional to the center-of-mass energy of the two outgoing par-

tons: m5CAŝ5CAx1x2s where C is constant in the range

0.25<C<1.00, x15(ETie
h i/As , x25(ETie

2h i/As , and i

51, . . . ,n where n is the number of jets in the event. The
authors of EKS prefer a different definition of the renormal-

ization scale: the ET of each jet in the event, m5DET
jet ~a

version of EKS that uses the renormalization scale m
5DET

max is also available!.
Several choices of PDF are considered. The CTEQ3M

@35# and Martin-Roberts-Stirling set A8 @MRS~A8!# @36#
PDFs are fits to collider and fixed target data sets published
before 1994. CTEQ4M @14# updates these fits using data
published before 1996, and CTEQ4A repeats the fits with
values of aS(M Z) fixed in the range 0.110 to 0.122
@CTEQ4M corresponds to an aS(M Z) of 0.116#. CTEQ4HJ
@14# adjusts the gluon distributions to fit a CDF inclusive jet
cross section measurement @7# by increasing the effective
weighting of the CDF data. Martin, Roberts, Stirling, and
Thorne ~MRST! @15# incorporate all data published before
1998. In addition to the standard MRST PDF, two alternative
PDFs are provided that vary the gluon distributions within
the range allowed by experimental observations. The result-
ing distributions are called MRST(g↑) and MRST(g↓).

Since the publication of the MRST and CTEQ4 PDFs,
problems were found in the implementations of the QCD
evolution of the parton distributions in Q2 @37#. This was
caused by approximations to NLO QCD to reduce the time
required for computation. The removal of these approxima-
tions could lead to changes of approximately 5% in the the-
oretical predictions presented in this paper. Currently, PDFs
calculated without the approximations are not available for
use with JETRAD and EKS.

1. Inclusive jet cross section

The inclusive jet cross section may be expressed in sev-
eral ways. Theoretical calculations are normally expressed in
terms of the invariant cross section

E
d3s

dp3
. ~4.2!

In the DØ experiment the measured variables are the trans-
verse energy (ET) and pseudorapidity (h). In terms of these
variables, the cross section is expressed as

d2s

dET dh
, ~4.3!

where the two are related by

E
d3s

dp3
[

d3s

d2pT dy
→

1

2pET

d2s

dET dh
, ~4.4!

FIG. 7. HERWIG Monte Carlo simulation of the h bias for all jet

energies as a function of the reconstructed jet h .
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where y is the rapidity of the jet. The final expression follows
if the jets are assumed to be massless. For most measure-
ments, the cross section is averaged over some range of
pseudorapidity: in this paper uhu,0.5 and 0.1,uhu,0.7.

The inclusive jet cross section measures the probability of

observing a hadronic jet with a given ET and h in a pp̄

collision. The term ‘‘inclusive’’ indicates that the presence or
absence of additional objects in an event does not affect the
selection of the data sample. An event which contains three
jets that pass the selection criteria, for instance, will be en-
tered into the cross section three times. The inclusive mea-

surement is sometimes denoted s(pp̄→jet1X).
Theoretical predictions for the inclusive jet cross section

are generated using the JETRAD and EKS programs. Our ref-
erence prediction is the JETRAD calculation with m
50.5ET

max , Rsep51.3, and the CTEQ3M PDF. The predic-
tions are smoothed by fitting to the function

AET
2aS 12

2ET

As
D b

P6~ET!, ~4.5!

where P6(ET) is a sixth order polynomial. The resulting un-
certainty due to smoothing is less than 2% for a given ET .
The uncertainty in the calculations resulting from the choices
of different renormalization scales and PDFs is approxi-
mately 30% and varies as a function of ET @16#. Figure 8
shows the variations in the predictions for the inclusive jet

cross section at As51800 GeV for JETRAD. The uncertainties

in the inclusive jet cross section at As5630 GeV are of a
similar size.

2. Ratio of inclusive jet cross sections

at AsÄ 1800 and 630 GeV

While it is possible to compare the inclusive jet cross
sections as a function of ET for both center-of-mass energies,
the data will differ greatly in both magnitude and ET range
@see Fig. 9~a!#. If we express the cross section as a dimen-
sionless quantity

ET
4E

d3s

dp3
[

ET
3

2p

d2s

dET dh
, ~4.6!

and calculate it as a function of xT[2ET /As , the ‘‘scaling’’
hypothesis, which is motivated by the quark-parton model,
predicts that it will be independent of the center-of-mass en-
ergy. However, QCD leads to scaling violation through the
running of aS and the evolution of the PDFs.

By taking the ratio of the cross sections at As51800 and
630 GeV, many of the theoretical and experimental uncer-
tainties are reduced. Variations in the prediction resulting
from the choice of renormalization scale, factorization scale,
and PDF are approximately 10% and vary as a function of
xT . This is a significant reduction in the theoretical uncer-
tainty compared to the uncertainties in the inclusive jet cross
sections. The theoretical predictions for the ratio of the in-
clusive jet cross sections are calculated using the JETRAD and

EKS programs. Figure 10 shows the variations in the ratio

between inclusive jet cross sections at As5630 and 1800
GeV for JETRAD.

3. Dijet angular distributions

At leading order two jets are produced. The invariant
mass of the jets is given by

M 2[ ŝ54pT
2 cosh2~Dy /2! ~4.7!

where ŝ5x1x2s , is the c.m. energy squared of the interacting
partons, and Dy is the separation in rapidity of the two jets.
If we assume that the jets are massless we can write the dijet
invariant mass as

M 2
52ET

jet1ET
jet2@cosh~Dh !2cos~Df !# , ~4.8!

where f is the azimuthal angle with respect to the beam.
Since the dijet mass represents the center-of-mass energy of
the parton-parton interaction, it directly probes the parton
scattering cross section. The presence of higher-order pro-
cesses can result in the production of additional jets. In this
case the mass is calculated using the two highest-ET jets in
the event.

If only two partons are produced in a parton-parton inter-
action, and we neglect the intrinsic transverse momentum of
the scattering partons, the two jets will be back-to-back in

FIG. 8. The difference between alternative predictions and the

reference prediction (m50.5ET
max , CTEQ3M! for the inclusive jet

cross section for uh jetu,0.5 at As51.8 TeV. Shown are the alterna-

tive predictions for the choices ~a! m5(0.25, 0.75, 1.0, 2.0!ET
max ,

~b! m5(0.25, 0.5, 1.0!Aŝ and 0.5ET
jet , ~c! CTEQ4M, CTEQ4HJ,

MRS~A8!, and MRST, and ~d! for aS50.11020.122 using the

CTEQ4A PDFs compared with the calculation using CTEQ4M, for

which aS50.116.
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azimuth and balance in transverse momentum. The resulting
two-jet inclusive cross section at LO can be written as a
function of the pT and rapidity (y3 , y4) of the jets @3#

d3s

dy3 dy4 dpT
2

. ~4.9!

This can be rewritten in terms of the dijet invariant mass and
the center of mass scattering angle, u!, using the transforma-
tion @3#

dpT
2 dy3 dy4[4dx1 dx2 d cos u! ~4.10!

resulting in

d2s

dMd cos u!
5(

i j
E

0

1

dx1 dx2 d~x1x2s2M 2!
dŝ i j

d cos u!
.

~4.11!

The dijet angular distribution as measured in the dijet
center-of-mass frame is sensitive to the QCD matrix ele-

ments. Angular distributions for the qg→qg , qq̄→qq̄ , and
gg→gg processes are similar. The properties of parton-
parton scattering are almost independent of the partons in-
volved ~see Fig. 11!. The dominant process in QCD parton-
parton scattering is t-channel exchange, which results in
angular distributions peaked at small center-of-mass scatter-
ing angles. Many theoretical predictions for phenomenology
beyond the SM have an isotropic angular distribution and
could be detected using the measurement of the dijet angular
distribution.

At small center-of mass-scattering angles, u!, the dijet
angular distribution predicted by leading order QCD is pro-
portional to the Rutherford cross section:

dŝ

d cos u!
;

1

sin4~u!/2!
. ~4.12!

It is conventional to measure the angular distribution in the
variable x , rather than cos u!, where

x5

11ucos u!u

12ucos u!u
5exp~ uDhu!. ~4.13!

Plotting the dijet angular distribution in the variable x flat-
tens out the distribution and facilitates comparison to theory

FIG. 9. The expected NLO inclusive jet cross sections at As

51800 ~dashed line! and at 630 GeV ~solid line! are displayed in

panel ~a!. Without scaling violations, the scaled dimensionless cross

sections given in ~b! would be independent of center-of-mass ener-

gies. This is clearly not the case, as can be seen in panel ~c!, which

shows the ratio of the NLO dimensionless inclusive jet cross sec-

tions at As5630 and 1800 GeV for uh jetu,0.5.

FIG. 10. The difference between alternative predictions and the

reference prediction (m50.5ET
max , CTEQ3M! of the ratio of inclu-

sive jet cross sections at As5630 and 1800 GeV for uh jetu,0.5.

Shown are the alternative predictions for the choices ~a! m5(0.25,

0.75, 1.0, 2.0!ET
max , ~b! m5(0.25, 0.5, 1.0!Aŝ and 0.5ET

jet , ~c!
CTEQ4M, CTEQ4HJ, MRS~A8!, and MRST, and ~d! for aS

50.11020.122 using the CTEQ4A PDFs compared with the calcu-

lation using CTEQ4M, for which aS50.116.
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@3# (ds/dx is uniform for Rutherford scattering!. The differ-
ential angular cross section measured in this analysis is

d3s

dM dx dhboost

, ~4.14!

where hboost50.5(h11h2). The predictions are calculated
using JETRAD.

4. Inclusive differential dijet mass cross section

The inclusive triple differential dijet mass cross section is
obtained by integrating over cos u ! and is given by

d3s

dMdhjet1 dhjet2
~4.15!

where h jet1,2 are the pseudorapidities of the jets. We integrate
the cross section over a range of pseudorapidity such that
both jets satisfy uh jetu,1.0. The NLO predictions for this
cross section are calculated using JETRAD. The JETRAD pre-
dictions were smoothed by fitting them to an ansatz function
of the form

AM 2a exp@2bM2gM 2
2dM 3#Pn~M ! ~4.16!

where Pn(M ) is a polynomial of degree n<6 and a , b , g ,
and d are fit parameters. The uncertainty due to the form of
the ansatz function not being quite right is estimated to be
,2%. The uncertainties in the theoretical predictions are
due to the choice of m and PDF, and are approximately
40– 50 % with some dependence on M ~see Fig. 12!.

B. Quark compositeness

The existence of three generations of quarks and leptons
suggests that they may not be fundamental particles. For ex-
ample, it has been proposed @17# that they could be com-
posed of ‘‘preons’’ which interact via a new strong interac-

tion called metacolor. Below a characteristic energy scale L ,
the preons form metacolor singlets that are the quarks. The
scale L characterizes both the strength of the preon coupling
and the physical size of the composite state (L is defined so
that g2/4p51). Limits are set assuming that all quarks are

composite and L@Aŝ ~where Aŝ is the center of mass en-
ergy of the colliding partons!, so that quarks appear to be
point-like. Hence, the substructure coupling can be approxi-
mated by a four-fermion contact interaction described by an
effective Lagrangian @17#:

L5

g

2L2 H hLL
0 ~ q̄LgmqL!~ q̄LgmqL!1hLR

0 ~ q̄LgmqL!~ q̄RgmqR!

1hRL
0 ~ q̄RgmqR!~ q̄LgmqL!1hRR

0 ~ q̄RgmqR!~ q̄RgmqR!

1hLL
1 S q̄Lgm

la

2
qLD S q̄Lgm

la

2
qLD1hLR

1 S q̄Lgm
la

2
qLD

3S q̄Rgm

la

2
qRD1hRL

1 S q̄Rgm
la

2
qRD S q̄Lgm

la

2
qLD

1hRR
1 S q̄Rgm

la

2
qRD S q̄Rgm

la

2
qRD J , ~4.17!

where hHH
0,1

50,61, and H5L ,R for left- or right-handed

quarks. hHH
0(1) terms correspond to color-singlet ~octet! con-

tact interactions. These contact interactions modify the cross

FIG. 11. Quark-antiquark and quark-gluon angular distributions,

normalized to the angular distribution for gluon-gluon scattering.

The horizontal lines at 4/9 and (4/9)2 represent the color factors.

FIG. 12. The differences between the alternative predictions and

the reference prediction (m50.5ET
max , CTEQ3M! of the inclusive

dijet mass cross section @Eq. ~4.15!# at As51800 GeV for uh jetu
,1.0. Shown are the alternative predictions for the choices ~a! m

5(0.25, 0.75, 1.0, 2.0!ET
max , ~b! m5(0.25, 0.5, 1.0!Aŝ and 0.5ET

jet ,

~c! CTEQ4M, CTEQ4HJ, MRS~A8!, and MRST, and ~d! for aS

50.11020.122 using the CTEQ4A PDFs compared with the calcu-

lation using CTEQ4M, for which aS50.116.
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sections for quark-quark scattering. Limits are presented in
Secs. XIII and XIV for the cases @17,38#:

LLL
6 , where hLL

0
561.

LV
6 , where hLL

0
5hRR

0
5hRL

0
5hLR

0
561.

LA
6 , where hLL

0
5hRR

0
52hRL

0
52hLR

0
561.

L (V2A)
6 , where hLL

0
5hRR

0
50;hRL

0
5hLR

0
561.

LV8

6 , where hLL
1

5hRR
1

5hRL
1

5hLR
1

561.

LA8

6 , where hLL
1

5hRR
1

52hRL
1

52hLR
1

561.

L (V2A)8

6 , where hLL
1

5hRR
1

50;hRL
1

5hLR
1

561.

Currently, there are no NLO compositeness calculations
available; therefore LO calculations are used. The ratio of
each LO prediction including compositeness to the LO pre-
diction with no compositeness (L5`) is used to scale the
JETRAD NLO prediction:

s~composite!5

s~L5X !LO

s~L5` !LO

s~L5` !NLO . ~4.18!

C. Coloron limits

A flavor-universal coloron model @38# inspired by techni-
color has been proposed to explain the nominal excess in the
inclusive jet cross section as measured by CDF @7#. The
model is minimal in its structure in that it involves the addi-
tion of one new interaction, one new scalar multiplet, and no
new fermions. The QCD gauge group is extended to
SU(3)13SU(3)2. At low energies, due to symmetry break-
ing, this results in the existence of ordinary massless gluons
and an octet of heavy coloron bosons. Below the mass of the
colorons (M c), coloron-exchange can be approximated by
the effective four-fermion interaction:

Leff52

g3
2 cot2u

2!M c
2 S q̄gm

la

2
q D S q̄gm

la

2
q D ~4.19!

where cot u represents the mixing between colorons and glu-

ons, and g3
2[4paS . If LV8

2 Aas5M c /cot u, this corresponds

to Eq. ~4.17! with hLL
1

5hLR
1

5hRL
1

5hRR
1

521 and would
represent new color-octet vector current-current interactions.
Such interactions could arise from quark compositeness or
from non-standard gluon interactions ~e.g. gluon composite-
ness! @39#.

The phenomenology of the coloron has been studied @40#
and limits have been placed on M c and cot u. Constraints on
the size of the radiative corrections of the weak-interaction r
parameter require M c /cot u.450 GeV @38#, and a direct
search for colorons in the dijet mass spectrum by the CDF
Collaboration excludes colorons with mass below 1 TeV for
cot u&1.5 @41#.

V. TRIGGERING

The DØ trigger was based on a multi-level system. The
level 0 ~LØ! and level 1 ~L1! triggers were hardware trig-
gers. The LØ trigger consisted of two scintillating hodo-
scopes, one on each side of the interaction region. Coincident

signals in the two hodoscopes indicate an inelastic collision
and provide timing information for calculation of the posi-
tion of the z-vertex of the interaction. The L1 trigger required
a specified number of calorimeter trigger tiles (Dh3Df
50.831.6) or towers (Dh3Df50.230.2) above certain
ET thresholds. Different trigger versions with slightly differ-
ent L1 requirements were instrumented during the run. If a
L1 rate was too large, a prescale was used to reduce the rate
to an acceptable level. These prescale values were adjusted
during the course of a beam store. A prescale of P allows
only 1 out of every P events to be sent to the next level.
Finally, level 2 ~L2! was a software trigger which selected
the data to be written to tape. A fast jet algorithm used at L2
defines jet ET as the sum of the transverse energy within a
cone of opening angle R50.7 centered on the ET-weighted
center of a L1 trigger tile or tower.

The L2 triggers used in the QCD analyses at As51800
GeV are called JET_30, JET_50, JET_85, and JET_115. The
names follow the nomenclature that a JET_X trigger at L2
requires at least one jet with ET greater than X GeV. During

the running at As5630 GeV the L2 triggers were JET_12,
JET_2_12, and JET_30. A complete description of the L1
and L2 trigger requirements is given in Table I.

A study was performed to determine the trigger efficiency
as a function of jet ET for all triggers used in DØ QCD
analyses. There is an efficiency for an event to pass the L1
trigger, and an efficiency for an event to pass the L2 trigger
given that it passed L1. The combined efficiency to pass both
L1 and L2 is

eevent
total

5eevent
L1

3eevent
L2u L1 ~5.1!

where eevent
L2u L1 is the efficiency for an event to pass L2 when it

has passed L1. The L1 and L2 event efficiencies (eevent
L1 and

e event
L2u L1) depend on the event topology (ET and h of the jets in

the event!. The event trigger efficiency as a function of
single jet efficiencies for an event with N jets is given by

eevent512)
i51

N jets

@12e i~ETi ,h i!# , ~5.2!

where e i is the single jet efficiency for the ith jet. The prod-
uct represents the probability that none of the jets in the
event pass the trigger requirements.

The efficiency of the L1 trigger with the least restrictive
requirements was measured using a data set that was re-
quired to pass only the LØ trigger. The single jet efficiency is
given by the fraction of jets that satisfy the L1 requirements
at a given ET . The L1 efficiencies for more restrictive L1
triggers ~MRT! were calculated using data samples that were
required to pass a less restrictive L1 trigger ~LRT!. This al-
lows the L1 efficiency of the more restrictive trigger to be
calculated relative to the less restrictive trigger ~given by
eMRT,LRT). Hence the efficiency for a given L1 trigger is
given by the product of the efficiencies of all less restrictive
triggers at a given ET . For example, the L1 efficiency for the
Jet_85 trigger is given by

eJet_85
L1

5eJet_85,Jet_50
L1

3eJet_50,Jet_30
L1

3eJet_30,LØ
L1 . ~5.3!
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The L2 trigger efficiencies for single jets are measured
with respect to the L1 trigger. The fraction of these events
which have a L2 jet above threshold determines the L2
single jet efficiency. Figure 13 shows the event efficiency for
Jet_85 as a function of ET .

Table I shows the typical trigger requirements and the ET

value for the leading ET jet at which each trigger averages an
efficiency exceeding 98%. The leading jet’s ET must be sig-
nificantly higher than the L2 threshold in order for the trigger
to be efficient.

VI. LUMINOSITY

The beam luminosity was calculated from the counting
rate of the LØ counters and the cross section subtended by
these counters. The cross section was determined using the
geometric acceptance of the LØ hodoscopes, the LØ hard-

ware efficiency, and the world average ~WA! of the pp̄ in-
elastic cross section measurements. The cross section of ob-
served events in the LØ was found to be sLØ543.1

61.9 mb at As51800 GeV @42# and sLØ532.961.1 mb at
As5630 GeV ~see @43# for a description of the method
used!. The effective luminosity was determined indepen-
dently for each trigger on a run-by-run basis taking into ac-
count each trigger’s prescale, the LØ inefficiency, and the

detector deadtime. The WA pp̄ cross section at As51800
GeV used in this paper is based on measurements by the
E710 Collaboration @44#, the CDF Collaboration @45#, and

the E811 Collaboration @46#. At As5630 GeV there is no

complete measurement of the pp̄ cross section. Hence, the

pp̄ cross section was obtained by interpolating between the

WA pp̄ cross sections measured at As5546 and 1800 GeV

@43#. The WA pp̄ cross section at As5546 GeV is based on
measurements by the UA4 @47# and CDF @45# Collabora-
tions. The CDF Collaboration only uses its measurement of

the pp̄ cross section to determine its luminosity. Due to the
different methods used to measure the luminosity, there is a
systematic shift between CDF and DØ measured cross sec-
tions, such that given identical data sets any CDF cross sec-
tion measurement would be 6.1% higher than the corre-
sponding DØ cross section @42#.

The integrated luminosities at As51800 GeV as mea-
sured using LØ for the Jet_30, Jet_50, Jet_85, and Jet_115
triggers are 0.368, 4.89, 56.7, and 95.7 pb21 respectively,

with an uncertainty of 5.1%. The luminosities at As5630
GeV for the JET_12, JET_2_12, and, JET_30 were 5.12,
31.9 and 538 nb21 respectively with an uncertainty of 4.4%.

The luminosity required corrections due to small discrep-
ancies in the luminosity calculation during different running

periods at As51800 GeV. The initial luminosities for trig-
gers Jet_85 and Jet_115 were taken from the luminosity cal-
culation exclusively determined with the LØ counters. The
inclusive jet cross sections calculated with the first 7.3 pb21

of the data sample showed a 10% difference for Jet_115. The
luminosity has been adjusted so that the dijet mass spectrum
for the first 7.3 pb21 matches that of the remaining data. This
adjustment was also applied to Jet_85. Thus the luminosities

TABLE I. Typical trigger configurations used in inclusive analy-

ses. The L1 and L2 requirements are shown for each trigger. Also

shown are the leading uncorrected jet ET at which the average event

trigger efficiency exceeds 98%. Redundant lower-ET thresholds at

L1 were used to provide extended lists of seeds for jet clustering at

L2.

Trigger Level 1 ~GeV! Level 2 ~GeV! 98% efficient

As51800 GeV

JET_30 1 tile .15 1 jet with 45 GeV

& 1 tile .6 ET.30

JET_50 1 tile .15 1 jet with 75 GeV

& 1 tile .6 ET.50

JET_85 1 tile .35 1 jet with 105 GeV

& 2 tiles .6 ET.85

JET_115 1 tile .45 1 jet with 170 GeV

& 1 tile .6 ET.115

As5630 GeV

JET_12 1 tower .2 1 jet with 20 GeV

ET.12

JET_2_12 2 towers .2 1 jet with 30 GeV

ET.12

JET_30 1 tile .15 1 jet with 45 GeV

ET.30

FIG. 13. Average event efficiency for JET_85 as a function of

leading jet ET and for three different pseudorapidity regions.
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for Jet_85 and Jet_115 are 56.5 and 94.9 pb21 respectively, a

change of 0.7% from the value obtained using the LØ
counters. This difference was added linearly to the 5.1% er-
ror on the initial luminosity value for a total error of 5.8%.

In addition, for a part of the run the Jet_30 and Jet_50
triggers each required a single interaction at LØ. The lumi-
nosities of Jet_30 and Jet_50 from the LØ calculation are
estimated to be accurate only to 10% due to uncertainties in
the efficiency of the single interaction requirement. The lu-
minosity for the Jet_50 trigger was determined by matching
the Jet_50 cross section to the Jet_85 cross section, and the
Jet_30 cross section was matched to the Jet_50 cross section
in regions of overlap. The trigger matching is analysis de-
pendent; each analysis presented in this paper used the cross
section of interest to match the triggers. The results obtained
for the different measurements are consistent. The trigger
matching errors are added in quadrature to the 5.8% error on
Jet_85. The final luminosity and error for each trigger is
shown in Table II.

Since the analyses @8,25# were first presented, the E811
Collaboration measurement of the total inelastic cross sec-
tion was published @46#. Including this measurement in the
WA changed the observed LØ cross section from sLØ

544.562.4 mb to sLØ543.161.9 mb at As51800 GeV.
This changed the integrated luminosity of Jet_115 from
91.965.6 pb21 to 94.964.7 pb21, an increase of 3.2%.

Hence all cross sections at As51800 GeV reported in this
paper are reduced by 3.1% from the previously published
results. It is worth noting that the inclusion of the E811 result
had no perceptible impact on the cross section interpolation
to 630 GeV.

The luminosity calculation consists of three distinct ingre-
dients: the geometric acceptance of the LØ hodoscopes, the

LØ hardware efficiency, and the pp̄ inelastic cross section.
The luminosity uncertainties are listed in Table III. The larg-

est contribution to the luminosity uncertainty at As51800

GeV derives from the world average ~WA! pp̄ total cross

section. The pp̄ cross section at As5630 GeV was deter-

mined from a fit to the values at As5546 and 1800 GeV @43#
~see Fig. 14!.

Two Monte Carlo minimum-bias event generators ~MBR

@48# and DTUJET @49#! were used to determine the geometric
acceptance of the LØ hodoscopes. The difference in accep-
tance between the two MC results was taken as a source of

systematic uncertainty for each As . The consistent behavior
of each generator relative to the other between center-of-
mass energies indicates that the systematic uncertainty may
be considered completely correlated. Although the geometric
acceptance of the LØ hodoscopes for diffractive processes
must be considered in luminosity calculations, the uncer-
tainty in the non-diffractive acceptance dominates.

A study of zero-bias events ~a random sampling of the
detector during a beam-beam crossing! determined the hard-
ware efficiency of LØ. Because the same estimation of the
uncertainty appears in the calculation of the luminosities at

both As values, the uncertainties are completely correlated.
Table III lists the systematic uncertainty in the hardware ef-
ficiency for both center-of-mass energies.

VII. THE EVENT VERTEX

The location of the event vertex was determined using the
central tracking system @28#, which provides charged particle
tracking over the region uhu,3.2. It measures the trajectory
of charged particles with a resolution of 2.5 mrad in f and
28 mrad in u . From these measurements the position of the
interaction vertex along the beam direction ~z! can be deter-
mined with a resolution of 8 mm.

As the instantaneous luminosity increases, the average

number of pp̄ inelastic collisions per beam crossing in-
creases. Hence there is the possibility of selecting the incor-
rect interaction vertex. If the incorrect vertex is chosen as the
primary vertex, jet ET and event missing transverse energy
(E” T) will be miscalculated. This may result in a significant
contribution to the jet spectra at very high-ET since the high
rate of jet production at lower ET can cause contamination in
the lower rate regions. Visual scanning of the high-ET jets
shows that approximately 10% have misidentified interaction
vertices.

In order to study the effects of multiple interactions, a
software tool called MITOOL @50# was developed to provide
information about the number of interactions. This tool uses
the LØ hodoscopes, the calorimeter, and the central tracker
in order to evaluate the number of interactions. A sum-of-
times inconsistent with a single interaction from the LØ ho-
doscopes indicates the possibility of the presence of more
than one interaction. The total energy in the calorimeter pro-

TABLE II. Corrected luminosity and errors for the inclusive jet

triggers. The trigger matching for Jet_30 and Jet_50 at As51800

GeV was carried out using the dijet mass cross section.

Trigger Luminosity Error

As51800 GeV

JET_30 0.364 pb21 7.8%

JET_50 4.84 pb21 7.8%

JET_85 56.5 pb21 5.8%

JET_115 94.9 pb21 5.8%

As5630 GeV

JET_12 5.12 nb21 4.4%

JET_2_12 31.9 nb21 4.4%

JET_30 538. nb21 4.4%

TABLE III. Uncertainties in the luminosity calculation exclud-

ing trigger matching.

Source of

uncertainty

Uncertainty ~%!

1800 GeV 630 GeV

World average pp̄ cross sections 3.70 2.75

Hardware efficiency 2.32 3.12

Geometric acceptance 2.73 1.51

Time dependencies 0.70 0.00

All sources 5.81 4.43
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vides evidence of multiple interactions. If the total measured
energy of an event is greater than 1.8 TeV, a multiple inter-
action is likely. Additional information from the number of
vertices found with the central tracker is also used. Using

this information the most probable number of pp̄ interactions
in the event is calculated.

To a good approximation, the jet ET and h can be calcu-

lated for the second pp̄ vertex using the measured vertex
z-position and a simple geometric conversion. Thus for all
the jets in an event, the absolute magnitude of the vector sum

of the jet ET , denoted ST5uSEW T
jetu, can be calculated for

each vertex. Except for soft radiation falling below the jet
reconstruction threshold, ST will be equal in magnitude to
the E” T . Since QCD events should contain little E” T , the cor-
rect vertex was selected by choosing the vertex with the
minimum ST .

VIII. JET AND EVENT SELECTION

The existence of random spurious energy deposits in the
calorimeter may either fake or modify a real jet. Some
sources of noise are electronic failures, cosmic ray showers,
or accelerator losses due to Main Ring activity. A series of
quality cuts was developed to remove this contamination.

A. Removal of ‘‘hot’’ cells

Before jet reconstruction, a cell suppression algorithm
was implemented to suppress any cell with an unusually high
deposition of energy relative to its longitudinal neighbors ~a
‘‘hot’’ cell!. Specifically, if a cell had more than 10 GeV of

energy and more than 20 times the average energy of its
immediate longitudinal neighbors, the cell energy was set to
zero. This algorithm is successful in removing isolated high
energy cells due to noise; however, the algorithm can also
degrade the response to jets.

Approximately 10% of the events have one or more sup-
pressed cells. The rapidity distribution of the suppressed
cells is very ‘‘jet-like’’ with a central plateau. A cell was
restored to a jet if it was within DR50.7 of the original jet
direction and if the cumulative total of hot cell ET was no
more that 50% of the original jet ET . The jet rapidity and
azimuth were then recalculated using the Snowmass defini-
tions @Eq. ~3.2!#. The event E” T was also adjusted if a cell was
restored to a jet.

The restoration algorithm has been shown to be 99% ef-
ficient by fitting the DR and restored cell fraction ~the hot
cell ET divided by the jet’s original ET) distributions and
estimating the inefficiency in the cut regions. An event scan
with restored jets ~using relaxed restoration criteria! above
260 GeV showed no inefficiency. Less than 5% of these new
jets are contaminated. For those events with a single sup-
pressed cell, the E” T is significantly reduced by the cell res-
toration. The kinematic variables (ET , h , and f) of the
high-ET jets which included a restored cell were compared to
the kinematic variables calculated with a full reconstruction
in which the suppression algorithm was disabled. The differ-
ences were small and well within the characteristic resolu-
tions of the variables.

B. Quality cuts

Even after the removal of isolated anomalously large cell
energies, there still remain spurious jets. Quality cuts were
developed to remove these fake jets. The quality cuts were
applied on either the jet or to the event.

The jet quality cuts are based on the distribution of energy
within the jet. Three standard variables are used:

~1! Electromagnetic fraction ~EMF! — the fraction of the
jet energy contained in the electromagnetic section of the
calorimeter. Jets are retained if

EMF<0.95 ~1.2,uhdetu,1.6!,

0.05<EMF<0.95 ~otherwise!, ~8.1!

where hdet is the pseudorapidity of the jet calculated using a
vertex position of z50. The cut EMF.0.05 is not applied
for 1.2,uhdetu,1.6 because of the gap between the CC and
EC calorimeters ~Sec. II!.

~2! Coarse hadronic fraction ~CHF! — the fraction of the
jet energy contained in the coarse hadronic section of the
calorimeter. This cut is designed to remove fake jets intro-
duced by main ring particles depositing energy in the calo-
rimeter. Jets are retained if

CHF,0.4. ~8.2!

~3! Hot cell fraction ~HCF! — the ratio of the most ener-
getic cell of a jet to the second most energetic cell. Jets are
retained if

FIG. 14. The three fits to the world average pp̄ cross sections.

The stars depict the WA cross sections at As5546 and 1800 GeV,

and the closed square shows the interpolation to As5630 GeV. A

fluctuation of the 1800 GeV point directly influences the interpo-

lated value at 630 GeV, particularly in the case of the total cross

section ~a!.
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HCF,10.0. ~8.3!

A cut on E” T is also used to remove bad events. Since
QCD events are expected to have no intrinsic E” T , a cut on
events with large E” T typically used

E” T

ET
jet1

,0.7, ~8.4!

where ET
jet1 is the transverse energy of the highest ET jet in

the event. In the case of the inclusive jet analysis, the mea-
surement is more susceptible to contamination from events
in which the primary vertex is located outside of the tracking
detector and a vertex due to an additional minimum bias
event is identified as the primary vertex, leading to an over-
estimate of the jet ET . In this case it is found that a E” T cut of

E” T

ET
jet1

,0.3 if ET
jet1

.100 GeV,

E” T,30 GeV if ET
jet1<100 GeV ~8.5!

removes the contamination.

Since the data collected at As5630 GeV were taken at
low instantaneous luminosity, there were fewer events with
multiple interactions and incorrectly identified vertices. As a
result, the quality cuts on the data were adjusted to maximize
efficiency without increasing contamination. The resulting
cuts are

EMF,0.90, ~8.6!

CHF,0.4, ~8.7!

HCF,20.0, ~8.8!

E” T

ET
jet1

,0.7. ~8.9!

C. Efficiency

The efficiencies of the quality cuts were measured. The
data sample used to calculate the efficiencies was selected by
making cuts in h and f . We verified that the changes in
shape of the EMF, HCF, and CHF distributions due to the E” T

were negligible.
To calculate the total efficiency, each individual efficiency

is measured. First the E” T cut is applied to the data and the
efficiency of the EMF cut is calculated. Figure 15 illustrates
the EMF distribution after the E” T cut is applied. Contamina-
tion is visible as small peaks near EMF'0 or 1. A Gaussian-
like curve is projected under the noise signal and used to
estimate the data signal lost due to the cut. After the E” T and
EMF cuts are applied, the HCF efficiency is measured @Fig.
16~a! shows the HCF distribution#. Then after both the EMF
and HCF cuts were made, the efficiency of the CHF cut is
measured. The total jet efficiency is calculated by multiply-
ing the individual cut efficiencies together.

The standard jet cuts remove most of the noise from the

sample; however, there is still some contamination at high

ET due to cosmic rays and ‘‘Main Ring Events.’’ The E” T cut

removes this remaining noise. By fitting this distribution in

regions of the calorimeter where the noise effects are negli-

gible, an extrapolation can be used to determine the effi-

ciency. Figure 16~b! shows the E” T distribution used to cal-

culate the efficiency. The inclusive jet efficiencies as a

function of jet ET in the central region at As51800 GeV are
shown in Fig. 17. Figure 18 shows the efficiency of the E” T

cut for dijet events. The efficiencies of the quality cuts used

at As5630 GeV are given in Fig. 19. The efficiency of the

E” T cut at As5630 GeV is .99%.

D. Contamination

In order to measure the remaining contamination after all
quality cuts have been implemented, two separate studies
were performed. Residual contamination was estimated by
overlapping the observed hot cell distribution on a simulated
inclusive jet sample. The simulated cross section changed by
less that 1% after imposition of the jet quality cuts. The
simulation also indicated that the jet quality cuts reject
.99% of the ‘‘fake’’ jets with ET5500 GeV.

To measure the contamination due to misvertexing, events
at high-ET were visually inspected. Misvertexing tends to
cause lower ET jets to migrate to higher ET . Since the cross
section is steeply falling, this can corrupt the high-ET cross
section. This study shows that after the vertex selection pro-
cedure has been applied, less than 1% of the events are
contaminated at high ET .

FIG. 15. The measured EMF distributions for different ET

ranges. The lower plots show the cut values and the fit used to

calculate the efficiency of the cut. The dashed histogram shows the

full data sample and the solid histogram shows a data sample with

minimal noise contamination. The arrows indicate the cut values.

The peaks at EMF '0 or 1 are due to contamination.
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IX. JET ENERGY SCALE

The in situ jet energy calibration uses reconstructed col-
lider data, and is described in more detail in @51#. The mea-

sured energy of a jet E jet
meas depends strongly on the jet defi-

nition. The particle-level ~true! jet energy E jet
ptcl is defined as

the energy of a jet consisting of final-state particles produced
by the high-pT parton-parton scattering, and found using the
Snowmass algorithm. The jet should not include the particles
produced by the underlying event ~Sec. III C!. The jet energy
scale corrects the measured jet energy, on average, back to

the energy of the final-state particle-level jet. E jet
ptcl is deter-

mined as

E jet
ptcl

5

E jet
meas

2EO

R jetSh

~9.1!

where:
EO is an offset, which includes the underlying event,

noise from radioactive decays in the uranium absorber, the
effects of previous interactions ~pile-up!, and the contribu-

tion from additional pp̄ interactions in the event;
R jet is the calorimeter energy response to jets. R jet is typi-

cally less than unity due to energy deposited in uninstru-
mented regions of the detector, and differences in the re-
sponse to electromagnetic and hadronic particles (e/h.1);

Sh is the fraction of the jet energy that showered inside
the algorithm cone at the calorimeter level;

The calibration is performed using data taken in pp̄ col-

lisions at As51800 GeV and 630 GeV.

A. Offset correction, EO

The total offset correction is measured as a transverse
energy density in h-f space and subdivided as DO5Due

1DQ . Due represents the contribution due to the underlying
event, i.e. energy associated with the spectator partons in a

pp̄ event. DQ accounts for uranium noise, pile-up, and en-

ergy from additional pp̄ interactions. The offset correction
EO is given by DO multiplied by the h-f area of the jet.

DQ is determined from a zero-bias sample ~a random
sampling of the detector during a beam-beam crossing!. Due

is measured using the difference in average transverse energy

density between minimum-bias events ~where a pp̄ interac-
tion has occurred, usually inelastic scattering! and zero-bias
events. The h dependencies of both quantities and the lumi-
nosity dependence of DQ are shown in Figs. 20 and 21. The
statistical and systematic errors of the offset correction are
8% and 0.25 GeV respectively.

B. Response correction, R jet

DØ makes a direct measurement of the jet energy re-
sponse using conservation of pT in photon-jet (g-jet! events

FIG. 16. ~a! The 1/HCF distribution. The arrow shows the loca-

tion of the cut for As51800 GeV. ~b! The distribution of ET
jet1/E” T .

The arrow at ET
jet1/E” T51.43 corresponds to the E” T /ET

jet1 cut of 0.7.

The peak at 1.0 is due to contamination from cosmic rays and the

main ring. The dashed histograms show the distributions for the full

data samples.

FIG. 17. Top: The efficiency of the standard jet quality cuts for

uhu,0.5 @Eqs. ~8.1!, ~8.2!, and ~8.3!# at As51800 GeV. Bottom:

The efficiency of the E” T cut used in the inclusive jet analysis @Eq.

~8.5!# at As51800 GeV. The dotted curves show fits to the mea-

sured efficiencies.

FIG. 18. The efficiency of the E” T cut used in the dijet analyses

at As51800 GeV @Eq. ~8.4!#.
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@51#. The electromagnetic energy scale is determined from
the DØ Z(→e1e2), J/c , and p0 data samples, using the
masses of these known resonances. In the case of a g-jet two
body process, the jet response can be measured through

R jet511

E”W Tn̂Tg

ETg
, ~9.2!

where ETg and n̂Tg are the transverse energy and direction of
the photon. To avoid response and trigger biases, R jet is
binned in terms of E85ETg3cosh(h jet) and then mapped

onto E jet
meas . E8 depends only on photon variables and jet

pseudorapidity, which are both measured with very good
resolution.

1. h-dependent corrections

Most measurements need a high degree of accuracy in the
jet energy scale at all rapidities. An h-dependent correction
becomes necessary. The cryostat factor Fcry is defined as the

ratio R jet
EC/R jet

CC . The measured factor 0.97760.005 is con-

stant as a function of E8. This was expected because the CC
and the EC calorimeters use the same technology.

The intercryostat region ~IC!, which covers the pseudora-
pidity range 0.8,uhu,1.6, is the least well-instrumented re-
gion of the calorimeter system. A substantial amount of en-
ergy is lost in the cryostat walls, module end plates, and
support structures. An IC correction is performed after the
Fcry correction and before the energy-dependent response
correction. Because the energy dependence of R jet is in-
cluded in R jet as a function of h , this function is not a con-
stant, but should be smooth. The IC correction is set so that
the response as a function of h agrees with the fit to the
functional form, R jet5a1b•ln@cosh(h)#, of the CC and EC
response, as shown in Fig. 22.

2. Energy-dependent correction

Following the above procedure, the energy dependence of
R jet is then determined as a function of E8 as illustrated in
Fig. 23. Uniformity of the calorimeters allows the use of data

from both the CC and the EC to measure R jet . The rapidly
falling photon cross sections limit the use of CC data to
energies &120 GeV. EC data are used to extend the energy
reach to ;300 GeV. We exploit the fact that jet energy in the
EC is larger than in the CC for the same ET . Monte Carlo
data are also included at the highest energy to constrain the
extrapolation. A set of g-jet events is generated using
HERWIG @33#, processed through the DØ GEANT @34# detector
simulation, and reconstructed with the standard photon and

FIG. 19. The efficiency of the standard jet quality cuts for uhu
,0.8 at As5630 GeV @Eqs. ~8.6!, ~8.7!, and ~8.8!#. The three

curves show the fit to the efficiencies and the uncertainty in the fit.

FIG. 20. Physics underlying event ET density Due versus h for

events with As51.8 TeV and As5630 GeV.

FIG. 21. DQ versus h for different luminosities in units of

1030 cm22 sec21 at As51.8 TeV.
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jet algorithms. The Monte Carlo simulation is improved by
incorporating the single particle response of the calorimeter
as measured in test beam.

The response versus energy for the R50.7 cone algo-
rithm is shown in Fig. 23. The CC and EC data, and the
expected response from MC at ET5500 GeV are fit with the
functional form R jet(E)5a1b•ln(E)1c•ln(E)2 ~see Fig. 24!.
This function is motivated by the hadronic shower becoming
gradually more ‘‘electromagnetic’’ ~EM! with increasing en-
ergy @52#. If e and h are the responses of the calorimeter to
the EM and non-EM components of a hadronic shower, and
p is the response to charged pions, then e/p51/@h/e
2^ f EM&(h/e21)# . The functional form for the mean elec-
tromagnetic fraction of the jet ^ f EM& is ;a•ln(E), giving the
expected logarithmic dependence for energy carried by the
charged pions and, therefore, jets.

In addition to the uncertainty from the fit (1.5%, 0.5%,
1.6% for 20, 100, 450 GeV jets respectively!, there is also a
;0.5% uncertainty from the W boson background in the
photon sample. Some of the events in the g-jet sample are
not two-body processes. In the IC region, the h-dependent
corrections contribute an additional ;1% uncertainty.

C. Showering correction, Sh

As a jet of particles strikes the detector, it interacts with
the calorimeter material producing a wide shower of par-
ticles. Some particles directed inside the cone deposit a frac-
tion of their energy outside the cone ~and vice versa! as the
shower develops inside the calorimeter. We do not correct for
any QCD radiation or particles that are radiated from the
cone; we only correct for the effects of the detector.

The correction for this showering is determined using jet
energy density profiles from data and particle-level HERWIG

@33# Monte Carlo program. The data contains the contribu-
tions of both gluon radiation and showering effects outside
the cone. The former contribution is subtracted using the
particle-level Monte Carlo profiles. Sh is defined as the in-
verse of the measured correction factor; that means Sh is the
fraction of the jet energy showered inside the algorithm cone
in the calorimeter @Eq. ~9.1!#. The showering correction is
negligible for R50.7 cone jets above ;100 GeV in the
central region (uhu,1.0) with an uncertainty of ;1%. Both
the correction and uncertainty are larger for lower energies,
higher h , and smaller cone sizes.

FIG. 22. Response versus h for g-jet data before the

h-dependent correction. The dashed line is the fit to the expected IC

response.

FIG. 23. R jet versus E8 measured in the CC, IC and EC calo-

rimeter regions after h dependent corrections.

FIG. 24. R jet versus energy for the R50.7 cone jet algorithm.

The solid lines are the fit and the associated uncertainty band.
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D. Correlations of the uncertainties

The uncertainties in the jet energy scale can be separated
into five sources: offset, h-dependent corrections, response
corrections, method, and showering corrections. The correla-
tions of these uncertainties as a function of ET and h have
been studied:

~1! Offset. This is the dominant uncertainty at low ET but
is unimportant at high ET . The uncertainty due to the offset
correction is divided into two parts: a systematic error related
to uncertainties in the method which is correlated as a func-
tion of ET , and a statistical error that is uncorrelated as a
function of pseudorapidity due to the finite size of the data
sample used to determine the offset.

~2! h-dependent correction. The uncertainty due to this
correction was separated into two parts. The first is due to the
cryostat factor and is correlated as a function of ET and h .
The second is the IC correction, which is uncorrelated as a
function of ET and h .

~3! Response correction. The uncertainty associated with
the hadronic response is unimportant at low ET but dominant
at high ET . As a result of using a fit, the uncertainty is
partially correlated as a function of ET . The correlation ma-
trices for various jet cone sizes can be found in Ref. @51#.

~4! Method. The uncertainty in the method used to deter-
mine the energy scale correction arises from the data selec-
tion requirements, and punch-through at very high energies.
The method uncertainty is correlated as a function of ET .

~5! Showering correction. The uncertainty due to this cor-
rection is small except at very low ET and is considered to be
fully correlated as a function of ET .

E. Summary and verification studies

Figure 25 shows the magnitude of the correction and un-
certainty for R50.7 cone jets with h50. The overall cor-
rection factor to jet energy in the central calorimeter is
1.16060.018 and 1.12060.025 at 70 GeV and 400 GeV,
respectively. Point-to-point correlations in the energy uncer-
tainty are very high for jets with 200,ET,450 GeV.

The accuracy of the jet energy scale correction is verified
using a HERWIG g-jet sample and the DØGEANT detector
simulation. A Monte Carlo jet energy scale is derived and the
corrected jet energy is compared directly to the energy of the
associated particle jet. Figure 26 shows the ratio of calorim-
eter to particle jet energy before ~open circles! and after ~full
circles! the jet scale correction in the CC. The ratio is con-
sistent with unity to within ;0.5%.

X. JET RESOLUTIONS

The observed energy distributions are smeared due to
resolution effects. The fractional energy resolution sE /E
may be parametrized as

sE

E
5AN2

E2 1

S2

E
1C2. ~10.1!

The nature of the incident particles, sampling fluctuations,
and showering fluctuations, contribute mostly to the sam-

pling term, S. Detector imperfections and deviations from an
electron-hadron single particle response of unity, limit the
resolution at high energies and are described by the constant
term, C. Noise fluctuations ~including the effects of multiple
interactions! affect the low energy range and are given by the
noise term, N.

In the analyses reported here, we measure the ET of the
jets; hence we need to measure the resolution of ET , which
will have the same form:

sET

ET

5AN2

ET
2 1

S2

ET

1C2. ~10.2!

The relationship between sE /E and sET
/ET depends on the

h resolution, sh . Using ET5E/cosh h and assuming that
sET

and sh are uncorrelated then

S sET

ET
D 2

'S sE

E
D 2

1utanh hu2sh
2 . ~10.3!

In addition to the detector resolution, other contributions
must be folded into the resolutions used for physics analyses.
These are, for example, fluctuations of the out-of-cone
losses, and the fluctuations of the vertex z-position about its
measured value.

Using DØ dijet data we derive the energy resolutions us-
ing energy conservation in the transverse plane. The follow-
ing criteria are applied to dijet events in order to eliminate
sources of contamination due to additional low-ET jets:

The z-coordinate of the interaction vertex must be within
50 cm of the center of the detector.

FIG. 25. Corrections and errors for h jet50.0, R50.7. The high

~low! curve depicts the 1(2)1s uncertainties.
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The two leading-ET jets must be back-to-back (Df
.175°).

If there is a third jet in the event, it must have ET
jet3 less

than a specified value.
All jets in the event must satisfy the jet quality cuts.
Both leading jets are required to be in the same h region

so that their resolutions are similar, i.e. uh jet1u'uh jet2u.
The dijet balance method is based on the asymmetry vari-

able A, which is defined as

A5

ET
jet1

2ET
jet2

ET
jet1

1ET
jet2 , ~10.4!

where ET
jet1 and ET

jet2 are the randomly ordered transverse

energies of the two leading-ET jets in an event. The variance
of the asymmetry distribution can be written as

sA
2
5U ]A

]ET
jet1U2

s
E

T
jet1

2
1U ]A

]ET
jet2U2

s
E

T
jet2

2
. ~10.5!

Assuming ET[ET
jet1

5ET
jet2 and sET

[sE
T
jet15sE

T
jet2, the frac-

tional transverse energy can be expressed as a function of sA

in the following way:

S sET

ET
D 5A2sA . ~10.6!

Figure 27 shows the asymmetry distributions A for different
ET bins. The asymmetry distributions show minimal tails
(!1%) and are well-described by a Gaussian distribution.

A. Soft radiation correction

Although the Df and third-jet ET cuts (Df.175° and

ET
jet3

,8 GeV! are designed to remove events with more than
two reconstructed jets, events may still contain soft radiation
that prevents the two leading-ET jets from balancing in the
transverse plane; therefore the measured resolutions are
overestimates of the hypothetical ‘‘true resolutions.’’ To
evaluate this bias, the resolutions were determined from

samples with different ET
jet3 cuts: 8, 10, 12, 15, and 20 GeV.

The resolutions are then extrapolated to a ‘‘true’’ dijet system

with ET
jet3

50. Figure 28 shows the fractional jet resolutions

as a function of ET
jet3 cut for several ET bins.

This procedure is repeated for every ET bin. We expect
the correction for additional radiation in the event to be con-
tinuous as a function of jet ET and to be given by a function
K(ET). Because the soft radiation bias should primarily af-
fect small values of ET but be negligible at high ET , we
parametrize the soft radiation correction K(ET) with the
function:

K~ET!512exp~2a02a1ET!. ~10.7!

For the pseudorapidity bin uhu,0.5, a052.20 and a1

50.0055 ~Fig. 29!. This parametrization corrects the resolu-
tions of each ET bin for the effects of soft radiation.

Note that the point-to-point correlations in Fig. 29 are
very large because each data point represents a subsample of
the data point to its immediate right. In addition, it is not

clear that the linear trend continues down to ET
jet3

50; hence
we do not use the errors obtained from the fits to calculate
the error on the corrected resolutions. The uncertainty in the
extrapolation is the sum in quadrature of the following: the

uncertainty in the resolution at ET
jet3

.8 GeV, the difference

FIG. 26. Monte Carlo verification test. Corrected E jet
meas/E jet

ptcl ra-

tio is consistent with 1.0 within errors. The inner error bars depict

the statistical error due to the size of the Monte Carlo sample, and

the outer error bars represent the systematic uncertainty on the en-

ergy scale.

FIG. 27. Asymmetry distribution in several ET bins for jets with

uhu,0.5 and ET
jet3

,8 GeV.
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in the extrapolation to ET
jet3

50 including and excluding the

sample with the ET
jet3 cut of 8 GeV, and the uncertainty in the

fit to the point-to-point correlations.

B. Particle jet imbalance

Since we are correcting our measurements to the particle
level, we must not include the effects of hadronization of the
quarks and gluons in the resolutions. The energy carried by
particles emitted outside the particle-level cone does not be-

long to the particle jet. In other words, at LO the total pW T of
a dijet event at the particle level is zero, but the two recon-
structed particle jets do not necessarily balance, since there
could be particles emitted outside the cones. The asymmetry
distribution measures the detector resolution convoluted with
the contribution of the dijet imbalance at the particle level.
The latter must be removed.

The particle-level resolution is obtained by applying the
same techniques as used on the data to a HERWIG @33# Monte
Carlo sample, e.g. no energy fluctuations. The calorimeter
resolution is obtained by removing the particle-level resolu-
tion using

S sET

ET
D 2

5S sET

ET
D

data

2

2S sET

ET
D

MC

2

. ~10.8!

The fractional ET resolutions before the particle jet imbal-
ance correction are shown in Fig. 30 along with the MC data
used to calculate the particle jet imbalance correction. The
fully-corrected resolutions are given in Table IV.

C. Studies of systematic uncertainties

In principle, the soft radiation correction should remove
the effects of additional gluon radiation in the data sample;
however, this may not be the case because not all the par-
ticles present in the detector appear in reconstructed jets. It is
also possible that the requirement that jets be back-to-back
(Df.175°) preferentially selects events with better-than-
average resolution. The possible size of these effects is stud-
ied by changing the back-to-back requirement to Df
.165° and repeating the determination of the resolutions.
The result of this study is shown in Fig. 31. The resulting
resolutions are slightly higher than the resolutions calculated
with a cut of Df.175° and this difference is included in the
overall systematic error.

Some analyses require a tighter cut on the E” T than the
standard cut. In particular, the measurement of the inclusive

jet cross section requires a E” T cut of E” T /ET
jet1

,0.3 when

ET
jet1

.100 GeV, or E” T,30 GeV when ET
jet1

,100 GeV. Any

strengthening of the E” T requirement will implicitly reduce
the difference between the ET’s of the two jets selected and
also reduce the amount of soft gluon radiation; hence the
resolutions should improve. The resolution parametrization
using this E” T cut is depicted in Fig. 31.

The fractional ET resolutions are parametrized using Eq.
~10.2! for all rapidities (uhu,1) and are given in Table V
and are plotted in Figs. 31 and 32.

D. Jet resolutions at AsÄ630 GeV

The jet resolutions at As5630 GeV are measured using

the same techniques as the resolutions at As51800 GeV.

FIG. 28. Resolutions as a function of the cut on ET
jet3 for differ-

ent ET bins (uhu,0.5). The solid line shows the fit to the data

points, the dashed line shows the extrapolation to ET
jet3

50, and the

dotted line shows the fit excluding the ET
jet3

,8 GeV point.

FIG. 29. The soft radiation correction, K(ET), as a function of

ET (uhu,0.5). The error bars show the total uncertainty in the

point-to-point correlations. The inner error bars show the uncer-

tainty in the resolutions measured with ET
jet3

.8 GeV.
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These resolutions are supplemented at low values of jet ET

by resolutions measured using photon-jet events.
The energy resolution for photons is approximately 10

times better than that for a jet, allowing a convenient redefi-
nition of Eq. ~10.4!. The photon-jet asymmetry is defined as

Ag , jet5

ET
g
2ET

jet

ET
g , ~10.9!

where ET
g and ET

jet are the fully corrected photon and jet

transverse energies, respectively. If one approximates ET
g

'ET
jet[ET as before, and takes dET

g'0, the standard devia-
tion of the photon-jet asymmetry identically becomes the
fractional jet resolution:

S sET

ET
D 5sAg , jet

. ~10.10!

Figure 33 displays a typical distribution of photon-jet asym-
metry.

As described in previous sections, the measured resolu-
tion is adjusted to reflect third-jet biases and the particle-jet
asymmetry. The results bolster the low-statistics dijet results

at As5630 GeV. The resulting resolutions are given in Table

VI and are compared with the resolutions at As51800 GeV
in Fig. 34. It is clear that the resolutions at the different
center-of-mass energies are significantly different ~a prob-
ability of agreement of 0.0007!.

Parametrization of the jet resolutions

There are several parametrization choices that can be used
to fit the data at both center-of-mass energies. We considered
five alternative parametrizations of the resolutions:

~1! Fit the data simultaneously with Eq. ~10.2!: the CSN
model.

~2! Fit the data with common C and S terms and different
noise terms (N1800 , N630) at the two c.m. energies: the
CSNN model.

FIG. 30. sET /ET
as a function of average ET for uhu,0.5. The

data points ~squares! indicate the resolutions after the soft radiation

correction and the solid curve shows the fit to the resolutions. The

dash-dot lines show the systematic uncertainty due to the method.

The dashed line is a fit to the particle-level resolutions obtained

from MC points ~circles!.

TABLE IV. The measured jet resolutions at As51800 GeV and

their uncertainties.

^ET& ~GeV! s(ET)/ET D@s(ET)/ET#

35.75 0.154 0.009

47.32 0.120 0.004

54.25 0.106 0.003

67.70 0.096 0.003

86.43 0.088 0.001

105.08 0.078 0.002

130.42 0.070 0.001

155.54 0.068 0.001

182.40 0.062 0.001

213.44 0.056 0.002

241.69 0.059 0.003

295.10 0.050 0.003

FIG. 31. Fully corrected sET
/ET as a function of average ET for

uhu,0.5 ~i.e. the soft radiation correction and the particle-level dijet

imbalance corrections have been applied!. The data points ~solid

curve! show the resolution as calculated with cuts E” T /ET
jet1

,0.7

and Df.175°. The dashed line shows the effect of using a cut of

Df.165°. In addition, the effects of using a E” T cut of E” T /ET
jet1

,0.3 when ET
jet1

.100 GeV, or E” T,30 GeV when ET
jet1

,100 GeV

are shown ~dash-dot and solid-dots lines!.
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~3! Fit the data with common C and N terms and different
sampling terms (S1800 , S630) at the two c.m. energies: the
CSSN model ~Fig. 35!.

~4! Fit the data with a common C term and different sam-
pling and noise terms at the two c.m. energies: the CSSNN
model.

~5! Fit the data with no common terms: the CCSSNN
model.

A model where only the C term was allowed to vary be-
tween the two c.m. energies was not considered because C

depends on the physical structure of the calorimeter, and
hence should not change. The x2 and numbers of degrees of
freedom for these five models are calculated and compared
in Table VII. The fit parameters are given in Table VIII.

It is clear from the x2 of the parametrizations that the data
cannot be represented by a single fit with common C, S, and
N ~CSN model!. Of the other models, the CSSN model gives
the best fit to the data. If we allow additional parameters to
be included in the fit, the x2 does not improve significantly.
The CSNN model does not fit the data as well. The noise
distribution in the calorimeter is similar at the two different
c.m. energies ~Fig. 36!; hence the CSSN parametrization
model was chosen to fit the resolutions. The cause of the

change in sampling term as a function of c.m. energy is not
known. We have some evidence that the cause of the change
in the sampling term as a function of c.m. energy may be
attributable to the change in the mix of quarks and gluons at
fixed ET @53#, but this has not been proven for lack of suffi-
cient computing resources, and the ultimate reason for this
effect is therefore not yet fully understood.

E. Monte Carlo consistency tests

To verify the resolution extraction methods, a Monte
Carlo study compared events with and without the detector
simulation. The jet resolutions of the MC sample are mea-
sured in two ways; the first is the asymmetry method, and the
second is a direct measurement of the resolutions. If the ET

of a jet as measured by the calorimeter is simply denoted by
ET , and the ET as measured at the particle-level is denoted

by ET
ptcl , then the jet resolution can be derived from the ratio

TABLE V. The resolution fit parameters at As51800 GeV.

Fit variables for a E” T cut of E” T /ET
jet1

,0.7

h C S N

uhu,0.5 0.03360.006 0.68660.065 2.62160.810

0.5,uhu,1.0 0.04760.008 0.78360.137 0.59069.334

0.1,uhu,0.7 0.04060.013 0.64160.160 2.89161.413

Fit variables for a E” T cut of E” T /ET
jet1

,0.3

h C S N

uhu,0.5 0.03760.002 0.51460.027 4.00960.202

0.5,uhu,1.0 0.03660.006 0.73660.059 1.97260.904

0.1,uhu,0.7 0.03860.005 0.55060.074 3.65460.487

FIG. 32. Fully corrected sET
as a function of ET for different

rapidity regions.

FIG. 33. Distribution of photon-jet asymmetry for jet ET be-

tween 15 and 20 GeV in the central region.

TABLE VI. The measured jet resolutions ~and uncertainties! at

As5630 GeV.

Data set ^ET& ~GeV! s(ET)/ET D@s(ET)/ET#

g-jet 13.51 0.205 0.023

g-jet 17.81 0.217 0.048

g-jet 21.52 0.175 0.016

g-jet 24.27 0.169 0.019

jet-jet 26.28 0.148 0.012

jet-jet 34.35 0.117 0.015

jet-jet 40.87 0.114 0.010

jet-jet 52.27 0.097 0.009

jet-jet 59.12 0.079 0.007

jet-jet 70.53 0.075 0.006
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ET
ptcl

2ET

ET
ptcl

. ~10.11!

Figure 37 shows the differences in the resolutions as mea-
sured by the two methods. The differences between the two

are scattered about zero, indicating lack of bias in the
method. The differences between the two methods, less than
1%, indicates the magnitude of the systematic uncertainty,
which can be parametrized as

DS sET

ET

D 5

2.0

ET
2

10.01. ~10.12!

Subsequent to the publication by DØ of the inclusive jet
cross section @8# ~Sec. XI! and the dijet mass spectrum @25#

~Sec. XIV! at As51800 GeV the MC closure data for the
resolutions were reexamined ~see Fig. 38!. As a result of this,

the MC closure error at As51800 GeV was reduced for ET

.40 GeV:

 

 

FIG. 34. The single jet resolutions at As5630 GeV ~triangles!
and 1800 GeV ~circles!. The resolutions at the two center-of-mass

energies have been fitted separately to Eq. ~10.2!. The fit to the

As51800 GeV data is the solid line, and the fit to the As5630 GeV

data is the dashed line.

 

 

FIG. 35. The single jet resolutions at As5630 GeV ~triangles!
and 1800 GeV ~circles!. The resolutions at the two center of mass

energies have been fitted using the CSSN model ~solid lines!.

TABLE VII. x2 for the different models that can be used to

parametrize the single jet resolutions.

Model x2 Degrees of freedom Probability

CSN 44.9 19 0.0007

CSNN 25.5 18 0.11

CSSN 18.7 18 0.41

CSSNN 17.9 17 0.35

CCSSNN 17.9 16 0.33

TABLE VIII. The fit parameters for all models used to fit the

resolution data. The correlation matrix for the CSSN model is also

given.

Model Parameter Value Statistical

error

N 1.098 1.128

CSN S 0.745 0.038

C 0.028 0.004

N 2.571 0.309

CSSN S1800 0.691 0.027

S630 0.510 0.057

C 0.032 0.003

Correlation matrix

1.000 20.812 20.838 0.575

20.812 1.000 0.751 20.902

20.838 0.751 1.000 20.589

0.575 20.902 20.589 1.000

N1800 3.543 0.399

CSNN N630 1.907 0.437

S 0.590 0.049

C 0.040 0.003

N1800 2.510 0.893

N630 2.587 0.374

CSSNN S1800 0.696 0.068

S630 0.509 0.063

C 0.031 0.007
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DS sET

ET
D

As5630 GeV

5

2.23

ET
2

10.0021,

DS sET

ET
D

As51800 GeV

5

14.1

ET
2

10.0024.

~10.13!

The effect of reducing the error on the inclusive jet cross
section and dijet mass spectrum was negligible, and hence
the results were not updated. The reduced errors are impor-
tant for the analysis of the ratio of inclusive jet cross sections

at As5630 and 1800 GeV @21# ~Sec. XII!.
In Fig. 39 the measured resolutions are compared with the

CSSN fit. The shaded region shows the size of the fit uncer-
tainty, and the hatched region shows the size of the fit and
MC closure uncertainties added in quadrature. Also shown
are the other models. It is clear that the combined fit and MC
closure uncertainties are of reasonable size and that the total
uncertainties are not underestimated.

F. h and f resolutions

After the h-bias correction is applied, the average h of
the reconstructed jet is equal to the h of a particle-level jet,
but due to calorimeter showering effects, both h and f reso-
lutions remain non-zero. The h resolution is obtained by
using HERWIG Monte Carlo and studying hptcl2h as a func-
tion of jet energy and h . Figure 40 shows the h-resolution as
a function of jet energy for different energy regions. The

distributions show no tails and are well-described by a Gaus-
sians. The f resolution is determined by measuring fptcl

2f as a function of jet energy and h . Figure 41 shows the f
resolutions which are similar in magnitude to the h resolu-
tions.

XI. INCLUSIVE JET CROSS SECTION AT AsÄ1800 GeV

In this section we describe the measurement of the inclu-
sive jet cross section in the pseudorapidity ranges uhu,0.5
and 0.1,uhu,0.7. The inclusive jet cross section is given by

d2s

dETdh
5

N iC i

Lie iDETDh
~11.1!

FIG. 36. ~a! The average value and rms width of the calorimeter

noise distributions is given by the two lower points. The two upper

points are the values of the N parameter obtained in the fit to the

resolution data using the CSNN model. ~b! and ~c!: The noise dis-

tribution found within a standard jet cone at each center-of-mass

energy ~the cone used to measure the noise is required to be at least

90° in f from any other jet in the event!.

FIG. 37. Resolution closure from HERWIG Monte Carlo simula-

tion; the difference in resolution obtained using the two techniques.

The degree of closure is within 1% for all data points above 25

GeV.

FIG. 38. The improved resolution closure obtained using the

HERWIG Monte Carlo simulation, for both center-of-mass energies.

For most of the kinematic range, the degree of closure lies within a

fraction of a percent.
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where N i is the number of accepted jets in ET bin i of width
DET , C i is the resolution unsmearing correction, Li is the
integrated luminosity, e i is the efficiency of the trigger, ver-
tex selection, and the jet quality cuts, and Dh is the width of
the pseudorapidity bin.

A. Data selection

The selected data are events with one or more jets which
satisfy the requirements of the inclusive jet triggers. Jets are
required to pass the standard jet quality criteria to be in-
cluded in the cross section sample ~Sec. VIII!. The E” T of the
event is required to satisfy Eq. ~8.5!. The vertex of the event
must be within 50 cm of z50. The efficiency for each jet is
then given by the product of the efficiencies of the jet quality
cuts (e jet), the efficiency of the cut on E” T (emet), the effi-
ciency for an event to pass the trigger (e trigger), and the effi-
ciency for passing the vertex cut (evertex):

e i5e jetemete triggerevertex . ~11.2!

The values of e jet and emet are plotted in Fig. 17. The effi-
ciency of the vertex requirement is 9061%.

B. Filter efficiency and luminosity matching

Figure 42 shows the cross section ratios for Jet_50/Jet_30,
Jet_85/Jet_50 and Jet_115/Jet_85. Since the denominator in
each ratio represents a less restrictive trigger than the nu-
merator, the numerator trigger is efficient where the ratio
stabilizes at a constant value. Thus Jet_50, Jet_85, and

Jet_115 are efficient above 90, 130, and 170 GeV, respec-

tively. The efficiency for Jet_30 was determined to be 100%

at 50 GeV ~Sec. V!.
The determination of the integrated luminosity for each of

the jet triggers is described in detail in Sec. VI. The luminos-

ity used for Jet_50 is determined by matching the Jet_50

inclusive jet cross section to the Jet_85 cross section above

130 GeV, introducing a 1.1% statistical error. The Jet_30

luminosity is determined by matching to the Jet_50 cross

section above 90 GeV, which results in a 1.4% statistical

error. Hence the matching error for Jet_30 is given by 1.1%

and 1.4% added in quadrature, or 1.7%. These errors are

added to the 5.8% error on Jet_85. The final Jet_30 and
Jet_50 luminosities are then 0.350 pb21 and 4.76 pb21 with
errors of 6.1% and 5.9%, respectively.

Figure 43 shows ET spectra for the four jet triggers, with-
out luminosity normalization, in the central rapidity region
(uhu,0.5) after efficiency and energy corrections.

C. Observed cross section

Figure 44 shows the central cross section compiled from
the four triggers. As suggested by the cross section ratios,
and in order to maximize statistics, the spectrum from 60
<ET<90 GeV is taken from the Jet_30 data, 902130 GeV
from Jet_50, 1302170 GeV from Jet_85, and above 170
GeV from Jet_115. The three data sets in Fig. 44 correspond
to the low, nominal, and high energy scale corrections. The
differences can be considered to be an error estimate on the
cross section which dominates all other sources of error ~lu-
minosity, jet, missing ET , and vertex cuts!.

FIG. 39. A comparison of the measured jet resolutions and the

fit using the CSSN model. Also shown are curves representing com-

parisons between the different models and CSSN. The shaded re-

gions show the uncertainty in the fit. The hatched region shows the

magnitude of the fit and MC closure uncertainties added in quadra-

ture.

FIG. 40. h resolution as a function of the particle-level jet en-

ergy using a HERWIG simulation.

FIG. 41. f resolution as a function of the particle-level jet en-

ergy using a HERWIG simulation.
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D. Highest ET event scanning

Since the cross section decreases rapidly as the ET in-
creases, a small amount of contamination can have a signifi-
cant effect on the measured cross sections at large ET . The
data set included 46 events that passed selection cuts and
contained a central jet (uhu< 0.7! with transverse energy
greater than 375 GeV. These events were visually scanned
for contamination. We defined an event to be ‘‘good’’ if it
had at least two jets with well-contained energy, if there were
no isolated cells forming jets, and if there was no activity in
the muon chambers consistent with cosmic ray interactions
associated with the event. These conditions were intended to
reject high-ET jets arising from noisy calorimeter cells,
cosmic rays, or beam halo from the main ring, which
passes through the DØ detector @28#. The 46 events con-
tained 62 jets with ET greater than 375 GeV. Seven of
these jets included restored cells and seven of the events
preferred the second vertex. All of the events passed visual
inspection.

E. Resolution unfolding

The steep ET spectrum is distorted by jet energy resolu-
tion. The distortion was corrected by using an ansatz func-
tion for the cross section,

exp~A !ET
aS 12

2ET

As
D b

, ~11.3!

smearing it with the measured resolution ~Table V!, and
comparing the smeared result with the measured cross sec-
tion. The parameters A ,a , and b were varied until the best fit
was found between the observed cross section and the
smeared trial spectrum. The x2 for the fit is 21.2 for 24 bins
and three parameters, corresponding to 21 degrees of free-

dom ~Table IX!. Figure 45 shows an example of the energy
scale corrected data with the best-fit smeared and unsmeared
ansatz functions. Simulations have shown that h-smearing
causes negligible changes in the inclusive cross sections
@20#.

Figure 46 shows the unsmearing correction as a function
of transverse energy. The observed cross section is multiplied

FIG. 42. Inclusive cross section ratios. The arrows signify the

ET above which the higher threshold trigger is used.

FIG. 43. Energy-corrected ET spectra for Jet_115 ~solid line!,
Jet_85 ~dashed!, Jet_50 ~dotted!, and Jet_30 ~dot-dashed!. The ar-

rows signify the ET range in which each trigger’s spectrum is used.

FIG. 44. Energy-corrected and luminosity-normalized ET spec-

tra. The points with error bars correspond to the nominal energy

scale correction. The dashed ~dotted! histogram corresponds to the

high ~low! energy scales corrections.
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by this correction. The central curve shows the nominal cor-
rection. The change in cross section is greatest at low ET due
to the steepness of the inclusive spectra and the relatively
poor, rapidly changing jet resolution. The magnitude of the
correction is 213% at 64.6 GeV, drops to '26% at 205
GeV, and then rises to 212% at 461 GeV.

The two outer curves of Fig. 46 show the extent of the
uncertainties in the nominal correction due to the resolution
uncertainties. This error was estimated directly with the data
by unfolding with the upper and lower estimates of the reso-
lution curves. For uhu,0.5 the maximum error is 3%. Vary-
ing the fit parameters by up to 3 standard deviations results
in negligible changes in the resolution correction.

The resolution correction errors due to the fit procedure
and statistical fluctuations of the data were estimated by per-
forming the unfolding procedure on distributions simulated
with JETRAD. A generated theoretical distribution was
smeared with a resolution function. The ratio of the gener-
ated theoretical distribution to the smeared theoretical distri-
bution was taken as the ‘‘true’’ unsmearing correction. Next,
the previously described unfolding procedure was applied to
the ‘‘smeared theory’’ and the resulting unsmearing correc-
tion was compared with the ‘‘true’’ unsmearing correction.
The difference between the two corrections provided a mea-
surement of the unfolding error. Above ET550 GeV, the
differences were less than 1%. The error due to statistical
fluctuation was estimated by simulating many jet samples
containing the same total number of jets as the data sample.
The statistical fluctuations between the different simulated
samples lead to an error below 0.25% in any ET bin. A
detailed description of this unfolding, and the unfolding error
estimation procedures can be found in Ref. @20#.

F. Unfolded cross section

The central inclusive jet cross section is shown in Fig. 47.
The cross section values are plotted in each bin at the ET

value for which the average integrated cross section is equal
to the value of the analytical function @Eq. ~11.3!# fitted to
the cross-section @54#. The error bars are purely statistical
and are visible only for the highest ET value. The error band
indicates a one standard deviation variation of all systematic
uncertainties, except the 5.8% uncertainty on the absolute
normalization. The measured cross section is compared to
the inclusive cross section for the same ET values calculated
with the JETRAD program using the CTEQ3M PDF and the

scale m50.5ET
max . This prediction lies within the error band

for all ET bins. Table X lists the cross sections for uhu,0.5

and 0.1,uhu,0.7.

G. Cross section uncertainties

The cross section uncertainties are dominated by the un-

certainties in the energy scale correction. Table XI summa-

TABLE IX. Unsmearing ansatz function parameters for the in-

clusive jet cross section ~in fb! at As51800 GeV.

Rapidity range Parameter Value

A 37.28

uhu,0.5 a 25.04

b 8.23

A 37.30

0.1,uhu,0.7 a 25.05

b 8.37

FIG. 45. Data with smeared and unsmeared fit hypotheses @Eq.

~11.3!#. The lower pane shows the smeared fit residuals, ~data-

smeared fit!/smeared fit.

FIG. 46. The nominal unsmearing correction is given by the

central line. See the text for an explanation of the other curves.
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rizes the uncertainties in the unfolded cross section. A de-
tailed list of the uncertainties and their magnitudes is given
in Tables XII and XIII. Figure 48 shows the various uncer-
tainties for the uhu,0.5 cross section. The second uppermost
curve shows the uncertainty in the energy scale, which varies
from 8% at low ET to 30% at 450 GeV. Clearly, this contri-
bution dominates all other sources of error except at low ET

where the 5.8% luminosity error is of comparable magni-
tude. The other sources of error ~jet and event selection, trig-
ger matching, and jet resolution! are relatively small.

Most of the systematic uncertainties in the inclusive jet
cross section are highly correlated as a function of ET . The
uncertainties are separated into three ‘‘types,’’ depending on
the correlation (r) between two bins:

r51: ‘‘Completely correlated,’’ indicating that a 1s fluc-
tuation in an error at a particular ET bin is accompanied by a
1s fluctuation at all other ET bins ~Fig. 49!.

r5r(ET1 ,ET2)P@21,1#: ‘‘Partially correlated,’’ possess-
ing a varying degree of correlation in ET . A 1s fluctuation
thus implies a less than 1s fluctuation elsewhere ~Fig. 50!;
negative r indicates the shifts will have opposite directions
at the two points. This type of error is the most complicated
to calculate and propagate.

r50: ‘‘Uncorrelated,’’ statistical in nature or otherwise
independent of one another. Some small errors with un-
known ~but probably positive! ET correlation are treated as
uncorrelated for simplicity. Such treatment is conservative.

The uncertainties due to jet selection are correlated as a
function of ET . The uncertainties due to unsmearing are also
correlated. The luminosity uncertainty is correlated as a
function of ET . The trigger matching uncertainties are cor-
related as a function of ET for bins that are derived from the

same trigger sample and uncorrelated for all other bins. The
energy scale errors are partially correlated as a function of
ET and are discussed below.

The energy scale calibration is implemented as a series of
corrections, each with its own uncertainty ~Sec. IX!. The
uncertainty due to the energy scale is separated into several
components so that the correlations as a function of ET can
be studied ~Fig. 51!. The energy scale uncertainties were
calculated with a Monte Carlo simulation of the inclusive jet
cross section. At each uncorrected ET the simulation gener-
ated an ensemble of jets with rapidity, vertex position, lumi-
nosity, and variable correlations derived from the data. Fig-
ure 51 shows the components of energy scale uncertainty as
a function of ET . The ET of each of the simulated jets was
then corrected and the resulting uncertainty in the jet cross
section calculated. These uncertainties are in good agreement
with the uncertainties derived from the data.

The uncertainties due to the offset correction, the
h-dependent correction, the showering correction, and the
method are all correlated as a function of ET . The hadronic
response uncertainty is partially correlated as a function of
ET ~Sec. IX!. The hadronic response correlations are illus-
trated in Fig. 52 and are given in Table XIV. In addition, the
response uncertainties are only approximated by a Gaussian
uncertainty distribution. Tables XV and XVI give the actual
uncertainties for a given percentage confidence level ~C.L.!,
i.e. if one has a 120% error in the cross section at a given
ET corresponding to 95% C.L., then with 95% probability
the response errors will cause a deviation in the cross section
of <20%. The correlations for the total systematic uncer-
tainties are given in Table XVII.

H. Comparison of the data to theory

Figures 53 and 54 show the fractional difference between
the data, D, and a JETRAD theoretical prediction, T, normal-
ized by the prediction, @(D2T)/T# , for uhu,0.5 and 0.1
,uhu,0.7 respectively. The JETRAD prediction was gener-

ated with m50.5ET
max , Rsep51.3, and several different

choices of PDF. The error bars represent statistical errors
only. The outer bands represent the total cross section error
excluding the 5.8% luminosity uncertainty. Given the experi-
mental and theoretical uncertainties, the predictions are in
agreement with the data; in particular, the data above ET

5350 GeV show no indication of an excess relative to QCD.
The data and theory can be compared quantitatively with

a x2 test incorporating the uncertainty covariance matrix
~Table XVII @55#!. The x2 is given by

x2
5(

i , j
d iV i j

21d j ~11.4!

where d i is the difference between the data and theory for a
given ET bin, and V i j is element i , j of the covariance matrix:

V i j5r i jDs iDs j , ~11.5!

where Ds is the sum of the systematic error and the statis-
tical error added in quadrature if i5 j and the systematic

FIG. 47. The uhu,0.5 inclusive jet cross section. Statistical un-

certainties are invisible on this scale except for the highest ET bin.

The histogram represents the JETRAD prediction and the shaded

band represents the 61s systematic uncertainty band about the

prediction excluding the 5.8% luminosity uncertainty.
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error if iÞ j , and r i j is the correlation between the systematic
uncertainties of ET bins as given in Table XVII. The system-
atic uncertainty is given by the percentage uncertainty times
the theoretical prediction ~see Appendix for a discussion of
the x2). The resulting x2 values are given in Table XVIII for
all of the theoretical choices described above. The choice of
PDF and renormalization scale is varied. Each comparison
has 24 degrees of freedom.

All but one of the JETRAD predictions adequately describe
the uhu,0.5 and 0.1,uhu,0.7 cross sections. For these, the

probabilities for x2 to exceed the listed values are between
11% and 86%. The prediction using CTEQ4HJ and m
50.5ET

max produces the highest probability for both measure-

ments. The prediction with the MRST(g↓) PDF has a prob-
ability of agreement with the data of 0.3%, and thus is in-
compatible with our data.

Comparisons between the data and EKS calculations using
various PDFs, Rsep51.3, and with renormalization scales
m5(0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00!ET ~where

ET5ET
max and ET

jet) are also made ~Table XIX!. The EKS

predictions give a reasonable description of the uhu,0.5
cross section. However, unlike the JETRAD predictions, the

EKS calculation using CTEQ3M and m50.25ET
max has the

highest probability of agreement. The EKS predictions for
0.1,uhu,0.7 all give x2 values with probabilities <12%
for the choices examined.

I. Comparison with previously published results

The top panel in Fig. 55 shows (D2T)/T for our data in
the 0.1<uhu<0.7 region relative to a JETRAD calculation

using the CTEQ4HJ PDF, m50.5ET
max , and Rsep51.3. Also

shown are the previously published CDF data from the
1992–1993 Fermilab Tevatron running period @7# relative to

TABLE X. The uhu,0.5 and 0.1,uhu,0.7 cross sections ~Eq. 11.1!. Also given is the value of the fit to the cross section using Eq.

~11.3!.

uhu,0.5 0.1,uhu,0.7

Bin Range Plotted ET Cross Sec. Sys. Fitted Plotted ET Cross Sec. Sys. Fitted

~GeV! ~GeV! 6 Stat. Uncer.(%) Cross Sec. ~GeV! 6 Stat. Uncer.(%) Cross Sec.

(fb/GeV/Dh) (fb/GeV/Dh) (fb/GeV/Dh) (fb/GeV/Dh)

60–70 64.6 (6.3960.04)3106
610 6.273106 64.6 (6.2660.04)3106

610 6.133106

70–80 74.6 (2.8060.03)3106
610 2.743106 74.6 (2.7460.03)3106

610 2.673106

80–90 84.7 (1.3660.02)3106
610 1.313106 84.7 (1.3460.02)3106

610 1.283106

90–100 94.7 (6.8460.04)3105
610 6.743105 94.7 (6.6660.04)3105

610 6.533105

100–110 104.7 (3.7660.03)3105
610 3.673105 104.7 (3.6360.03)3105

610 3.543105

110–120 114.8 (2.1460.02)3105
610 2.083105 114.8 (2.0760.02)3105

610 2.013105

120–130 124.8 (1.2360.02)3105
610 1.233105 124.8 (1.1960.01)3105

610 1.183105

130–140 134.8 (7.4660.04)3104
610 7.493104 134.8 (7.1660.03)3104

610 7.183104

140–150 144.8 (4.7160.03)3104
610 4.693104 144.8 (4.5160.03)3104

610 4.483104

150–160 154.8 (2.9760.02)3104
610 3.003104 154.8 (2.8360.02)3104

111,210 2.863104

160–170 164.8 (1.9460.02)3104
111,210 1.963104 164.8 (1.8360.02)3104

611 1.863104

170–180 174.8 (1.3060.01)3104
611 1.303104 174.8 (1.2360.01)3104

611 1.233104

180–190 184.8 (8.8360.10)3103
611 8.753103 184.8 (8.3860.09)3103

611 8.283103

190–200 194.8 (5.9560.08)3103
611 5.983103 194.8 (5.6460.07)3103

112,211 5.643103

200–210 204.8 (4.1560.07)3103
112,211 4.133103 204.8 (3.9360.06)3103

112,211 3.883103

210–220 214.8 (2.8460.06)3103
112,211 2.883103 214.8 (2.6760.05)3103

612 2.703103

220–230 224.8 (2.0860.05)3103
612 2.033103 224.8 (1.9560.04)3103

113,212 1.903103

230–250 239.4 (1.2660.03)3103
113,212 1.243103 239.4 (1.1760.02)3103

113,212 1.153103

250–270 259.4 (6.3460.19)3102
114,213 6.403102 259.4 (5.8460.17)3102

114,213 5.943102

270–290 279.5 (3.6560.15)3102
114,213 3.393102 279.5 (3.2160.12)3102

115,214 3.133102

290–320 303.9 (1.7360.08)3102
116,214 1.603102 303.9 (1.5660.07)3102

116,215 1.473102

320–350 333.9 (6.6060.50)3101
117,216 6.503101 333.9 (6.0660.44)3101

118,216 5.913101

350–410 375.7 (1.8360.19)3101
121,218 1.913101 375.7 (1.4860.15)3101

122,219 1.723101

410–560 461.1 (1.2060.30)3100
130,225 1.573100 460.9 (1.0560.25)3100

131,226 1.393100

TABLE XI. Unfolded cross section errors.

Source Percentage Comment

Jet and event selection ,2 Correlated

Luminosity 5.8 Correlated

Luminosity match

60– 90 GeV 1.7 Statistical, Correlated

90–130 GeV 1.1 Trigger-to-trigger

Energy Scale 15–30 Mostly correlated

Unfolding

Resolution function 1–3 Correlated

Closure 1–2 Correlated
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the same JETRAD calculation. For this rapidity region, we

have carried out a x2 comparison between our data and the

nominal curve describing the central values of the data of

Ref. @7#. Comparing our data to the nominal curve, as though
it were theory, we obtain a x2 of 56.5 for 24 degrees of
freedom ~probability of 0.02%). Thus our data cannot be
described with this parametrization. As illustrated in the
middle panel of Fig. 55, our data and the curve differ at low
and high ET ; such differences cannot be accommodated by
the highly correlated uncertainties of our data. If we include
the systematic uncertainties of the data of Ref. @7# in the
covariance matrix, the x2 is reduced to 30.8 ~probability of
16%), representing acceptable agreement.

J. Rapidity dependence of the inclusive jet cross section

DØ has subsequently extended the measurement of the
inclusive jet cross section as a function of ET to uhu,3 in
several bins of pseudorapidity @26#. In this analysis the de-
tails of the jet energy scale corrections, single jet resolutions,
and vertex selection were updated to minimize uncertainties
for jets at large pseudorapidity (uhu.1.5). These cross sec-
tions are compared with JETRAD predictions generated with

m50.5ET
max , Rsep51.3, and similar choices of PDF given in

Table XVIII. The data and theory were also compared using

the same x2 test as used in this paper ~Sec. XI H!. The data

indicate an preference for the CTEQ4HJ, MRST(g↑), and

CTEQ4M PDFs @26#.

K. Conclusions

We have made the most precise measurement to date of

the inclusive jet cross section for ET>60 GeV at As51800

GeV. No excess production of high-ET jets is observed. QCD

predictions are in good agreement with the observed cross

section for most standard parton distribution functions and

different renormalization scales (m50.2522.00ET where ET

5 ET
max or ET

jet).

XII. RATIO OF INCLUSIVE JET CROSS KECTIONS

AT AsÄ1800 AND 630 GeV

A. Inclusive jet cross section at AsÄ630 GeV

The inclusive jet cross section for uhu,0.5 at As5630
GeV consists of data collected with three triggers: Jet_12,

TABLE XII. Percentage uhu,0.5 cross section uncertainties. The last row gives the nature of the ET bin-to-bin correlations: 0 signifies

uncorrelated uncertainties, 1 correlated, and p partially correlated.

ET

GeV

Stat

Error

Jet

Sel Lumin

Lumin

Match

Unsmearing Energy Scale

High Low Underlying h Method Shower Response

High Low High Low High Low High Low High Low

64.6 0.7 0.5 5.8 1.8 2.5 22.6 5.3 25.0 0.2 20.2 3.4 23.2 4.7 24.6 1.1 21.0

74.6 1.0 0.5 5.8 1.8 2.3 22.4 4.7 24.5 0.2 20.2 3.5 23.3 4.8 24.7 1.2 21.1

84.7 1.5 0.5 5.8 1.8 2.1 22.2 4.2 24.1 0.2 20.2 3.5 23.5 4.9 24.8 1.5 21.3

94.7 0.6 0.5 5.8 1.1 1.9 22.1 3.8 23.7 0.2 20.2 3.6 23.5 5.0 24.9 1.9 21.9

104.7 0.8 0.5 5.8 1.1 1.9 22.1 3.5 23.4 0.2 20.2 3.6 23.6 5.1 25.1 2.2 22.2

114.8 1.0 0.5 5.8 1.1 1.8 22.0 3.2 23.1 0.2 20.2 3.7 23.6 5.3 25.1 2.6 22.5

124.8 1.4 0.5 5.8 1.1 1.8 22.0 3.0 22.9 0.2 20.2 3.9 23.7 5.4 25.2 2.8 22.8

134.8 0.5 0.5 5.8 0.0 1.7 22.0 2.9 22.8 0.2 20.2 4.1 23.9 5.6 25.4 3.1 23.0

144.8 0.6 0.5 5.8 0.0 1.7 22.0 2.7 22.6 0.2 20.2 4.1 23.9 5.6 25.5 3.3 23.2

154.8 0.8 0.5 5.8 0.0 1.7 22.0 2.5 22.5 0.3 20.3 4.3 23.9 5.9 25.6 3.7 23.4

164.8 1.0 0.5 5.8 0.0 1.7 22.1 2.4 22.4 0.3 20.3 4.5 24.1 5.9 25.7 3.9 23.6

174.8 0.9 0.5 5.8 0.0 1.7 22.1 2.3 22.3 0.3 20.3 4.7 24.2 6.1 25.9 4.1 23.9

184.8 1.1 0.5 5.8 0.0 1.8 22.1 2.2 22.2 0.3 20.3 4.9 24.3 6.2 26.0 4.3 24.2

194.8 1.4 0.5 5.8 0.0 1.8 22.2 2.1 22.1 0.3 20.3 5.1 24.4 6.4 26.2 4.5 24.4

204.8 1.7 0.5 5.8 0.0 1.8 22.2 2.1 22.0 0.3 20.3 5.3 24.5 6.5 26.3 4.8 24.6

214.8 2.0 0.5 5.8 0.0 1.9 22.3 2.0 22.0 0.3 20.3 5.6 24.5 6.7 26.4 5.2 25.0

224.8 2.4 0.5 5.8 0.0 1.9 22.4 2.0 21.9 0.3 20.3 5.8 24.7 6.9 26.6 5.4 25.2

239.4 2.1 0.5 5.8 0.0 2.0 22.5 1.9 21.9 0.3 20.3 6.1 24.9 7.1 26.8 5.8 25.7

259.4 3.0 0.5 5.8 0.0 2.1 22.6 1.8 21.8 0.3 20.3 6.6 25.1 7.5 27.2 6.4 26.3

279.5 4.0 0.6 5.8 0.0 2.2 22.8 1.8 21.8 0.4 20.3 7.1 25.4 7.9 27.5 7.1 26.9

303.9 4.7 0.6 5.8 0.0 2.4 23.1 1.8 21.8 0.4 20.4 7.9 25.7 8.4 27.9 8.3 27.8

333.9 7.6 0.7 5.8 0.0 2.7 23.5 1.8 21.7 0.4 20.4 9.0 26.1 9.1 28.6 9.8 29.3

375.7 10.2 1.0 5.8 0.0 3.2 24.2 1.7 21.7 0.5 20.5 10.8 26.8 10.2 29.6 12.4 211.7

461.1 25.0 2.1 5.8 0.0 4.6 25.9 1.7 21.7 0.6 20.6 15.0 28.6 13.2 212.0 20.3 218.2

Correl. 0 1 1 p 1 1 1 1 1 1 1 1 1 1 p p
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Jet_2_12, and Jet_30. To form the inclusive jet cross section,
an ET region of each trigger is selected to maximize statisti-
cal power while maintaining full trigger efficiency. Any
given cross section bin receives contributions from one and
only one trigger. The luminosity in any given bin is the lu-
minosity exposure for that trigger ~given in Table II!.

The inclusive jet cross section at As51800 GeV was de-
termined prior to the 630 GeV analysis. To facilitate the ratio

calculation as a function of xT[2ET /As , the bin boundaries
for the 630 GeV analysis were selected such that

ET
630

5

630

1800
ET

1800 , ~12.1!

i.e., such that the bin edges match in xT space. Most of the
resulting bins are 3.5 GeV wide, but some bins have a width
of 7.0 GeV, 10.5 GeV, or more.

Figure 56 displays the observed cross section at As

5630 GeV. The three different symbols indicate the ET re-
gion for each jet trigger. Vertical lines ~mostly hidden by the
symbols! indicate the statistical uncertainty on each point.

The cross section is corrected for the effects of jet reso-

lution using the same method as used for the As51800 GeV
cross section ~Sec. XI E!. The single jet resolutions at s5630

FIG. 48. Contributions to the uhu,0.5 inclusive jet cross section

uncertainty plotted by component.

TABLE XIII. Percentage 0.1,uhu,0.7 cross section uncertainties. The last row gives the nature of the ET bin-to-bin correlations: 0

signifies uncorrelated uncertainties, 1 correlated, and p partially correlated.

ET

GeV

Stat

Error

Jet

Sel

Lumin Lumin

Match

Unsmearing Energy Scale

High Low Underlying h Method Shower Response

High Low High Low High Low High Low High Low

64.6 0.6 0.5 5.8 1.8 2.3 22.6 5.3 25.0 0.6 20.6 3.4 23.2 4.8 24.8 1.1 21.1

74.6 0.9 0.5 5.8 1.8 2.1 22.4 4.7 24.5 0.6 20.6 3.5 23.4 4.9 24.7 1.3 21.1

84.7 1.4 0.5 5.8 1.8 2.0 22.3 4.2 24.1 0.6 20.6 3.5 23.5 5.0 24.9 1.6 21.5

94.7 0.5 0.5 5.8 1.1 1.9 22.2 3.8 23.7 0.6 20.6 3.6 23.5 5.1 25.0 2.1 22.1

104.7 0.7 0.5 5.8 1.1 1.8 22.2 3.5 23.4 0.7 20.7 3.7 23.6 5.2 25.2 2.3 22.3

114.7 1.0 0.5 5.8 1.1 1.8 22.1 3.2 23.1 0.7 20.7 3.8 23.6 5.5 25.2 2.7 22.6

124.8 1.3 0.5 5.8 1.1 1.8 22.1 3.0 22.9 0.7 20.7 3.9 23.7 5.5 25.4 2.9 22.9

134.8 0.5 0.5 5.8 0.0 1.8 22.1 2.8 22.8 0.7 20.7 4.1 23.9 5.7 25.5 3.2 23.1

144.8 0.6 0.5 5.8 0.0 1.8 22.2 2.7 22.6 0.7 20.7 4.2 24.0 5.8 25.6 3.6 23.3

154.8 0.8 0.5 5.8 0.0 1.8 22.2 2.5 22.5 0.8 20.8 4.4 24.0 5.9 25.8 3.7 23.5

164.8 0.9 0.5 5.8 0.0 1.8 22.2 2.4 22.4 0.8 20.8 4.6 24.2 6.0 25.9 4.0 23.8

174.8 0.9 0.5 5.8 0.0 1.8 22.3 2.3 22.3 0.8 20.8 4.8 24.2 6.2 26.0 4.2 24.0

184.8 1.1 0.5 5.8 0.0 1.9 22.4 2.2 22.2 0.8 20.8 5.0 24.3 6.4 26.2 4.4 24.4

194.8 1.3 0.5 5.8 0.0 1.9 22.4 2.1 22.1 0.8 20.8 5.2 24.4 6.5 26.3 4.7 24.4

204.8 1.6 0.5 5.8 0.0 1.9 22.5 2.1 22.0 0.9 20.9 5.4 24.5 6.7 26.5 5.0 24.8

214.8 1.9 0.5 5.8 0.0 2.0 22.6 2.0 22.0 0.9 20.9 5.7 24.6 6.9 26.6 5.3 25.0

224.8 2.2 0.5 5.8 0.0 2.0 22.7 2.0 22.0 0.9 20.9 6.0 24.8 7.0 26.7 5.6 25.5

239.4 2.0 0.5 5.8 0.0 2.1 22.8 1.9 21.9 1.0 20.9 6.2 24.9 7.3 26.9 6.0 25.8

259.4 2.9 0.5 5.8 0.0 2.3 23.0 1.9 21.9 1.0 21.0 6.8 25.1 7.7 27.2 6.7 26.4

279.5 3.9 0.6 5.8 0.0 2.4 23.3 1.8 21.8 1.1 21.0 7.4 25.4 8.0 27.6 7.5 27.2

303.9 4.5 0.6 5.8 0.0 2.7 23.6 1.8 21.8 1.1 21.1 8.1 25.7 8.5 28.0 8.7 28.3

333.9 7.2 0.7 5.8 0.0 3.0 24.1 1.8 21.8 1.2 21.2 9.3 26.2 9.2 28.6 10.2 29.8

375.7 10.3 1.0 5.8 0.0 3.6 24.9 1.8 21.7 1.3 21.3 11.1 26.9 10.3 29.7 13.5 212.5

460.9 24.3 2.1 5.8 0.0 5.2 27.0 1.7 21.7 1.6 21.6 15.1 28.7 13.3 212.2 21.8 219.4

Correl. 0 1 1 p 1 1 1 1 1 1 1 1 1 1 p p
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GeV are given in Sec. X D. The resulting ansatz fit param-
eters are given in Table XX and the unsmearing correction is
plotted in Fig. 57.

The resulting inclusive jet cross section at As5630 GeV
is given in Table XXI and is plotted in Fig. 58. The uncer-
tainties in the cross section are given in Table XXII and are
also plotted in Fig. 59. The bin-to-bin correlations of the
uncertainties are shown in Fig. 60 and are given in Table
XXIII.

The magnitude of the energy scale uncertainties are larger

for the cross section at As5630 GeV than at As51800 GeV
~Table XII!. This is caused by several factors. The cross sec-
tion at 630 GeV begins with jet ET.20 GeV compared with

60 GeV at As51800 GeV. The uncertainty in the energy
scale offset correction ~which is additive! has a much larger
effect on 20 GeV jets than on 60 GeV jets. For ET.60 GeV

the cross section at As5630 GeV is much steeper than the
cross section at 1800 GeV, hence the same uncertainty in the
energy scale will lead to a larger uncertainty in the cross
section.

Figures 61 and 62 show the fractional differences between
the data and several JETRAD predictions using different

choices of renormalization scale and PDF. These NLO QCD
predictions are in reasonable agreement with the data. The
data and predictions are compared quantitatively using a x2

test ~Sec. XI H!. The resulting x2 values are given in Table
XXIV; each comparison has 20 degrees of freedom. All but
two of the JETRAD predictions adequately describe the cross

section at As5630 GeV. For these, the probabilities for x2 to
exceed the listed values are between 6.4% and 78%. The

prediction using MRST(g↑) and m50.5ET
max produces the

FIG. 49. Example of an error band relative to some nominal

distribution ~illustrated here with a flat line!. If the errors at points 1

and 2 are completely correlated, then a one standard deviation (1s)

D1 at the first position necessarily results in a 1s D2 at the second

position.

FIG. 50. If the errors at points 1 and 2 are partially correlated,

then a full 1s D1 at the first position results in a smaller than 1s
D28

at the second position. The correlation factor illustrated here is

0.55.

FIG. 51. Percentage cross section errors for uhu,0.5 associated

with the components of energy scale correction.

FIG. 52. The correlations of the uncertainty due to the hadronic

response correction as a function of ET . The solid curve shows the

correlations relative to the 461 GeV bin, the dashed curve with

respect to the 205 GeV bin, and the dotted curve with respect to the

105 GeV bin.
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TABLE XIV. The correlations for the uncertainty due to the energy scale response for uh jetu,0.5, and 0.1,uh jetu,0.7. The correlation values above the diagonal are the correlations

for uh jetu,0.5 and the correlations below the diagonal correspond to 0.1,uh jetu,0.7. In both cases the correlation matrices are symmetric.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1.00 0.97 0.94 0.90 0.87 0.83 0.80 0.76 0.72 0.68 0.64 0.60 0.56 0.53 0.49 0.45 0.42 0.37 0.31 0.26 0.20 0.14 0.07 -0.03 1

1.00 0.99 0.97 0.95 0.92 0.90 0.86 0.83 0.79 0.75 0.72 0.68 0.64 0.60 0.56 0.53 0.48 0.41 0.35 0.29 0.22 0.15 0.03 2

1 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.85 0.82 0.78 0.75 0.71 0.67 0.64 0.60 0.55 0.49 0.43 0.37 0.30 0.22 0.10 3

2 0.97 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.80 0.77 0.74 0.70 0.67 0.62 0.56 0.50 0.44 0.37 0.29 0.17 4

3 0.94 0.99 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.91 0.88 0.85 0.82 0.79 0.76 0.72 0.68 0.62 0.57 0.51 0.44 0.36 0.25 5

4 0.90 0.97 0.99 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.91 0.89 0.86 0.83 0.80 0.78 0.73 0.68 0.63 0.57 0.51 0.43 0.32 6

5 0.87 0.95 0.98 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.90 0.87 0.85 0.82 0.78 0.73 0.68 0.63 0.57 0.50 0.39 7

6 0.83 0.92 0.96 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.95 0.93 0.91 0.88 0.86 0.83 0.78 0.74 0.68 0.63 0.56 0.45 8

7 0.80 0.90 0.94 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.89 0.86 0.82 0.78 0.73 0.68 0.62 0.51 9

8 0.76 0.86 0.92 0.95 0.97 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90 0.86 0.82 0.78 0.73 0.67 0.57 10

9 0.72 0.83 0.89 0.93 0.95 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.92 0.89 0.86 0.82 0.77 0.72 0.62 11

10 0.68 0.79 0.85 0.90 0.93 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.95 0.92 0.89 0.85 0.81 0.76 0.67 12

11 0.64 0.75 0.82 0.87 0.91 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.94 0.91 0.88 0.84 0.79 0.71 13

12 0.60 0.72 0.78 0.84 0.88 0.91 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.94 0.91 0.87 0.83 0.75 14

13 0.56 0.68 0.75 0.80 0.85 0.89 0.92 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.86 0.78 15

14 0.53 0.64 0.71 0.77 0.82 0.86 0.90 0.93 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 0.92 0.88 0.81 16

15 0.49 0.60 0.67 0.74 0.79 0.83 0.87 0.91 0.93 0.96 0.97 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.90 0.84 17

16 0.45 0.56 0.64 0.70 0.76 0.80 0.85 0.88 0.91 0.94 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.87 18

17 0.42 0.53 0.60 0.67 0.72 0.78 0.82 0.86 0.89 0.92 0.95 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.91 19

18 0.37 0.48 0.55 0.62 0.68 0.73 0.78 0.83 0.86 0.90 0.92 0.95 0.96 0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.97 0.94 20

19 0.31 0.41 0.49 0.56 0.62 0.68 0.73 0.78 0.82 0.86 0.89 0.92 0.94 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.96 21

20 0.26 0.35 0.43 0.50 0.57 0.63 0.68 0.74 0.78 0.82 0.86 0.89 0.91 0.94 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.98 22

21 0.20 0.29 0.37 0.44 0.51 0.57 0.63 0.68 0.73 0.78 0.82 0.85 0.88 0.91 0.93 0.95 0.96 0.98 0.99 1.00 1.00 1.00 0.99 23

22 0.14 0.22 0.30 0.37 0.44 0.51 0.57 0.63 0.68 0.73 0.77 0.81 0.84 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.00 1.00 1.00 24

23 0.07 0.15 0.22 0.29 0.36 0.43 0.50 0.56 0.62 0.67 0.72 0.76 0.79 0.83 0.86 0.88 0.90 0.93 0.95 0.97 0.99 1.00 1.00

24 -0.03 0.03 0.10 0.17 0.25 0.32 0.39 0.45 0.51 0.57 0.62 0.67 0.71 0.75 0.78 0.81 0.84 0.87 0.91 0.94 0.96 0.98 0.99 1.00
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highest probability. The predictions using MRST(g↓) with

m50.5ET
max , and CTEQ3M with m52ET

max , thus are incon-

sistent with our measurements with probabilities <0.4%.

B. The ratio of jet cross sections

The dimensionless inclusive jet cross section ~Sec.
IV A 2! is given by

sAs(GeV)5

ET
3

2p

d2s

dETdh
, ~12.2!

where d2s/dETdh is given by Eq. ~11.1!. The ratio of inclu-
sive jet cross sections for uhu,0.5 is calculated in bins of
identical xT :

R~xT!5

s630~xT!

s1800~xT!
. ~12.3!

C. Uncertainties in the ratio of jet cross sections

Most of the systematic uncertainties in the inclusive jet
cross section are highly correlated as a function of ET and
center-of-mass energy, and cancel when the ratio of the two
cross sections is calculated. To determine the uncertainty in
the ratio, all uncertainties are separated into three categories,

depending on the correlation (r) as a function of ET and c.m.

energies. In most cases, complete correlation in ET at one

c.m. energy implies complete correlation between c.m. ener-

gies, but exceptions exist and are highlighted in the follow-

ing sections.

1. Luminosity uncertainties

The luminosity calculation at As5630 GeV shares many

common uncertainties with the calculation at 1800 GeV
~Sec. VI!. The uncertainty from the fit to the world average

~WA! pp̄ total cross section determines the uncertainty in the

luminosity at As5630 GeV ~Fig. 14!. A 1s shift in the mean

value of the cross section at As51800 GeV directly impacts

the central value of the cross section at As5630 GeV, result-
ing in a shift of unequal magnitude but like direction. The
magnitude of the shift at 630 GeV, subtracted in quadrature
from the interpolation uncertainty, defines two uncertainty
components: the shift, which is completely correlated with
the 1800 GeV cross section uncertainty, and the remainder,
which is added in quadrature with the other independent lu-
minosity uncertainties. The uncertainty components in the
WA elastic and single-diffractive pp̄ cross sections are
handled with the same procedure. Table XXV lists the sys-
tematic uncertainties due to the luminosity for the ratio.

TABLE XV. The percentage cross section uncertainties due to the energy scale response correction that

correspond to a given percentage confidence level for uhu,0.5.

Upper Lower

Bin 40% 68.3% 86% 90% 95% 99% 40% 68.3% 86% 90% 95% 99%

1 0.7 1.1 1.3 1.3 1.6 1.9 20.7 21.0 21.3 21.3 21.6 21.8

2 0.7 1.1 1.5 1.4 1.8 2.2 20.7 21.1 21.5 21.4 21.7 22.1

3 1.0 1.5 1.9 1.9 2.2 2.6 20.9 21.3 21.8 21.8 22.2 22.6

4 1.3 1.9 2.5 2.6 3.0 3.6 21.3 21.8 22.4 22.6 23.0 23.5

5 1.4 2.2 3.0 3.1 3.4 4.0 21.4 22.2 22.9 23.0 23.3 24.0

6 1.6 2.6 3.3 3.4 3.8 4.6 21.5 22.5 23.1 23.3 23.6 24.4

7 1.6 2.9 3.6 3.8 4.1 5.0 21.6 22.8 23.5 23.7 24.0 24.8

8 1.6 3.0 3.9 4.0 4.2 5.3 21.7 23.0 23.8 23.0 24.2 25.3

9 1.7 3.3 4.1 4.2 4.6 5.7 21.7 23.2 24.1 24.2 24.5 25.6

10 1.9 3.6 4.5 4.6 5.0 6.2 21.8 23.4 24.3 24.4 24.7 25.9

11 2.0 3.9 4.8 4.9 5.1 6.7 21.8 23.6 24.6 24.6 24.9 26.3

12 2.1 4.1 5.1 5.0 5.4 7.0 22.0 23.9 25.0 24.9 25.2 26.8

13 2.1 4.3 5.3 5.2 5.7 7.4 22.1 24.1 25.2 25.2 25.6 27.2

14 2.4 4.5 5.6 5.6 6.1 7.8 22.3 24.5 25.5 25.5 26.0 27.5

15 2.6 4.8 5.9 5.9 6.5 8.3 22.5 24.6 25.7 25.8 26.4 27.9

16 3.1 5.2 6.4 6.5 7.3 9.0 22.9 25.0 26.2 26.3 27.0 28.6

17 3.3 5.4 6.7 6.9 7.7 9.4 23.1 25.2 26.4 26.6 27.5 28.9

18 3.8 5.8 7.1 7.5 8.8 10.2 23.7 25.6 27.0 27.4 28.4 29.8

19 4.4 6.4 8.2 8.5 10.0 11.7 24.3 26.3 27.8 28.1 29.4 211.0

20 5.0 7.1 9.0 9.4 11.1 13.0 24.9 26.9 28.8 29.0 210.6 212.3

21 6.0 8.3 10.8 11.1 13.3 15.6 25.7 27.8 210.0 210.2 212.0 214.0

22 7.4 10.0 13.3 13.3 15.8 18.9 27.0 29.4 212.3 212.2 214.5 217.0

23 9.4 12.6 17.1 16.8 20.0 24.4 29.0 212.0 215.7 215.6 218.2 221.4

24 16.2 22.4 29.6 30.2 35.3 43.1 214.6 220.1 225.5 226.2 229.6 234.6
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2. Jet and event selection uncertainties

At 1800 GeV, the total uncertainty for jet cut efficiencies,
the E” T cut efficiency, and the vertex cut efficiency is 1%. An
independent study at 630 GeV determined cut uncertainties
that were smaller ~Table XXVI!. Despite some similarities in
methodology, these uncertainties are all considered to be in-
dependent of one another in the ratio.

3. Resolution and unsmearing uncertainties

Uncertainty in the unsmearing correction is dominated by
the uncertainty in the jet resolution measurement. In the case

of As51800 GeV, the systematic uncertainty dominates; for
As5630 GeV, poor statistics result in a fit uncertainty that is
larger in magnitude than the systematic uncertainty. The sys-
tematic uncertainties in the unsmearing correction are as-
sumed to be uncorrelated between the c.m. energies, as are
the fitting uncertainties. The magnitudes of the resolution
and unsmearing uncertainties are illustrated in Fig. 63.

4. Energy scale uncertainties

The uncertainty in the inclusive jet cross section and in
the ratio of cross sections is calculated using a Monte Carlo
simulation. The event generator performs several steps for

each As and each cross section bin in xT . First, it generates

a sample of jets with an xT spectrum which matches that
observed in data. Second, it closely imitates true running
conditions by simulating luminosity, vertexing, and smearing
effects; thus the energy scale corrections of each Monte
Carlo jet will closely match the corrections in real data.
Third, the uncertainties from the energy scale corrections are
calculated. Finally, the weighted average uncertainties and
correlations in each bin are combined to form a covariance
matrix.

The jet ET distribution must be identical to the observed
~smeared! jet cross section in data. The Monte Carlo simula-
tion:

~1! Randomly generates the initial parton momenta x1 and
x2.

~2! Generates the corresponding pT and other kinematic
quantities for both of the final-state partons ~which result in
jets!.

~3! Smears the jets according to the known resolution
functions and then selects one jet at random.

~4! Checks that the selected jet falls within the desired xT

bin and has uh jetu,0.5 ~or starts over!.
~5! Generates a weight for the jet, to reproduce the steeply

falling spectrum of the inclusive jet cross section, using ei-
ther a theoretical weight based on CTEQ4M and the scale of
the collision, or an experimental weight based on the ansatz
from unsmearing.

TABLE XVI. The percentage cross section uncertainties due to the energy scale response correction that

correspond to a given percentage confidence level for 0.1,uhu,0.7.

Upper Lower

Bin 40% 68.3% 86% 90% 95% 99% 40% 68.3% 86% 90% 95% 99%

1 0.7 1.1 1.4 1.4 1.6 2.0 20.8 21.1 21.4 21.4 21.7 21.9

2 0.8 1.2 1.6 1.6 1.9 2.3 20.8 21.2 21.5 21.5 21.9 22.2

3 1.1 1.6 2.1 2.1 2.5 2.9 21.0 21.5 22.1 22.2 22.5 22.9

4 1.3 2.1 2.7 2.9 3.2 3.9 21.3 22.0 22.7 22.8 23.2 23.8

5 1.5 2.4 3.1 3.2 3.6 4.2 21.4 22.3 23.0 23.1 23.4 24.2

6 1.6 2.7 3.4 3.6 3.9 4.9 21.5 22.6 23.3 23.5 23.8 24.6

7 1.6 3.0 3.7 3.9 4.1 5.1 21.6 22.9 23.7 23.9 24.1 25.0

8 1.7 3.2 4.0 4.1 4.4 5.5 21.7 23.1 23.9 24.0 24.3 25.4

9 1.8 3.6 4.4 4.5 4.8 6.1 21.7 23.4 24.2 24.3 24.6 25.8

10 1.9 3.8 4.7 4.7 5.0 6.4 21.8 23.5 24.4 24.5 24.8 26.2

11 2.1 4.0 5.0 5.0 5.3 6.9 21.9 23.8 24.8 24.8 25.1 26.6

12 2.1 4.2 5.3 5.1 5.6 7.2 22.0 24.0 25.1 25.0 25.4 26.9

13 2.3 4.4 5.5 5.5 6.0 7.7 22.4 24.3 25.5 25.5 26.1 27.6

14 2.6 4.7 5.8 5.9 6.4 8.1 22.4 24.5 25.6 25.6 26.2 27.7

15 2.9 5.0 6.2 6.3 7.2 8.8 22.8 24.8 26.0 26.1 26.7 28.2

16 3.2 5.3 6.6 6.8 7.7 9.2 23.0 25.1 26.3 26.5 27.4 28.8

17 3.6 5.7 7.0 7.3 8.3 9.8 23.6 25.5 26.9 27.2 28.2 29.6

18 4.0 6.0 7.5 7.9 9.3 10.9 24.0 25.9 27.3 27.6 28.8 210.3

19 4.7 6.7 8.6 8.9 10.4 12.2 24.5 26.5 28.1 28.4 29.8 211.4

20 5.4 7.6 9.9 10.1 12.1 14.2 25.2 27.3 29.4 29.6 211.3 213.2

21 6.5 8.8 11.8 11.9 14.2 16.9 26.2 28.2 210.8 210.9 212.8 215.0

22 7.8 10.5 14.1 13.9 16.5 19.8 27.4 29.7 212.8 212.6 214.9 217.8

23 9.9 13.4 18.2 18.0 21.4 26.5 29.7 213.0 217.0 217.1 219.8 223.5

24 17.2 24.4 32.2 33.0 38.3 47.3 215.9 222.1 228.0 228.8 232.2 237.1
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TABLE XVII. The systematic error correlations for the inclusive jet cross section for uh jetu,0.5, and 0.1,uh jetu,0.7. The correlation values above the diagonal are the correlations

for uh jetu,0.5 and the correlations below the diagonal correspond to 0.1,uh jetu,0.7. In both cases the correlation matrices are symmetric.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.92 0.91 0.90 0.89 0.88 0.86 0.86 0.84 0.83 0.82 0.80 0.78 0.75 0.71 0.66 0.53 1

1.00 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.86 0.86 0.84 0.82 0.80 0.77 0.73 0.68 0.55 2

1 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.90 0.88 0.88 0.86 0.84 0.82 0.79 0.75 0.70 0.57 3

2 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.86 0.84 0.81 0.77 0.72 0.59 4

3 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.94 0.92 0.92 0.90 0.88 0.86 0.83 0.79 0.74 0.61 5

4 0.98 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.90 0.88 0.85 0.81 0.76 0.63 6

5 0.97 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.93 0.91 0.89 0.87 0.83 0.78 0.65 7

6 0.96 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.93 0.91 0.89 0.85 0.80 0.68 8

7 0.95 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.94 0.93 0.90 0.87 0.82 0.70 9

8 0.93 0.95 0.96 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.95 0.94 0.92 0.88 0.84 0.72 10

9 0.92 0.94 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.96 0.95 0.93 0.90 0.85 0.74 11

10 0.91 0.93 0.95 0.97 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.94 0.91 0.87 0.76 12

11 0.90 0.92 0.94 0.96 0.97 0.98 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95 0.92 0.88 0.78 13

12 0.89 0.91 0.93 0.95 0.96 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.93 0.90 0.80 14

13 0.88 0.90 0.92 0.94 0.95 0.96 0.97 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.94 0.91 0.81 15

14 0.87 0.89 0.91 0.93 0.94 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.92 0.83 16

15 0.85 0.88 0.90 0.92 0.94 0.95 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.85 17

16 0.84 0.86 0.89 0.91 0.93 0.94 0.95 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.95 0.87 18

17 0.83 0.85 0.87 0.90 0.91 0.93 0.94 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.89 19

18 0.82 0.84 0.86 0.89 0.90 0.92 0.93 0.95 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.91 20

19 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.94 21

20 0.77 0.79 0.81 0.84 0.86 0.87 0.89 0.91 0.92 0.93 0.95 0.96 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.96 22

21 0.74 0.76 0.78 0.81 0.83 0.85 0.86 0.88 0.90 0.91 0.93 0.94 0.95 0.96 0.96 0.97 0.98 0.99 0.99 1.00 1.00 1.00 0.98 23

22 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.88 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.00 1.00 24

23 0.65 0.66 0.68 0.71 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.86 0.88 0.89 0.90 0.92 0.93 0.94 0.96 0.97 0.98 0.99 1.00

24 0.52 0.53 0.55 0.57 0.59 0.61 0.63 0.66 0.68 0.70 0.73 0.75 0.77 0.79 0.80 0.82 0.84 0.86 0.88 0.91 0.93 0.95 0.98 1.00
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Because the generated jet distribution already represents
the energy-scale-corrected jet ET , and because the response
correlation is given in terms of the energy before the re-
sponse correction, the energy scale algorithm must be run
‘‘in reverse’’ to find the uncertainties and their correlations as
a function of jet ET and c.m. energy.

The ratio of inclusive jet cross sections is given in Eq.
~12.2!. The elements of the covariance matrix are

C i j5^ r̂ i j dR i dR j& , ~12.4!

where r̂ expresses the correlation between the xT bins i and
j, and the uncertainties in the ratio dR may be expressed as

dR i5

]R i

]s i
630

ds i
630

1

]R i

]s i
1800

ds i
1800 , ~12.5!

where the two partial derivatives possess opposite signs:

]R i

]s i
630

5

1

s i
1800

5

R i

s i
630

]R i

]s i
1800

5

2s i
630

~s i
1800!2

52

R i

s i
1800

. ~12.6!

Defining x[xT , the dependence of ds on jet energy is given
by

ds i
a
5

]s i
a

]x i

dx i
a
5

2

a
sin u i

]s i
a

]x i

dE i
a . ~12.7!

FIG. 53. The difference between data and JETRAD QCD predic-

tions normalized to predictions for uhu,0.5. The shaded region

represents the 61s systematic uncertainties about the prediction.

FIG. 54. The difference between data and JETRAD QCD predic-

tions normalized to predictions for 0.1,uhu,0.7. The error bars

show the statistical uncertainties. The shaded region represents the

61s systematic uncertainties about the prediction.
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The cross section uncertainty is now expressed in terms of jet
energy, the jet angle, the c.m. energy (a), and the slope of
the dimensionless cross section. The final expression for the
covariance matrix elements becomes

C i j5(
a ,b

(
k ,l

q
2

a
sin uk

2

b
sin u l

3

Rk

sk
a

]sk
a

]xk

R l

s l
b

]s l
b

]x l

^rkl
ab dEk

a dE l
b&, ~12.8!

where a and b indicate c.m. energies; rkl
ab is the correlation

between the uncertainties of the two jets whose energies fall

TABLE XVIII. x2 comparisons between JETRAD and uhu,0.5

and 0.1,uhu,0.7 data for m50.5ET
max , Rsep51.3, and various

PDFs. There are 24 degrees of freedom.

PDF m uhu<0.5 0.1<uhu<0.7

x2 Prob. x2 Prob.

CTEQ3M 0.50ET
max 25.3 0.39 32.7 0.11

CTEQ4M 0.50ET
max 20.1 0.69 26.8 0.31

CTEQ4HJ 0.50ET
max 16.8 0.86 22.4 0.56

MRS~A8! 0.50ET
max 20.4 0.67 28.5 0.24

MRST 0.50ET
max 25.3 0.39 29.6 0.20

MRST(g↑) 0.50ET
max 21.6 0.60 30.1 0.18

MRST(g↓) 0.50ET
max 47.5 0.003 47.9 0.003

CTEQ3M 0.25ET
max 21.4 0.61 28.1 0.26

CTEQ3M 0.50ET
max 25.3 0.39 32.7 0.11

CTEQ3M 0.75ET
max 25.8 0.37 32.5 0.11

CTEQ3M 1.00ET
max 24.8 0.42 31.7 0.14

TABLE XIX. x2 comparisons between EKS and the data for uhu,0.5 and 0.1,uhu,0.7 with m
5DET

max or DET
jet , Rsep51.3, and various PDFs. There are 24 degrees of freedom.

PDF D where

m5DET
xxx

uhu,0.5 0.1,uhu,0.7

ET
jet ET

max ET
jet ET

max

x2 Prob. x2 Prob. x2 Prob. x2 Prob.

CTEQ3M 0.25 21.1 0.63 17.9 0.81 32.3 0.12 — —

CTEQ3M 0.50 20.7 0.66 19.3 0.74 33.7 0.09 33.3 0.10

CTEQ3M 0.75 20.4 0.67 19.4 0.73 33.3 0.10 33.0 0.10

CTEQ3M 1.00 20.2 0.68 19.5 0.73 32.9 0.11 32.7 0.11

CTEQ3M 1.25 20.4 0.68 19.8 0.71 32.8 0.11 32.8 0.11

CTEQ3M 1.50 20.8 0.65 20.3 0.68 33.1 0.10 33.1 0.10

CTEQ3M 1.75 21.5 0.61 21.2 0.63 33.5 0.09 33.6 0.09

CTEQ3M 2.00 22.4 0.55 22.1 0.57 34.2 0.08 34.3 0.08

CTEQ4M 0.50 19.4 0.73 18.2 0.80 33.8 0.09 34.3 0.08

CTEQ4HJ 0.50 — — 23.3 0.50 — — — —

CTEQ4A1 0.50 — — 18.4 0.78 — — — —

CTEQ4A2 0.50 — — 18.3 0.79 — — — —

CTEQ4A4 0.50 — — 18.4 0.78 — — — —

CTEQ4A5 0.50 — — 19.2 0.74 — — — —

MRS~A8! 0.50 — — 19.3 0.74 — — 36.8 0.05

FIG. 55. Top: Normalized comparisons of our data and of the

CDF data in Ref. @7# to the JETRAD prediction using CTEQ4HJ with

m50.5ET
max . Middle: Difference between our data and smoothed

results of CDF normalized to the latter. The shaded region repre-

sents the 61s systematic uncertainties about the DØ data. The

dashed curves show the 61s systematic uncertainties about the

smoothed CDF data. Bottom: A comparison of the systematic un-

certainties of the DØ measurement and the CDF measurement.
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in bins k and l, originating from the data sets at As5a and b;
and q is a factor that accounts for the negative sign in Eq.
~12.6!: q51 when a5b , and q521 otherwise. The bracket
notation indicates the average. The summations indicate the
four relevant correlations, visually described in Fig. 64.

As mentioned previously, interpolation of the correlation

matrix determines the values of rkl
ab for the response uncer-

tainty. For the completely correlated uncertainties, all r’s
take the value of unity; for the uncorrelated uncertainties, all
r’s are zero. The major contribution originates from the par-
tially correlated response uncertainty.

5. Combined uncertainty in the ratio

The individual uncertainties of the earlier sections fall
into several classifications, summarized in Table XXVII.
Complete cancellation of uncertainties occurs when the un-
certainties are completely correlated between c.m. energies.
The components of the systematic uncertainties for the ratio
of cross sections are plotted in Fig. 63 and given in Table

XXVIII. The uncertainty in the energy scale correction domi-

nates at each end of the spectrum; resolution and contribu-

tions from other sources ~primarily the luminosity uncer-

tainty! become important at intermediate values of xT .

Figure 65 plots the point-to-point uncertainty correlations be-

tween data points.

D. Results and comparison to theoretical predictions

The ratio between the inclusive jet cross sections at As

5 630 and 1800 GeV is given in Table XXIX. Figures 66
and 67 show the ratios of cross sections compared with JE-

TRAD predictions using different choices of PDF and renor-
malization scale. The measured ratios lie approximately 10%
below the theoretical predictions, which have an uncertainty
of approximately 10% ~Sec. IV A 2!. Table XXX lists the x2

distributions for the ratio of cross sections compared to se-
lected theoretical predictions. The x2 values lie in the range
15.1–24 for 20 degrees of freedom ~corresponding to prob-
abilities in the range 28% to 77%). The best agreement oc-
curs for extreme choices of renormalization scales: m
5(0.25,2.00)ET

max . As expected, there is very little depen-
dence on the choice of PDF.

FIG. 56. The observed inclusive jet cross section for As5630

GeV. Symbols indicate the three jet triggers ~shaded triangles:

Jet_12; hollow diamonds: Jet_2_12; shaded circles: Jet_30!.

FIG. 57. The nominal unsmearing correction at As5630 GeV is

given by the central line. The outer curves depict the uncertainty in

the unsmearing due to the uncertainties in the measurement of the

resolution of the jet energy.

TABLE XX. Unsmearing ansatz function parameters @see Eq. ~11.3!# for the inclusive jet cross section for

uhu,0.5 ~in nb! at As5630 and 1800 GeV and their uncertainties.

As ~GeV! Parameter Value Error matrix

A 23.43 4.4882531023
21.1535231023

26.7008331023

1800 a 25.04 21.1535231023 2.9888231024 1.7904431023

b 8.23 26.7008331023 1.7904431023 1.2100531022

A 22.7 2.2864931022
28.6282231023

25.7650031022

630 a 25.33 28.6282231023 3.2859231023 2.2465031022

b 6.58 25.7650031022 2.2465031022 0.1644931021
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Different renormalization scales can be selected for the
different c.m. energies since there is no explicit theoretical

need for identical scales at As5630 and 1800 GeV. Figure
68 depicts a comparison between the ratio and theoretical
predictions where the renormalization scales at the two c.m.

energies are not equivalent. The resulting x2 indicate good
agreement between the data and the predictions ~Table
XXXI!.

Since the systematic uncertainties are strongly correlated
as a function of xT , the normalization can deviate from the
nominal value by a couple of standard deviations without
greatly effecting the x2. It is therefore interesting to ask the
question, ‘‘how well does the normalization of the data and
the theoretical predictions agree?’’ To answer this question
an additional analysis was carried out to measure the signifi-
cance of the normalization difference between the data and
the theoretical predictions. The data are reduced to a single
value by fitting them to a constant ~horizontal line!, resulting
in a value of 1.6060.08. The uncertainty is given by the
statistical uncertainty of the fit. Each of the theoretical pre-
dictions is also treated in this manner, with each point in xT

point of the prediction is assigned a weight given by the
statistical uncertainty of the corresponding point in the data
~Table XXXII!. The uncertainty in the value representing the
theoretical prediction is assumed to be zero. The resulting x2

values are given in Table XXXII, and lie in the range 1.4–
13.2 ~corresponding to probabilities of 23% to 0.03%). In
every case, discarding the shape information in favor of a
comparison of normalization results in poorer agreement be-
tween data and the theory.

E. Conclusions

We have made the most precise measurement to date of

the ratio of the inclusive jet cross sections at As5630 and
1800 GeV. This measurement is nearly insensitive to the
choice of parton distribution functions. The ratio of cross
sections is therefore a more stringent test of QCD matrix
elements. The NLO QCD predictions yield satisfactory
agreement with the observed data for standard choices of
renormalization scale or PDF. In terms of the normalization
however, the absolute values of the standard predictions lie
consistently higher than the data.

XIII. DIJET ANGULAR DISTRIBUTION

The dijet angular distribution is given by

1

( s

d3s

dM dx dhboost

5

1

( N i

N i

DMDxDhboost

~13.1!

where the invariant mass is calculated assuming massless
jets:

M 2
52ET

jet1ET
jet2@cosh~Dh !2cos~Df !# , ~13.2!

the pseudorapidity of the center-of-mass of the dijet system
is given by h!

5
1
2 (Dh); the pseudorapidity boost is given by

hboost5
1
2 (h11h2); x5exp(uDhu)5exp(2uh!u); ET

jet1 , h1, and

f1 refer to the values associated with the jet with the largest

ET in an event; ET
jet2 , h2, and f2 refer to the values associ-

ated with the jet with the second largest ET in an event;
Dh5uh12h2u; Df5f12f2, and N i is the number of
events in a given x and mass bin. If the individual jet masses

FIG. 58. The uhu,0.5 inclusive cross section at As5630 GeV.

Statistical uncertainties are not visible on this scale ~except for the

last point!. The histogram represents the JETRAD prediction and the

shaded band represents the 61s systematic uncertainty band about

the prediction.

TABLE XXI. Inclusive jet cross section for uhu,0.5 at As

5630 GeV.

Bin range Plotted Plotted Cross section Systematic

ET ET xT 6 statistical error uncertainty

~GeV! ~GeV! ~nb! (%)

21.0–24.5 22.6 0.07 (2.5660.03)3102 21.7

24.5–28.0 26.1 0.08 (1.0760.02)3102 17.2

28.0–31.5 29.6 0.09 (5.1460.16)3101 14.6

31.5–35.0 33.1 0.11 (2.6760.05)3101 13.0

35.0–38.5 36.7 0.12 (1.3760.04)3101 12.1

38.5–42.0 40.2 0.13 (7.9660.27)3100 11.5

42.0–45.5 43.7 0.14 (4.2460.20)3100 11.2

45.5–49.0 47.2 0.15 (2.8360.16)3100 11.0

49.0–52.5 50.7 0.16 (1.8160.13)3100 10.9

52.5–56.0 54.2 0.17 (1.1460.03)3100 10.9

56.0–59.5 57.7 0.18 (7.3560.21)31021 11.0

59.5–63.0 61.2 0.19 (5.0760.17)31021 11.1

63.0–66.5 64.7 0.21 (3.2960.14)31021 11.3

66.5–70.0 68.2 0.22 (2.4260.12)31021 11.5

70.0–73.5 71.7 0.23 (1.6460.10)31021 11.8

73.5–77.0 75.2 0.24 (1.1860.08)31021 12.1

77.0–80.5 78.7 0.25 (8.7960.72)31022 12.4

80.5–94.5 85.2 0.27 (3.6960.23)31022 13.6

94.5–112.0 100.5 0.32 (1.0560.11)31022 16.2

112.0–196.0 136.2 0.43 (5.8161.19)31024 20.4
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are taken into account, the change in the dijet invariant mass
is less than 1% for jets used in this analysis. Since the bins
of Dhboost are constant and we plot the angular distribution
for a given mass bin, DM , we choose to measure ds/dx
which is uniform for Rutherford scattering!

1

( s

ds

dx
5

1

( N i

N i

Dx
. ~13.3!

A. Data selection

The selected data are events with two or more jets which
satisfy the set of inclusive jet triggers and pass the standard
jet and event quality requirements ~Sec. VIII!. Events are
removed unless both of the leading two jets pass the jet qual-
ity requirements. The vertex of the event must be within 50

TABLE XXII. Percentage cross section uncertainties for uhu,0.5 at As5630 GeV. The last row gives the

nature of the bin-to-bin xT correlations: 0 signifies uncorrelated uncertainties, 1 correlated, and p partially

correlated.

xT Statistical Jet selection Luminosity Trigger Unsmearing Energy scale Total

0.07 1.3 0.2 4.4 2.4 8.4 19.4 21.7

0.08 2.1 0.2 4.4 0.9 5.5 15.6 17.2

0.09 3.2 0.2 4.4 0.3 3.8 13.3 14.6

0.11 1.8 0.2 4.4 0.6 2.8 11.9 13.0

0.12 2.5 0.2 4.4 0.2 2.2 11.0 12.1

0.13 3.4 0.2 4.4 0.1 1.8 10.5 11.5

0.14 4.7 0.1 4.4 0.0 1.6 10.2 11.2

0.15 5.8 0.1 4.4 0.0 1.4 9.9 11.0

0.16 7.3 0.1 4.4 0.0 1.3 9.8 10.9

0.17 2.2 0.1 4.4 1.1 1.3 9.9 10.9

0.18 2.8 0.1 4.4 0.4 1.2 10.0 11.0

0.19 3.4 0.1 4.4 0.2 1.2 10.1 11.1

0.21 4.2 0.2 4.4 0.1 1.2 10.3 11.3

0.22 4.9 0.2 4.4 0.0 1.2 10.6 11.5

0.23 6.0 0.2 4.4 0.0 1.2 10.8 11.8

0.24 7.0 0.2 4.4 0.0 1.2 11.2 12.1

0.25 8.2 0.2 4.4 0.0 1.2 11.6 12.4

0.27 6.3 0.2 4.4 0.0 1.2 12.8 13.6

0.32 10.6 0.3 4.4 0.0 1.3 15.5 16.2

0.43 20.4 0.3 4.4 0.0 1.5 19.8 20.4

Correlation 0 0 1 0 1 p p

FIG. 59. Contributions to the uhu,0.5 at As5630 GeV cross

section uncertainty plotted by component.

FIG. 60. The correlations for the total systematic uncertainty for

the inclusive jet cross section for uhu,0.5 at As5630 GeV ~Table

XXIII!.
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cm of z50. The x distributions were corrected for the effi-
ciencies of the standard jet quality cuts and the E” T cut.

To ensure that the jet triggers did not introduce a bias, the
trigger requirement was verified by comparing the x distri-

bution of a lower trigger threshold to the x distribution of the
desired trigger threshold. It is known that the lower threshold
trigger is 100% efficient in the desired region and thus a
comparison would show an inefficiency in the desired trigger
sample. No differences were seen. The ET’s of all second jets
are well within the region of 100% jet reconstruction effi-
ciency, so an additional ET requirement on the second jet
was not necessary. The final energy-scale-corrected ET re-
quirement placed on each trigger sample is summarized in
Table XXXIII.

B. Acceptance: Limits on mass and x

Event acceptance is calculated using the kinematic rela-
tionships between mass, x , and ET shown in Fig. 69. Since
an ET requirement is placed only on the leading jet, the
maximum x with 100% acceptance is determined from the
ET requirement placed on the leading jet and the desired
mass bin using the following formula:

M 2
52ET1

2 @cosh„ln~x !…11# . ~13.4!

In this formula the ET’s of the two leading jets are assumed
to be identical. Four mass bins were chosen in order to maxi-
mize the number of events per x bin, and to attain a maxi-
mum x of 20 ~corresponding to h!

51.5). These mass bins
are listed in Table XXXIV.

Once the x limit is known, a limit on hboost can be calcu-
lated. The hboost parameter is used to restrict the x distribu-
tion to the physical limits of the detector ~Fig. 70!. The hboost

limit is calculated using

TABLE XXIII. The correlations for the total systematic uncertainty for the inclusive jet cross section for uhu,0.5 at As5630 GeV and

the ratio of cross sections. The correlation values above the diagonal are for the cross section at As5630 GeV and the values below the

diagonal correspond to the ratio of cross sections. In both cases the correlation matrices are symmetric.

1.00 0.99 0.96 0.91 0.86 0.82 0.79 0.74 0.69 0.66 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.44 0.39 0.36 1

1.00 0.99 0.96 0.93 0.90 0.87 0.83 0.79 0.76 0.73 0.70 0.69 0.67 0.65 0.63 0.61 0.56 0.51 0.48 2

1 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.82 0.79 0.78 0.77 0.75 0.73 0.72 0.67 0.62 0.59 3

2 0.98 1.00 1.00 0.99 0.98 0.97 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.83 0.81 0.80 0.76 0.71 0.68 4

3 0.95 0.99 1.00 1.00 1.00 0.99 0.97 0.96 0.94 0.93 0.91 0.90 0.89 0.88 0.87 0.85 0.82 0.77 0.74 5

4 0.90 0.95 0.98 1.00 1.00 1.00 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.85 0.81 0.78 6

5 0.84 0.91 0.95 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.92 0.88 0.85 0.82 7

6 0.79 0.87 0.93 0.97 0.99 1.00 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.94 0.91 0.88 0.85 8

7 0.74 0.83 0.89 0.95 0.98 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.94 0.91 0.88 9

8 0.68 0.77 0.84 0.91 0.94 0.96 0.97 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.97 0.95 0.93 0.90 10

9 0.62 0.72 0.80 0.87 0.91 0.94 0.96 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 0.94 0.92 11

10 0.57 0.67 0.76 0.84 0.89 0.92 0.95 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.93 12

11 0.52 0.63 0.72 0.80 0.86 0.90 0.93 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.94 13

12 0.47 0.58 0.68 0.76 0.83 0.87 0.90 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.95 14

13 0.43 0.54 0.64 0.73 0.80 0.84 0.88 0.93 0.95 0.97 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.97 0.95 15

14 0.39 0.50 0.60 0.70 0.76 0.82 0.85 0.91 0.94 0.96 0.98 0.99 0.99 1.00 1.00 1.00 0.99 0.98 0.96 16

15 0.34 0.46 0.56 0.66 0.73 0.78 0.83 0.88 0.91 0.94 0.96 0.98 0.99 0.99 1.00 1.00 0.99 0.98 0.97 17

16 0.30 0.41 0.52 0.62 0.69 0.75 0.79 0.85 0.89 0.92 0.95 0.97 0.98 0.99 0.99 1.00 1.00 0.99 0.98 18

17 0.25 0.37 0.47 0.57 0.65 0.71 0.76 0.82 0.86 0.89 0.93 0.95 0.96 0.98 0.99 0.99 1.00 1.00 0.99 19

18 0.14 0.25 0.36 0.46 0.55 0.61 0.66 0.73 0.78 0.82 0.86 0.90 0.92 0.94 0.96 0.97 0.98 1.00 1.00 20

19 -0.01 0.09 0.20 0.30 0.38 0.45 0.50 0.58 0.63 0.69 0.74 0.79 0.82 0.85 0.88 0.91 0.93 0.97 1.00

20 -0.13 -0.04 0.06 0.15 0.24 0.30 0.36 0.44 0.50 0.56 0.62 0.68 0.72 0.75 0.79 0.83 0.86 0.93 0.98 1.00

FIG. 61. The difference between the data and the prediction

~JETRAD!, divided by the prediction for uhu,0.5 at As5630 GeV.

The solid stars represent the comparison to the calculation using

CTEQ3M with m50.5ET
max. The shaded region represents the 61s

systematic uncertainties about the prediction. The effects of chang-

ing the renormalization scale are also shown ~each curve shows the

difference between the alternative prediction and the standard pre-

diction!.
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uhboostu5uuh!u2uhmaxuu

5uu1.5u2u3.0uu51.5, ~13.5!

where uhmaxu53.0 is the maximum h used for this analysis.
The boost cut is chosen to be h boost<1.5. For M.475 GeV/
c2, uh boostu is kinematically restricted to a value less than
1.5. These mass bins are listed together with the average dijet

FIG. 62. The difference between the data and the prediction

~JETRAD!, divided by the prediction for uhu,0.5. The solid stars

represent the comparison to the calculation using m50.5ET
max and

the PDFs CTEQ4M, CTEQ4HJ, MRST, MRST(g↑), and

MRST(g↓). The shaded region represents the 61s systematic un-

certainties about the prediction.

TABLE XXIV. x2 comparisons of the inclusive jet cross section

for uhu,0.5 at As5630 GeV with several theoretical predictions

~20 degrees of freedom!.

PDF m x2 Prob.

2ET
max 40.5 0.4%

CTEQ3M ET
max 25.9 17%

0.5ET
max 30.4 6.4%

0.25ET
max 27.5 12%

CTEQ4M 0.5ET
max 24.2 24%

CTEQ4HJ 0.5ET
max 19.0 53%

MRST 0.5ET
max 22.6 31%

MRST(g↑) 0.5ET
max 14.9 78%

MRST(g↓) 0.5ET
max 51.8 0.01%

TABLE XXV. The uncertainties in the ratio of cross sections

due to the luminosity calculation.

Source Uncertainty ~%!

World average pp̄ cross section 63.2

Hardware efficiency 63.6

Geometric acceptance 60.8

Uncorrelateda
62.6

All sourcesa
64.2

aIncludes trigger matching uncertainty.

TABLE XXVI. Uncertainty from jet and event selection.

Uncertainty source Uncertainty

1800 GeV All selection 1% below 350 GeV

Cut efficiencies 2% above 350 GeV

Jet cuts 0.12 to 0.53%

630 GeV E” T cut 0.03%

Vertex cut 0.006%

FIG. 63. The uncertainty components in the ratio of inclusive jet

cross sections as a function of xT plotted by component.

FIG. 64. Correlations between two ratio bins i and j. Arrows

indicate the four possible correlation (r) terms. The uppermost ar-

row is r i j
6302630 , while the ‘‘ց’’ arrow is r i j

63021800 .
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invariant mass, the maximum x measured, and the number of
events for each of four mass ranges in Table XXXIV.

C. Systematic studies

In order to study the systematic effects of the jet and event
selection requirements, and the various corrections that are
applied to the data, a series of systematic studies was per-
formed. For each requirement or correction, we measured the
effect on the angular distribution by varying the requirement
or correction by an appropriate amount.

To determine the systematic uncertainties on the shape of
the angular distribution, each distribution is fit with a func-
tion: F5A1Bx1C/x1D/x2

1E/x3. The effect of varying
each of the selection criteria or corrections is measured by
taking the ratio of the distribution with the nominal selection
criteria, and with the adjusted criteria ~Fig. 71!, giving the
size of the systematic uncertainty.

The largest source of uncertainty involves the h depen-
dence of the jet energy scale. Small uncertainties in the rela-
tive response as a function of h have large effects on the

TABLE XXVII. Uncertainty correlations in the ratio of cross

sections. ‘‘0’’ indicates no correlation, ‘‘1’’ indicates complete cor-

relation.

Uncertainty source Correlation in Comments

As Jet ET

Luminosity Partial 1

Filter match 0 1 1800 GeV only

Event cuts 0 0

Jet cuts 0 0

Resolution

Fits Partial 1

Closure 1 1

Unsmearing fits 0 1

Energy scale

Offset Partial 1

Response fit 1 Partial

Response at 630 GeV 0 1

Showering 1 1

FIG. 65. The correlation matrix for the ratio of cross sections.

Axes indicate the bin numbers.

TABLE XXVIII. Percentage uncertainties in the ratio of inclusive jet cross sections at As5630 and 1800 GeV for uhu,0.5.

xT Statistical Jet selection Trigger match Luminosity Trigger efficiency Unsmearing Energy scale Total

0.07 1.5 1.1 1.7 4.1 2.4 6.6 9.5 12.7

0.08 2.4 1.1 1.7 4.1 0.9 4.2 7.4 9.7

0.09 3.5 1.1 1.7 4.1 0.3 2.7 6.0 8.0

0.11 1.9 1.1 1.1 4.1 0.6 1.9 5.0 7.0

0.12 2.7 1.1 1.1 4.1 0.2 1.3 4.4 6.3

0.13 3.5 1.1 1.1 4.1 0.1 1.0 4.0 6.0

0.14 4.9 1.1 1.1 4.1 0.0 0.8 3.7 5.8

0.15 5.8 1.1 0.0 4.1 0.0 0.7 3.4 5.5

0.16 7.3 1.1 0.0 4.1 0.0 0.7 3.2 5.4

0.17 2.4 1.1 0.0 4.1 1.1 0.7 3.2 5.4

0.18 3.0 1.1 0.0 4.1 0.4 0.7 3.2 5.4

0.19 3.5 1.1 0.0 4.1 0.2 0.7 3.3 5.4

0.21 4.4 1.1 0.0 4.1 0.1 0.8 3.4 5.5

0.22 5.1 1.1 0.0 4.1 0.0 0.8 3.5 5.5

0.23 6.2 1.1 0.0 4.1 0.0 0.8 3.7 5.6

0.24 7.3 1.1 0.0 4.1 0.0 0.8 3.9 5.8

0.25 8.5 1.1 0.0 4.1 0.0 0.9 4.1 5.9

0.27 6.6 1.1 0.0 4.1 0.0 1.0 4.7 6.4

0.32 11.0 1.1 0.0 4.1 0.0 1.1 6.3 7.7

0.43 20.5 1.1 0.0 4.1 0.0 1.3 8.7 9.7
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angular distribution. The uncertainties in the jet energy scale
are less than 2% up to an uhu of 2.0 and become large near
uhu'3.0. The uncertainty in the showering correction is less
than 2% for uhu,2.0 and becomes large at high uhu. The
effect of the h-dependent energy scale uncertainties are
given in Fig. 72~a!.

The resolution of our measurement of the jet energy can
also affect the angular distribution. This was determined by
measuring the difference between the smeared and un-
smeared theory calculations. Since we are not unsmearing
the data for the effects of h and ET smearing, we apply this
as an uncertainty in the measurement @Fig. 72~b!#.

The effect on the angular distribution due to the h bias in
the jet reconstruction algorithm ~Sec. III G! was studied by
applying a correction for the bias. The difference between
the corrected and uncorrected distributions was 1% on aver-
age @Fig. 72~c!#.

The overall energy scale does not affect the shape of the
distribution, because a shift in the overall energy scale shifts
the entire distribution in mass. The angular distribution
changes very slowly with mass, so a small shift would not
cause a significant change in the shape.

For the Jet_30 and Jet_50 triggers, an online MITOOL ~see
Sec. VII! requirement was used in the trigger for part of the
run. To determine if the MITOOL requirement biased the an-

TABLE XXIX. The ratio of the inclusive jet cross sections for

uhu,0.5 at As5630 and 1800 GeV.

(xT) (xT) Ratio of cross sections Systematic

Bin range Plotted 6 statistical error uncertainty (%)

0.067–0.078 0.072 1.7260.03 12.7

0.078–0.089 0.083 1.6460.04 9.7

0.089–0.100 0.094 1.6260.06 8.0

0.100–0.111 0.105 1.6760.03 7.0

0.111–0.122 0.116 1.5760.04 6.3

0.122–0.133 0.127 1.5960.06 6.0

0.133–0.144 0.139 1.4860.07 5.8

0.144–0.156 0.150 1.6360.09 5.5

0.156–0.167 0.161 1.6460.12 5.4

0.167–0.178 0.172 1.6460.04 5.4

0.178–0.189 0.183 1.6260.05 5.4

0.189–0.200 0.194 1.6760.06 5.4

0.200–0.211 0.205 1.6060.07 5.5

0.211–0.222 0.216 1.7460.09 5.5

0.222–0.233 0.228 1.6960.10 5.6

0.233–0.244 0.239 1.7860.13 5.8

0.244–0.256 0.250 1.8160.15 5.9

0.256–0.300 0.271 1.7460.11 6.4

0.300–0.356 0.319 1.8560.20 7.7

0.356–0.622 0.432 1.8360.38 9.7

FIG. 66. The ratio of dimensionless cross sections for uhu,0.5

compared with JETRAD predictions with m50.5ET
max and the

CTEQ3M, CTEQ4M, CTEQ4HJ, and MRST PDFs. The shaded

band represents the 61s systematic uncertainty band about the

prediction.

TABLE XXX. The calculated x2 for the ratio of cross sections

~20 degrees of freedom!.

PDF Renormalization scale x2 Prob.

2ET
max 17.9 60%

ET
max 21.6 36%

CTEQ3M 0.75ET
max 23.1 28%

0.5ET
max 20.5 43%

0.25ET
max 15.1 77%

CTEQ4M 0.5ET
max 22.4 32%

CTEQ4HJ 0.5ET
max 21.0 40%

MRST 0.5ET
max 22.2 33%

MRST(g↑) 0.5ET
max 19.5 49%

MRST(g↓) 0.5ET
max 24.1 24%

FIG. 67. The ratio of dimensionless cross sections for uhu,0.5

compared with JETRAD predictions with various values of m and the

CTEQ3M PDF. The shaded band represents the 61s systematic

uncertainty band about the prediction.
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gular distribution, runs with no MITOOL requirement were
compared to runs with the requirement. A small shape differ-
ence was seen and an uncertainty equal to the difference
between the two measurements was assigned.

The effects of multiple interactions on the distributions
were studied. A secondary interaction adds approximately
0.6 GeV of ET per unit Dh3Df ~Fig. 20!. Since the angular
distribution is measured in regions in which the ET’s of the
two leading jets are in excess of 50 GeV and are often above
100 GeV, the effect of this additional energy on the two
leading jets is minimal. It is possible that a second interac-
tion may produce a vertex which is incorrectly used as in the
primary vertex for the leading two jets. This would cause an
error in the measured h positions of the jets as well as the
measured ET of the jets. We studied the effect of not select-
ing the primary vertex by minimizing the ST in the event
~Sec. VII!. This has a negligible effect on the angular distri-
bution.

It is possible that the vertex produced by a second inter-
action is the only vertex found in the event. This would also
cause an error in the measured h and ET values of the jets.
We studied the possibility of multiple interactions affecting
the angular distribution in this manner by the following

method. For a determined percentage of events, we switched
the vertex to a randomly chosen vertex. The new vertex was
based on the measured vertex distribution, which has an ap-
proximate mean of z50 and a s'30 cm. We then recalcu-
lated the h and ET of the two leading jets in the event and
measured the angular distribution. The percentage of events
with a new vertex was determined based on the efficiency of
vertex reconstruction for events with large ET jets ('70%),
and the percentage of multiple interactions in the data used
for this analysis ('60%). The number of vertices switched
was 20%, which is an estimate of the number of times that
the vertex reconstruction is incorrect. The size of the effect is
less than 2% and is dependent on the value of x @see Fig.
72~d!#.

The jet quality requirements and their corresponding effi-
ciency corrections are necessary to remove noise from the
event sample. Their effect on the shape of the angular distri-
bution is minimal.

The DØ jet algorithm allows for the splitting and merging
of jets. This can cause a shift in the h of the jet, and there-
fore affect the angular distribution. The effect on the shape of
the distribution of removing those events in which either of
the leading two jets were split or merged is minimal. Since
the theoretical predictions are expected to properly address

TABLE XXXI. x2 comparisons for the ratio of cross sections

for uhu,0.5 where the renormalization scale is mismatched be-

tween c.m. energies.

PDF Renormalization scale

630 GeV 1800 GeV x2 Prob.

2ET
max 0.5ET

max 14.9 78%

CTEQ3M ET
max 0.5ET

max 17.2 64%

0.25ET
max 0.5ET

max 23.1 28%

FIG. 68. The ratio of dimensionless cross sections for uhu,0.5

compared with JETRAD predictions with m50.5ET
max at As51800

GeV, m5(0.25,1.0,2.0)ET
max at As5630 GeV, and the CTEQ3M

PDF. The shaded band represents the 61s systematic uncertainty

band about the prediction.

TABLE XXXII. Normalization-only predictions for the ratio of

cross sections and the x2 comparison with the data (1.6060.08 for

one degree of freedom!.

PDF Renormalization scale Theory

normalization

x2 Prob.

2ET
max 1.75 3.3 6.8%

ET
max 1.82 7.1 0.8%

CTEQ3M 0.75ET
max 1.87 10.7 0.1%

0.5ET
max 1.85 9.5 0.2%

0.25ET
max 1.70 1.5 22.9%

CTEQ4M 0.5ET
max 1.90 13.2 0.03%

CTEQ4HJ 0.5ET
max 1.87 10.7 0.1%

MRST 0.5ET
max 1.89 12.6 0.04%

MRST(g↑) 0.5ET
max 1.87 11.1 0.09%

MRST(g↓) 0.5ET
max 1.90 12.9 0.03%

630 GeV 1800 GeV

2ET
max 0.5ET

max 1.46 2.7 10.2%

CTEQ3M ET
max 0.5ET

max 1.71 1.8 18.1%

0.25ET
max 0.5ET

max 1.44 3.7 5.4%

TABLE XXXIII. The cut on the ET of the leading jet to ensure

that the trigger is 100% efficient.

Trigger Corrected ET limit on leading jet ~GeV!

Jet_30 55.0

Jet_50 90.0

Jet_85 120.0

Jet_115 175.0
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merging and splitting, no uncertainty was assigned due to
this effect.

D. Results and comparison to theory

The measurement of the dijet angular cross section is
given in Table XXXV. The leading-order and next-to-
leading-order theory predictions were obtained using the
JETRAD parton-level event generator @13# with CTEQ3M and

m50.5ET
max . Four mass ranges are compared to the LO and

NLO predictions of QCD in Fig. 73. The band at the bottom
of each plot represents the 61s systematic uncertainties.
They are obtained by adding in quadrature all of the param-
eterized curves describing the shape uncertainties discussed
earlier.

Also shown in Fig. 73, are comparisons to NLO theory

predictions calculated using m5ET
max . With the large angular

TABLE XXXIV. The average mass, maximum x measured, and

the number of events after applying all kinematic cuts.

Trigger ET Mass Average xmax Number

threshold range mass of events

~GeV! (GeV/c2) (GeV/c2)

55 260–425 302 20 4621

90 425–475 447 20 1573

120 475–635 524 13 8789

175 .635 700 11 1074

FIG. 69. In the mass versus x plane, the curves shown are

contours of constant ET . The simplest form of uniform acceptance

in this plane is a rectangle. For a chosen mass region, the limit on x
corresponds to the intersection of the lower mass limit and the ET

contour. The shaded regions shown are the mass bins chosen for

this analysis.

FIG. 70. The uhu’s of the two leading jets were required to be

less than 3.0. For a maximum h! of 1.5, the uhboostu was chosen to

less than 1.5 to restrict the measurement to a region of 100% ac-

ceptance.

FIG. 71. Technique to determine changes in angular distribution

due to systematic uncertainties. Top: Normalized angular distribu-

tion for the mass range 475–635 GeV/c2 compared to a fit to the

data. Middle: Normalized angular distribution for the mass range

475–635 GeV/c2 after removing the jet quality cuts and a fit to the

data. Bottom: The ~ratio–1! of the two fits shows the effects of the

jet quality cuts on the shape of the angular distribution.
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reach measured, the angular distribution is sensitive to the
choice of renormalization scale. The QCD theoretical predic-
tions are in good agreement with the measured angular dis-
tributions.

E. Compositeness limits

A comparison to theory is made to test for quark compos-
iteness ~Sec. IV B!. Predictions of the theory of composite-

ness are available at LO. In order to simulate NLO prediction

with compositeness, we generated LO curves at various val-

ues of L . We measured the fractional differences between

the LO angular distribution with L5` and those with finite

L values. We then multiplied the NLO prediction of the

angular distribution by these fractional differences. The re-

sults are shown in Fig. 74 for the mass bin with M.635

GeV/c2.

To remove the point-to-point correlated uncertainties, the

distribution can be characterized by a single number: Rx

5N(x,X)/N(X,x,xmax), the ratio of the number of

events with x,X to the number of events between X,x
,xmax ~where xmax is given in Table XXXIV!. The choice of

the value of X in the definition of Rx is arbitrary. To optimize
the choice of X, the following study was performed. The
percentage change in the largest mass bin between NLO

QCD and NLO QCD with a contact term of LLL
1

52.0 TeV

was measured as a function of the definition of Rx . The
change due to compositeness increases as one chooses
smaller values of X. However, the measurement error also
increases for smaller values of X. Only the statistical error
was used to optimize the choice of X so as not to bias the
optimization with the data. The ratio of percentage change to
percentage statistical error peaks at X54; hence we chose
Rx5N(x,4)/N(4,x,xmax).

To determine the errors on Rx , the nominal value was
compared to the value after each systematic uncertainty was
varied within error. Table XXXVI shows the size of the sys-
tematic uncertainties for the smallest and largest mass
ranges.

Table XXXVII shows the experimental ratio Rx for the
different mass ranges with their statistical and their system-

FIG. 72. Ratios of parametrized curves showing the effects of

uncertainties on the shape of the angular distribution. Shown are the

four largest uncertainties in the mass range 475–635 GeV/c2.

TABLE XXXV. Dijet angular cross section (100/N)(dN/dx)6 statistical 6 systematic uncertainties for the four mass bins (GeV/c2).

x 260,M,425 425,M,475 475,M,635 M.635

value6 stat.6 syst. value6 stat.6 syst. value6 stat.6 syst. value6 stat.6 syst.

1.5 5.95 6 0.35 6 0.58 7.58 6 0.66 6 2.08 10.08 6 0.33 6 0.63 11.98 6 0.99 6 0.49

2.5 5.50 6 0.33 6 0.54 4.26 6 0.50 6 0.75 7.56 6 0.28 6 0.36 12.49 6 1.01 6 0.78

3.5 4.59 6 0.30 6 0.31 4.96 6 0.53 6 0.67 7.83 6 0.29 6 0.33 9.11 6 0.86 6 0.61

4.5 4.57 6 0.30 6 0.28 5.54 6 0.56 6 1.04 7.71 6 0.28 6 0.25 9.79 6 0.89 6 0.23

5.5 4.56 6 0.30 6 0.25 5.29 6 0.55 6 0.86 7.87 6 0.29 6 0.17 10.06 6 0.91 6 0.26

6.5 5.10 6 0.32 6 0.23 6.26 6 0.60 6 0.73 8.17 6 0.29 6 0.16 9.58 6 0.88 6 0.51

7.5 5.10 6 0.32 6 0.19 4.83 6 0.53 6 0.33 8.70 6 0.30 6 0.20 9.30 6 0.87 6 0.57

8.5 5.61 6 0.34 6 0.15 4.40 6 0.50 6 0.16 7.91 6 0.29 6 0.21 8.08 6 0.81 6 0.42

9.5 4.93 6 0.32 6 0.09 5.60 6 0.57 6 0.25 8.46 6 0.30 6 0.24 8.96 6 0.85 6 0.30

10.5 6.04 6 0.35 6 0.06 5.22 6 0.55 6 0.37 8.62 6 0.30 6 0.27 10.65 6 0.93 6 0.41

11.5 5.40 6 0.33 6 0.04 4.30 6 0.50 6 0.40 8.38 6 0.30 6 0.29

12.5 5.33 6 0.33 6 0.08 4.75 6 0.52 6 0.52 8.69 6 0.30 6 0.36

13.5 5.41 6 0.33 6 0.14 5.43 6 0.56 6 0.65

14.5 5.40 6 0.33 6 0.20 5.69 6 0.57 6 0.70

15.5 5.60 6 0.34 6 0.28 6.18 6 0.60 6 0.76

16.5 4.81 6 0.31 6 0.30 4.70 6 0.52 6 0.57

17.5 4.95 6 0.32 6 0.38 4.83 6 0.53 6 0.56

18.5 5.78 6 0.34 6 0.53 5.01 6 0.54 6 0.55

19.5 5.37 6 0.33 6 0.57 5.17 6 0.55 6 0.55
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atic uncertainties, which are fully correlated in mass. Figure
75 shows Rx as a function of M for two different renormal-
ization scales, along with the theoretical predictions for dif-
ferent compositeness scales. The effects of compositeness
should be greatest at the highest masses. Note that the two
largest dijet invariant mass bins have a lower xmax value
~Table XXXIV!, and thus a higher value of Rx is expected
independent of compositeness assumptions. Also shown in
Fig. 75 are the x2 values for the four degrees of freedom for
different values of the compositeness scale.

The method chosen to obtain a compositeness limit uses
Bayesian statistics @56#. The compositeness limit is deter-
mined using a Gaussian likelihood function for Rx as a func-
tion of dijet mass. The likelihood function is defined as

L~j !5

1

uSu2p
expH 2

1

2
@d2 f ~j !#TV21@d2 f ~j !#J P~j !

~13.6!

where d is a 4 component vector of data points for the dif-
ferent mass bins, f (j) is a 4 component vector of theory
points for the different mass bins for different values of j
where j is related to L ~see below!, V21 is the inverse of the
covariance matrix, and P(j) is the prior probability distribu-
tion, P(j). The covariance matrix is defined so that the ele-
ment i , j of the covariance matrix, V i j , is

V i j5Ds iDs j , ~13.7!

where Ds is the sum of the systematic and statistical uncer-
tainties added in quadrature if i5 j , and the systematic un-
certainty only if iÞ j . The systematic uncertainties are as-
sumed to be 100% correlated as a function of mass.

The compositeness limit depends on the choice of the
prior probability distribution, P(j). Motivated by the form
of the Lagrangian, P(j) is assumed to be flat in j51/L2.
Since the dijet angular distribution at NLO is sensitive to the
renormalization scale, each renormalization scale is treated
as a different theory. To determine the 95% confidence level
~C.L.! limit in L , a limit in j is first calculated by requiring

that Q(j)5*0
jL(Rx uj8)dj850.95Q(`). The limit in j is

then transformed into a limit in L . Table XXXVIII shows the
95% C.L. limit for the compositeness scale obtained for dif-
ferent choices of models. These results supersede those re-
ported in @23# following the correction of an error in the

FIG. 73. Dijet angular distributions for DØ data ~points! com-

pared to JETRAD for LO ~dashed line! and NLO predictions with

renormalization-factorization scale m50.5ET
max ~dotted line!. The

data are also compared to JETRAD NLO predictions with m5ET
max

~solid line!. The errors on the data points are statistical only. The

band at the bottom represents the 61s systematic uncertainty.

FIG. 74. Data compared to theory for different compositeness

scales. See text for an explanation of the compositeness calculation.

The errors on the points are statistical and the band represents the

61s systematic uncertainty.

TABLE XXXVI. The systematic uncertainties on the measure-

ment of Rx for the smallest and largest mass ranges.

Mass range

260–425 GeV/c2
.635 GeV/c2

Misvertexing 0.24 0.001

MITOOL 0.0076 0.000

Jet quality cuts 0.002 0.010

h bias 0.007 0.009

Energy scale 0.01 0.023

Resolution 0.004 0.010

HIGH-pT JETS IN p̄p COLLISIONS AT As5630 AND . . . PHYSICAL REVIEW D 64 032003

032003-51



program used to calculate the effects of compositeness in
that paper. The resulting limits are reduced by approximately
150 GeV. If the prior distribution is assumed to be flat in
1/L4, the limits are slightly reduced, as shown in Table
XXXIX.

Recently published results from CDF @19# on dijet angular
distributions compare to the model in which all quarks are

composite, yielding 95% confidence limits LLL
1

.1.8 TeV

and LLL
2

.1.6 TeV.

F. Coloron limits

Predictions of the dijet angular distribution with colorons
are available at LO ~Sec. IV C!. To simulate NLO predic-
tions, coloron LO predictions are generated for several val-
ues of M c /cot u. The fractional differences between the an-

gular distribution with M c /cot u5` and the distributions
with finite values of M c /cot u are measured. The coloron
NLO predictions are then obtained by multiplying the NLO
QCD prediction obtained using JETRAD by the LO fractional
differences obtained above. The results are shown in Fig. 76.

Limits on the coloron mass are calculated using the same
method as in the previous section. For a renormalization
scale of m5ET

max , the 95% C.L. limit on the coloron mass is

M c /cot u.759 GeV/c2. If m50.5ET
max , the 95% C.L. limit

is M c /cot u.786 GeV/c2. The resulting limits are shown in
Fig. 77. The shaded region shows the 95% C.L. exclusion
region for the DØ dijet angular distribution measurement
(M c /cot u.759 GeV/c2). The horizontally-hatched region
at large cot u is excluded by the model @38,40#. The
diagonally-hatched region is excluded by the value of the
weak-interaction r parameter (M c /cot u.450 GeV/c2)
@40#. The cross-hatched region is excluded by the CDF
search for new particles decaying to dijets @41#. These limits
are then converted into more general limits on color-octet
vector current-current interactions: LV8

2
.2.1 TeV assuming

aS(M Z)50.12 ~Sec. IV B!.

G. Conclusions

We have measured the dijet angular distribution over a
large angular range. The data distributions are in good agree-
ment with NLO QCD predictions. The compositeness limits
depend on the choice of the renormalization-factorization
scale, the model of compositeness, and the choice of the
prior probability function. Models of quark compositeness
with a contact interaction scale of less than 2 TeV are ruled
out at the 95% C.L.

XIV. THE INCLUSIVE DIJET MASS SPECTRUM

The dijet mass spectrum is calculated using the relation

k[
d3s

dM dh1 dh2

5

N iC i

Lie iDMDh1Dh2

, ~14.1!

TABLE XXXVII. The dijet angular ratio Rx and its statistical

and systematic uncertainty. Also listed are the JETRAD predictions

with Rsep51.3, the CTEQ3M PDF, and m50.5ET
max and ET

max .

Mass range Theory

GeV/c2 Rx6Stat.6Syst. m50.5ET
max m5ET

max

260–425 0.19160.007760.015 0.198 0.180

425–475 0.20260.013660.010 0.206 0.185

475–635 0.34260.008560.018 0.342 0.344

.635 0.50660.032460.028 0.506 0.458

FIG. 75. Rx as a function of dijet invariant mass for two differ-

ent renormalization scales. The inner error bars are the statistical

uncertainties and the outer error bars include the statistical and sys-

tematic uncertainties added in quadrature. The x2 values for the

four degrees of freedom are shown for the different values of the

compositeness scale. The data are plotted at the average mass for

each mass range. The NLO points are offset in mass to allow the

data points to be seen.

TABLE XXXVIII. The 95% confidence level limits for the left-

handed contact compositeness scale for different models. The prior

probability distribution is assumed to be flat in 1/L2.

Compositeness scale m5ET
max m50.5ET

max

LLL
1 2.0 TeV 2.1 TeV

LLL
2 2.0 TeV 2.2 TeV

LLL(ud)
1 1.8 TeV 1.8 TeV

LLL(ud)
2 1.8 TeV 2.0 TeV

TABLE XXXIX. The 95% confidence level limits for the left-

handed contact compositeness scale for different models. The prior

probability distribution is assumed to be flat in 1/L4.

Compositeness scale m5ET
max m50.5ET

max

LLL
1 2.0 TeV 2.0 TeV

LLL
2 1.9 TeV 2.1 TeV

LLL(ud)
1 1.7 TeV 1.7 TeV

LLL(ud)
2 1.7 TeV 1.9 TeV
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where N i is the number of events in mass bin i, C i is the
unsmearing correction, Li is the integrated luminosity, e i is
the efficiency of the trigger, vertex selection, and the jet
quality cuts, DM is the width of the mass bin, and Dh1,2 are
the widths of the pseudorapidity bins for jets 1 and 2. The
dijet mass is calculated assuming massless jets using Eq.
~13.2!. If we define the mass using four vectors, m2

5(E1

1E2)2
2(pW 11pW 2)2, the cross section changes by less than

2%.

A. Data selection

The selected data are events with two or more jets which
satisfy the set of inclusive jet triggers and pass the standard
jet and event quality requirements ~see Sec. VIII!. Events are
removed unless both of the two leading jets pass the jet qual-
ity requirements. The vertex of the event must be within 50
cm of z50. The efficiency for each event is then given by
the product of the efficiencies (e jeti) of the jet quality cuts,
the efficiency (emet) of the cut on E” T , the efficiency (e trigger)
for an event to pass the trigger, and the efficiency (evertex) for
passing the vertex cut. The reciprocal of the resulting effi-
ciencies ~the event weights! is plotted as a function of M in
Fig. 78. The efficiency of the vertex requirement is 90
61%. The data are used to select a sample where both jets
have pseudorapidity uh jetu,1.0. To examine the inclusive di-
jet cross section more closely, two sub-samples are created
where both jets satisfy either uh jetu,0.5 or 0.5,uh jetu,1.0.

To determine the mass at which a given trigger ~Jet_XX!
becomes fully efficient, the event efficiencies are plotted for
each of the triggers in the chosen mass ranges ~Table XL! in

Figs. 79 and 80. This plot shows that the triggers are .95%
efficient for most of the data.

The mass spectra obtained from the triggers Jet_30,
Jet_50 and Jet_85 are then scaled to match the Jet_115 mass
spectrum by the scale factor SFilt which is given by

SFilti
5S LFilti

LJet_115
D 3

1

evertexi

. ~14.2!

The values of SFilt used to scale the data in this analysis are
given in Table XL. These scales ~and the event weights! are
then applied to the data to produce the mass spectra ~two
such spectra are depicted in Fig. 81!. The error plotted for
each point is given by the statistical errors for that bin.

B. Vertex selection biases

The vertex selection procedure chooses the vertex with
the smallest value of ST ~Sec. VII!. This selection criterion
may be biased for events where both of the two leading jets
have the same absolute rapidity. In this case the vertex cho-
sen would be the one that minimizes the ET for both of the
leading jets and not necessarily the correct one. This bias
was studied using the PYTHIA @57# MC event generator to
generate events with multiple vertices at the same rate as the
Jet_85 and Jet_115 triggers. For dijet events with uh jetu
,1.0 the number of incorrectly chosen vertices is 5%.

The effect on the dijet mass cross section is measured by
calculating the ratio of the mass spectrum produced using the
selected vertex to that of the correct vertex. The result of this
calculation is given in Fig. 82 for uh jetu,1.0 and shows that
the effect is of the order of 1% and that it is reasonably
uniform as a function of mass. A 2% uncertainty in the cross
section, uncorrelated as a function of mass, was assumed.

FIG. 76. DØ data compared to theory for different values of

M c /cot u ~see text for details of the coloron distribution calcula-

tion!. The errors on the points are statistical and the band represents

the correlated 61s systematic uncertainty.

FIG. 77. Limits on the coloron parameter space: coloron mass

M c vs mixing parameter cot u.
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C. Dijet mass resolution

The dijet mass resolutions were calculated using the mea-
sured single jet resolutions ~Sec. X!. The dijet mass resolu-
tions depend on the ET and h values of the two leading ET

jets in each event. Hence the mass resolutions are determined
by using a Monte Carlo ~MC! event generator to convolute
the measured single jet resolutions ~Table V!. For each MC
event generated, the individual particle jets are smeared by
the measured single jet resolutions. The unsmeared and
smeared dijet masses are calculated and used to determine
the mass smearing. The values of the mass smearing are
plotted in discrete mass bins and fitted to a Gaussian ansatz
~see Fig. 83 for an example!. The distribution is well-
represented by a Gaussian with only a small fraction ~!1%!
of events forming a tail ~due to events where the jets are
reordered after smearing!. The resolution at each of these
masses is given by the width of the Gaussian. The results
obtained for uh jetu,1.0 using the PYTHIA MC @57# are plotted
in Fig. 84.

The mass resolutions are then fitted using the functional
form:

s~M !/M ~% !5AA1BM1CM 2
1DM 3. ~14.3!

The results are depicted in Fig. 84. The resulting fit param-
eters for all h regions considered in this analysis are given in
Table XLI.

The mass resolution dependence on the MC generator
used to convolute the single jet resolutions has been esti-

FIG. 78. The reciprocal of the event efficiencies e i for each

mass bin.

TABLE XL. The mass ranges and scale factors for the triggers

used in this analysis.

Data sets satisfying uh jetu,1.0, and 0.5,uh jetu,1.0

Trigger name Mass range Scaling factor

~GeV/c2) SFilt

Jet_30 200–270 289.3614.4

Jet_50 270–350 21.761.1

Jet_85 350–550 1.84560.005

Jet_115 550–1400 1.09560.009

Data Set satisfying uh jetu,0.5

Trigger name Mass range Scaling factor

~GeV/c2) SFilt

Jet_30 150–200 289.3614.4

Jet_50 200–300 21.761.1

Jet_85 300–390 1.84560.005

Jet_115 390–1400 1.09560.009

FIG. 79. The trigger efficiencies of the events included in the

dijet mass spectrum. Note that most events have an efficiency

greater than 99%.

FIG. 80. The average trigger efficiencies for each trigger as a

function of mass.
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mated by using the HERWIG @33# and JETRAD event genera-
tors. The JETRAD program is used at LO with renormaliza-

tion scales of m5(0.25,0.5,1.0)ET
max and m

5(0.25,0.5,1.0)Aŝ with CTEQ3M @35#. To ensure that the
choice of PDF does not affect the resolutions, JETRAD was
run with the CTEQ3L and MRS~A8! @36# PDFs. ~See Fig.
85.!

D. Data unsmearing

The jet energy scale corrects only the average response to
a jet. The steeply falling dijet mass spectrum is distorted by
the jet energy resolution and, to a negligible extent, by the h
resolution. The observed mass spectrum is corrected for
resolution smearing by assuming a trial unsmeared spectrum

F~M 8!5NM 8
2aS 12

M 8

As
D 2b

, ~14.4!

which is convoluted with the measured mass resolutions

f ~M !5E F~M 8!s~M 82M ,M 8!dM 8, ~14.5!

such that the number of events in any mass bin i is given by
integrating f over that bin. The data were fitted using a
binned maximum likelihood method and the MINUIT package
@58# to determine the values of N, a , and b . The smearing
correction is given by

C i5

E F~M !dM

E f dM

. ~14.6!

FIG. 81. The scaled dijet mass spectrum for uh jetu,1.0 and

uh jetu,0.5.

FIG. 82. The effect on the mass spectrum of incorrectly identi-

fied vertices for uh jetu,1.0.

FIG. 83. The distribution of M smeared/M unsmeared for PYTHIA-

generated events with uh jetu,1.0 and 490,M unsmeared

,510 GeV/c2.

FIG. 84. The mass resolutions for uh jetu,1.0 generated using the

PYTHIA MC. The solid curve and the MC data points show the

resolutions determined using the nominal jet energy resolutions; the

dashed lines show the resolutions determined with the 61s jet

energy resolution uncertainties.
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To account for any uncertainties in the choice of trial func-
tion the data are fitted with two additional functions:

F~M !5NM 2aF12

M

As
1gS M

As
D 2G2b

, ~14.7!

F~M !5NM 2a expF2bS M

100
D2gS M

100
D 2G .

~14.8!

The nominal smearing correction is given by the fit to the
data using the trial function given in Eq. ~14.4! and the ob-
tained mass resolutions ~Table XLI!. The resulting fit for
uh jetu,1.0 has a x2

510.3 for 13 degrees of freedom and is
given in Fig. 86. The magnitude of the correction is approxi-
mately 5% at 209 GeV/c2 and drops to approximately 2% at
500 GeV/c2, and then rises to 8% at 1 TeV/c2. The uncer-
tainty in the smearing correction is obtained by fitting the
data with each of the trial functions and all of the mass
resolutions generated with the different MC generators. The
error is given by the maximum and minimum corrections
obtained for each mass bin and is approximately 2%. The
resulting smearing corrections are shown in Fig. 87.

E. Energy scale corrections

The uncertainties in the dijet mass cross section due to the
energy scale have also been determined using a Monte Carlo
program. The MC program generates two initial state partons
each with a uniform distribution in x ~the fraction of the
proton momentum carried by the parton!. The kinematic
quantities of the two jets that result from this interaction are
determined by generating a random value of x from a uni-
form distribution. The jet ET and h are uniquely determined
for the event; it is assumed that the two jets are back-to-back
in f . The event is accepted if it satisfies the requirement
uh jetu,1.0. Each event is weighted by M 24.75

3Pr(x1)
3Pr(x2) where Pr(x1,2) is the probability of finding a parton
with momentum fraction x in the CTEQ4M PDF @14#. The
exponent, 24.75, was chosen to obtain a dijet mass spectrum
with similar normalization and shape as the data. Finally,
each of the resulting jets has its ET smeared by the measured
single jet resolutions. Figure 88 shows a comparison of the
mass spectrum produced by the Monte Carlo simulation and
the data; the two are in reasonable agreement. The effect of
changing the weight applied in the Monte Carlo simulation
has been studied. If the weight is changed to M 24.5 or M 25.0

the resulting energy scale error changes by less than 1%.
The energy scale uncertainties are calculated by generat-

ing a sample of MC jet events ~in which the jets are fully
corrected! and applying the inverse of jet energy scale cor-
rection. This sample of uncorrected jets then have the nomi-
nal, high (nominal11s), and low ~nominal21s) energy
scale corrections applied. The error due to the energy scale is
split into components: the uncorrelated error, the fully corre-
lated error, a partially correlated error, and the error due to
the showering correction. The resulting errors are plotted in
Fig. 89 along with errors obtained from fitting the data with
the high and low energy scale corrections applied. The errors
obtained by the two methods are in agreement.

We calculated the correlation matrix for the partially cor-
related component of the energy scale uncertainty. The cor-
relations have been calculated as a function of the jet energy
~Sec. IX D!; hence the relationship between the jet energy
and the dijet mass spectrum needs to be determined. The
correlation matrix for the dijet mass spectrum can be written
as

^ds ids j&5

]s

]M i

]s

]M j

^dM idM j&, ~14.9!

where dX represents the shift in variable X due to a system-
atic error parameter a; i and j denote mass bins and s is the
cross section. In the limit of massless jets, the dijet effective
mass can be approximated by

TABLE XLI. Parametrizations of the mass resolutions ~in percent! generated using the PYTHIA MC.

Data set A B C D

uh jetu,1.0 3.4061.01 0.76160.045 0.030260.0032 0.000260.0005

uh jetu,0.5 3.7860.94 0.70160.041 0.023160.0025 0.060.0003

0.5,uh jetu,1.0 5.2460.83 0.70960.058 0.038960.0022 0.060.0004

FIG. 85. A comparison of the mass resolutions for uh jetu,1.0

obtained by running PYTHIA ~solid line!, HERWIG ~dashed line!, and

JETRAD ~dotted line! with m50.5ET
max and the CTEQ3M PDF. The

resolutions are divided by the nominal PYTHIA resolutions. The up-

per and lower curves show the effect of the 61s uncertainties on

the measured jet resolutions.
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M i5A2E i1E i2~12cos u i12! ~14.10!

where E i1 and E i2 are the energies, and u i12 is the angle
between the jets for event i. Hence

dM i5

]M i

]E i1

dE i11

]M i

]E i2

dE i21

]M i

]cos u i12

d cos u i12 ;

~14.11!

as we are only concerned with the energy scale, the angle
error is ignored. Therefore

]M i

]E i1

5

E i2

M i

~12cos u i12!, ~14.12!

dM i5

1

M i

~E i1dE i21E i2dE i1!~12cos u i12! ~14.13!

and

^dM idM j&5

1

M iM j

~12cos u i12!~12cos u j12!

3~E i1E j1^dE i2E j2&1E i2E j1^dE i1E j2&

1E i1E j2^dE i2E j1&1E i2E j2^dE i1E j1& !.

~14.14!

Using this relationship, the correlations between jets due to
the uncertainties in the jet energy scale can be translated into
correlations between mass bins for the dijet mass cross sec-
tion using the Monte Carlo program. The resulting correla-
tions are plotted for a selection of mass bins in Fig. 90.

F. Summary of systematic uncertainties

In addition to the uncertainties in the luminosity, smearing
correction, and the energy scale, there are uncertainties asso-
ciated with the selection of the events that contribute to the
data sample. These uncertainties are due to the jet quality
cuts @see Eqs. ~8.1!, ~8.2!, ~8.3!, and ~8.4!# as well as the
procedure used to add hot cells back into jets ~Sec. VIII A!.
These uncertainties contribute a 1% uncorrelated uncertainty
to the cross section. In addition, the uncertainty due to the
unsmearing is assumed to be fully correlated as a function of
the dijet mass in each event.

A complete description of the systematic uncertainties in
the dijet mass cross section is given in Table XLII. The total
systematic error in each mass bin is given by the sum in
quadrature of these errors. The uncertainties are combined

FIG. 86. Top: The fit to the data for uh jetu,1.0 using Eq. ~14.4!.
Bottom: The residuals of the fit are plotted, ~data – fit!/fit.

FIG. 87. The smearing correction factor to be applied to the data

for uh jetu,1.0. The upper and lower curves represent the 61s un-

certainties of the smearing correction.

FIG. 88. A comparison of the data and the mass spectrum pro-

duced by the Monte Carlo simulations to study the energy scale

uncertainties. The solid curves show the 61s energy scale uncer-

tainties. The dashed curves show the MC predictions where the

weights are set to M 24.5 ~upper! and M 25.0 ~lower!.
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appropriately to obtain an overall correlation matrix for the
bin-to-bin systematic uncertainties in the dijet mass spec-
trum.

G. Cross section

The dijet mass cross section is calculated using Eq. ~14.1!
for the pseudorapidity range uh jetu,1.0, in mass ranges start-
ing at 200, 270, 350, and 550 GeV/c2, corresponding to the
jet ET thresholds of 30, 50, 85, and 115 GeV.

The cross section for the mass spectrum is plotted in Fig.
91, and given in Table XLIII. The data are plotted at the
mass-weighted average of the fit function for each bin
(*MFdM /*FdM ). The systematic uncertainties are domi-
nated by the uncertainties in the jet energy scale, which are
7% (30%) for the 209 ~873! GeV/c2 mass bins. The bin-to-
bin correlations of the uncertainties are shown in Fig. 92 and
are given in Table XLIV @55#.

The dijet mass cross section measurement was then re-
peated for uh jetu,0.5, and 0.5,uh jetu,1.0. The resulting
cross sections are given in Tables XLV and XLVI.

Most of the systematic uncertainties in the measurement
of the inclusive dijet mass spectrum are highly correlated as
a function of dijet mass and h and to a good approximation,
cancel when a ratio of two cross sections is made. For this
reason the cross section ratio for the rapidity ranges uh jetu
,0.5 and 0.5,uh jetu,1.0 will be calculated:

k~ uh jetu,0.5!

k~0.5,uh jetu,1.0!
. ~14.15!

The uncertainty in the theoretical prediction of this ratio due
to the choice of PDF is less than 3%, and 6% from the
choice of renormalization and factorization scale ~excluding

m50.25ET
max). The luminosity matching error only contrib-

utes to those bins where the data from triggers Jet_30 and
Jet_50 overlaps with the data from triggers Jet_85 and
Jet_115 ~i.e. for masses between 300 and 350 GeV/c2). The
errors from the vertex selection cancel when the data in a bin
come from the same trigger for each of the cross sections.
The errors due to the unsmearing and the ~partially! corre-
lated part of the energy scale are assumed to be correlated for

FIG. 89. The energy scale errors obtained from the Monte Carlo

simulations. The full circles show the total energy scale uncertain-

ties, the open squares show the correlated error, the open triangles

show the uncorrelated error, and the stars show the partially corre-

lated error. The curve shows the energy scale uncertainties obtained

from fitting the data with the high and low energy scale corrections

applied.

FIG. 90. The correlations between mass bins for uh jetu,1.0. The

four plots show the mass correlations relative to four different mass

bins: 200–220 GeV/c2 ~209 GeV/c2 weighted average!, 300–320

GeV/c2 ~309 GeV/c2), 470–510 GeV/c2 ~488 GeV/c2), and 600–

700 GeV/c2 ~639 GeV/c2).

TABLE XLII. Common systematic errors on the cross section.

Source Percentage Comment

error

Jet selection 1 Statistical

Uncorrelated

Vertex selection 2 Systematic

Uncorrelated

Luminosity scale 5.8 Systematic

Fully correlated

Luminosity match Systematic

Jet_30 4.9 Statistical

Jet_50 Correlated for

Jet_30 and 50

Unsmearing correction 0.5–3.0 Systematic

Fully correlated

Energy scale 7.0–30.0 Systematic

Mixture
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the two cross sections and mostly cancel out leaving small
errors (!1%). In addition the uncertainty due to the hot cell
restoration is assumed to be correlated between the two cross
sections. All other errors are assumed to be uncorrelated be-
tween the two measurements. For the purposes of calculating
a covariance matrix, the correlated energy scale and un-

smearing errors are assumed to be fully correlated as a func-
tion of mass.

The resulting cross section ratios are given in Table
XLVII and plotted in Fig. 93. Taking the ratio of the cross
sections reduces the systematic uncertainties to less than
10%. The correlations of the systematic uncertainties are
given in Table XLIV @55#.

H. Comparison of data with theory

Figure 94 shows the ratio ~data-theory!/theory for uh jetu
,1.0 and the JETRAD prediction using CTEQ3M with m
50.5ET

max . The effect of varying the renormalization scale in
the prediction is also shown; all are in good agreement ex-

TABLE XLIII. Dijet mass cross section for uh jetu,1.0. High ~low! systematic uncertainties are the sum in

quadrature of the uncertainties from the 61s variations in the energy calibration, the unsmearing, the vertex

corrections, luminosity matching, jet selection, and the uncertainty in the luminosity. Also included is the

JETRAD prediction with m50.5ET
max , Rsep51.3, and the CTEQ3M PDF.

Mass bin ~GeV/c2) N i Cross section Systematic error Theoretical

Min. Max. Weighted 6 statistical error Low High prediction

center @nb/(GeV/c2)/(Dh)2# (%) (%) @nb/(GeV/c2)/(Dh)2#

200 220 209.1 918 (3.6660.12)31022 11.2 11.7 3.5731022

220 240 229.2 507 (2.0360.09)31022 11.1 11.4 2.1231022

240 270 253.3 419 (1.1360.06)31022 11.3 11.6 1.1731022

270 300 283.4 2944 (5.9860.11)31023 11.4 11.8 6.0031023

300 320 309.3 1123 (3.4360.10)31023 11.4 12.0 3.5331023

320 350 333.6 1006 (2.0660.06)31023 11.8 12.1 2.1731023

350 390 367.6 8749 (1.1460.01)31023 10.9 11.5 1.1531023

390 430 407.8 4323 (5.6660.09)31024 11.4 12.0 5.6731024

430 470 447.9 2137 (2.8060.06)31024 11.8 12.7 2.9231024

470 510 488.0 1210 (1.5960.05)31024 12.3 13.4 1.5431024

510 550 528.0 646 (8.4760.33)31025 12.7 14.2 8.3631025

550 600 572.0 699 (4.3560.16)31025 13.3 15.2 4.3131025

600 700 638.9 542 (1.6860.07)31025 14.8 17.1 1.5531025

700 800 739.2 144 (4.4360.37)31026 17.5 20.7 3.7531026

800 1400 873.2 46 (2.3260.34)31027 23.1 28.9 1.9531027

FIG. 91. Dijet mass cross section d3s/dMdh1dh2 for uh jetu
,1.0. The DØ data are shown by the solid circles, with error bars

representing the 61s statistical and systematic uncertainties added

in quadrature ~in most cases smaller than the symbol!. The histo-

gram represents the JETRAD prediction.

FIG. 92. The correlations between systematic uncertainties in

bins of dijet mass ~see Tables XLIII and XLIV! for uh jetu,1.0. The

correlations are calculated using the average systematic uncertainty.

The discontinuities arise from the uncorrelated errors ~adjacent to

correlations of 1.0! and to luminosity matching.
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cept for m50.25ET
max which lies approximately 30% below

the data. Figure 95 shows ~data-theory!/theory for JETRAD

predictions with different choices of PDFs. Given the experi-

mental and theoretical uncertainties, the predictions can be

regarded as being in good agreement with the data. Figure 96
shows that the data and JETRAD predictions are in agreement

for uh jetu,0.5 and 0.5,uh jetu,1.0. The data are also in

agreement, within the uncertainties, with the cross section

measured by CDF @18#.
A x2 can be calculated for each of the comparisons be-

tween the data ~cross sections and ratio of cross sections! and

the predictions. The x2 is given by

TABLE XLIV. The systematic error correlations for the dijet cross section for uh jetu,1.0, and the ratio

k(uh jetu,0.5)/k(0.5,uh jetu,1.0). The correlation values above the diagonal are the correlations correspond-

ing to the cross section and the correlations below the diagonal correspond to the ratio. In both cases the

correlation matrices are symmetric.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.00 0.88 0.88 0.87 0.87 0.87 0.76 0.74 0.73 0.72 0.71 0.69 0.66 0.61 0.55 1

1.00 0.89 0.89 0.89 0.89 0.78 0.77 0.76 0.74 0.73 0.71 0.68 0.63 0.56 2

1 1.00 1.00 0.90 0.90 0.90 0.79 0.78 0.77 0.76 0.75 0.73 0.70 0.65 0.59 3

2 0.58 1.00 1.00 0.90 0.91 0.80 0.79 0.79 0.78 0.77 0.75 0.72 0.68 0.61 4

3 0.61 0.60 1.00 1.00 0.91 0.81 0.80 0.80 0.79 0.78 0.77 0.74 0.70 0.64 5

4 0.61 0.59 0.63 1.00 1.00 0.82 0.82 0.81 0.81 0.80 0.79 0.76 0.73 0.67 6

5 0.52 0.51 0.54 0.54 1.00 1.00 0.89 0.90 0.89 0.89 0.87 0.85 0.81 0.76 7

6 0.56 0.54 0.57 0.58 0.87 1.00 1.00 0.90 0.90 0.89 0.88 0.87 0.84 0.78 8

7 0.60 0.58 0.62 0.63 0.54 0.58 1.00 1.00 0.91 0.91 0.90 0.89 0.86 0.82 9

8 0.60 0.58 0.61 0.62 0.53 0.57 0.63 1.00 1.00 0.91 0.91 0.90 0.88 0.84 10

9 0.59 0.58 0.61 0.62 0.53 0.57 0.62 0.63 1.00 1.00 0.92 0.91 0.90 0.86 11

10 0.58 0.57 0.60 0.61 0.53 0.56 0.61 0.62 0.62 1.00 1.00 0.92 0.91 0.89 12

11 0.59 0.58 0.61 0.63 0.53 0.58 0.62 0.63 0.63 0.62 1.00 1.00 0.93 0.92 13

12 0.60 0.58 0.62 0.63 0.54 0.58 0.63 0.62 0.62 0.61 0.63 1.00 1.00 0.95 14

13 0.58 0.56 0.59 0.61 0.53 0.56 0.61 0.60 0.60 0.59 0.61 0.62 1.00 1.00 15

14 0.53 0.52 0.55 0.57 0.50 0.53 0.56 0.56 0.56 0.55 0.57 0.58 0.58 1.00

15 0.51 0.50 0.53 0.55 0.48 0.52 0.54 0.54 0.54 0.53 0.55 0.57 0.57 0.55 1.00

TABLE XLV. Dijet mass cross section for uh jetu,0.5. High ~low! systematic uncertainties are the sum in

quadrature of the uncertainties from the 61s variations in the energy calibration, the unsmearing, the vertex

corrections, luminosity matching, jet selection, and the uncertainty in the luminosity. Also included is the

JETRAD prediction with m50.5ET
max , Rsep51.3, and the CTEQ3M PDF.

Mass bin ~GeV/c2) N i Cross section Systematic error Theoretical

Min. Max. Weighted 6 statistical error Low High prediction

center @nb/(GeV/c2)/(Dh)2# (%) (%) @nb/(GeV/c2)/(Dh)2#

150 160 154.7 467 (1.4660.07)31021 10.8 11.0 1.4631021

160 180 168.9 552 (8.6960.37)31022 10.5 10.5 9.0331022

180 200 189.0 315 (4.9960.28)31022 10.5 10.9 4.9131022

200 220 209.1 2243 (2.6960.06)31022 10.3 10.5 2.8131022

220 240 229.2 1390 (1.6760.04)31022 10.2 10.7 1.6831022

240 270 253.3 1055 (8.5260.26)31023 10.5 10.5 9.3531023

270 300 283.4 550 (4.4760.19)31023 10.7 10.8 4.8231023

300 320 309.3 2671 (2.7860.05)31023 9.1 10.0 2.8631023

320 350 333.6 2434 (1.6960.03)31023 9.9 9.9 1.7831023

350 390 367.7 1823 (9.5060.22)31024 9.9 10.3 9.4931024

390 430 407.8 1459 (4.5260.12)31024 10.3 10.8 4.7831024

430 470 448.0 831 (2.5860.09)31024 10.7 11.4 2.5031024

470 510 488.0 480 (1.4960.07)31024 11.1 12.1 1.3531024

510 550 528.1 231 (7.1760.47)31025 11.7 12.8 7.4331025

550 600 572.2 156 (3.8760.31)31025 12.4 13.7 3.9131025

600 700 639.4 125 (1.5560.14)31025 13.8 15.5 1.4631025

700 800 739.8 30 (3.7160.68)31026 16.5 19.3 3.7231026

800 1400 878.1 14 (2.8660.77)31027 22.0 27.8 2.0831027
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x2
5(

i , j
d iV i j

21d j , ~14.16!

where d i is the difference between the data and theory for
mass bin i, and V i j is element i , j of the covariance matrix:

V i j5r i jDs iDs j , ~14.17!

where Ds is the sum of the systematic error and the statis-
tical error added in quadrature if i5 j and the systematic
error if iÞ j , and r i j is the correlation between the systematic
uncertainties of mass bins i and j as given in Table XLIV.
The systematic uncertainty is given by the fractional uncer-
tainty times the theoretical prediction. The resulting x2 val-
ues are given in Table XLVIII for all of the theoretical
choices described above. The choice of PDF and renormal-
ization scale is varied; all choices are in good agreement with

the data, except for m50.25ET
max which is excluded by the

data.

I. Compositeness limits

The ratio of the mass spectra can be used to place limits
on quark compositeness ~Sec. IV B!. Currently there are no
NLO compositeness calculations available; therefore a LO
event generator ~PYTHIA! is used to simulate the effect of
compositeness. The ratio of these LO predictions with com-
positeness, to the LO with no compositeness, is used to scale
the JETRAD NLO prediction, shown in Fig. 97.

The data show no evidence of compositeness and are used

to set 95% confidence level limits on LLL
6 . This was done

using the same method that was used to extract composite-
ness limits from the dijet angular distribution ~Sec. XIII E!.

Figure 98 shows the probability distribution for a theoretical
prediction obtained using JETRAD with the CTEQ3M PDF

and a renormalization scale of m5ET
max . The 95% C.L. limit

on the compositeness scale is LLL
1

.2.7 TeV. Limits were

TABLE XLVI. Dijet mass cross section for 0.5,uh jetu,1.0. High ~low! systematic uncertainties are the

sum in quadrature of the uncertainties from the 61s variations in the energy calibration, the unsmearing, the

vertex corrections, luminosity matching, jet selection, and the uncertainty in the luminosity. Also included is

the JETRAD prediction with m50.5ET
max , Rsep51.3, and the CTEQ3M PDF.

Mass bin ~GeV/c2) N i Cross section Systematic error Theoretical

Min. Max. Weighted 6 statistical error Low High prediction

center @nb/(GeV/c2)/(Dh)2# (%) (%) @nb/(GeV/c2)/(Dh)2#

200 220 209.1 275 (4.3960.26)31022 12.3 12.7 4.5631022

220 240 229.1 170 (2.7360.21)31022 11.7 12.1 2.7031022

240 270 253.2 139 (1.4960.13)31022 12.0 12.4 1.4931022

270 300 283.4 964 (7.8760.25)31023 11.9 12.7 7.6031023

300 320 309.3 371 (4.5560.24)31023 12.1 12.3 4.4631023

320 350 333.6 292 (2.4060.14)31023 12.5 13.0 2.7531023

350 390 367.6 2682 (1.4160.03)31023 11.6 12.4 1.4431023

390 430 407.8 1445 (7.6260.20)31024 12.0 13.0 7.1631024

430 470 447.9 689 (3.6460.14)31024 12.6 13.6 3.7031024

470 510 488.0 408 (2.1660.11)31024 13.1 14.1 1.9731024

510 550 528.1 219 (1.1660.08)31024 13.4 15.0 1.0731024

550 600 572.2 244 (6.1160.39)31025 13.6 16.0 5.5931025

600 700 639.4 192 (2.4060.17)31025 14.7 17.5 2.0531025

700 800 739.8 49 (6.1060.87)31026 17.1 20.4 5.1931026

800 1400 878.8 20 (4.0660.91)31027 22.4 28.0 2.9231027

TABLE XLVII. The ratio k(uh jetu,0.5)/k(0.5,uh jetu,1.0).

The systematic uncertainties are the sum in quadrature of the un-

certainties from the 61s variations in the energy calibration, the

unsmearing, the vertex corrections, luminosity matching, jet selec-

tion, and the uncertainty in the luminosity. Also shown is the JE-

TRAD prediction with m50.5ET
max , Rsep51.3, and the CTEQ3M

PDF.

Mass bin

~GeV/c2! Ratio of mass spectra

k(uh jetu,0.5)/k(0.5,uh jetu,1.0)

(6 stat. error 6 syst. error!
Theoretical

predictionMin. Max.

200 220 0.61360.03960.037 0.616

220 240 0.61460.05060.030 0.621

240 270 0.57060.05160.029 0.627

270 300 0.56860.03060.027 0.635

300 320 0.61060.03460.050 0.642

320 350 0.70560.04460.058 0.648

350 390 0.67260.02060.032 0.657

390 430 0.59360.02260.030 0.667

430 470 0.70860.03660.037 0.676

470 510 0.69060.04660.036 0.685

510 550 0.62060.05860.033 0.693

550 600 0.63460.06560.033 0.701

600 700 0.64760.07460.034 0.710

700 800 0.60860.14160.035 0.718

800 1400 0.70560.24660.046 0.711
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also set for several different theoretical choices of PDF and
renormalization scales for both the NLO JETRAD and LO
compositeness predictions. The limits on the compositeness
scale are summarized in Table XLIX. The dijet mass spec-
trum rules out quark compositeness models at the 95% con-

fidence level where LLL
1 is below 2.7 TeV and LLL

2 is below
2.4 TeV.

Limits on models with color-singlet ~octet! vector or axial
contact interactions were also set using an analytic LO cal-
culation @38# instead of the PYTHIA event generator. The re-
sulting limits are given in Table L. The limits on the scale of

LV8

2 can be converted into limits on a flavor-universal col-

oron @59#, resulting in a 95% C.L. limit of M c /cot u
.837 GeV/c2 ~see Sec. IV C for a description of the theory!.

The robustness of the confidence limits are tested in two
ways. The first assumes that the systematic uncertainties are
completely uncorrelated as a function of mass, which results
in a degradation of the limit by 10 GeV ~negligible compared
to the scale of the limit!. The second doubles the size of the
systematic uncertainty, which results in a degradation of the
limit by 20 GeV.

J. Conclusions

We have measured the inclusive dijet mass spectrum for a
pseudorapidity range of uh jetu,1.0 and 200,M,1400 GeV

at As51.8 TeV to an accuracy of 10% to 30% as a function
of mass. QCD NLO predictions, using several PDFs, show
good agreement with the observed inclusive dijet mass spec-
trum.

The ratio of the inclusive dijet mass cross sections for
uh jetu,0.5 and 0.5,uh jetu,1.0 has also been measured with

FIG. 93. The ratio of cross sections for uh jetu,0.5 and 0.5

,uh jetu,1.0 for data ~solid circles! and theory ~various lines!. The

error bars show the statistical uncertainties. The shaded region rep-

resents the 61s systematic uncertainties about the prediction. The

effects on the prediction of changing the renormalization scale are

also shown.

FIG. 94. The difference between the data and the prediction

~JETRAD! divided by the prediction for uh jetu,1.0. The solid circles

represent the comparison to the calculation using CTEQ3M with

m50.5ET
max . The shaded region represents the 61s systematic un-

certainties about the prediction. The effects of changing the renor-

malization scale are also shown ~each curve shows the difference

between the alternative prediction and the prediction using

CTEQ3M with m50.5ET
max).

FIG. 95. The difference between the data and the prediction

~JETRAD! divided by the prediction for uh jetu,1.0. The solid circles

represent the comparison to the calculation using m50.5ET
max and

the PDFs CTEQ4M, CTEQ4HJ, MRS~A8!, and MRST. The shaded

region represents the 61s systematic uncertainties about the pre-

diction.
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a systematic uncertainty that is less than 10%. The data dis-

tributions are in good agreement with NLO QCD predic-

tions. Models of quark compositeness with a contact interac-

tion scale of less than 2.2 TeV are excluded at the 95%

confidence level.

XV. CONCLUSIONS

We have presented a series of measurements of high en-

ergy jets at the Fermilab Tevatron which are sensitive to the

various components of QCD predictions: the parton distribu-

tions, the matrix elements, and the scales. Measurements of

the cross section as a function of jet ET , and dijet invariant

mass have been presented. By taking the ratio of the inclu-

sive cross sections at two energies, both the experimental

errors and the sensitivity to the parton distributions were
reduced, providing a stringent test of the ET dependence of
the QCD matrix element at next-to-leading order. By looking
at both the dijet angular distribution at fixed mass and the
ratio of dijet invariant mass distributions in two different
rapidity ranges, we have again minimized the experimental
uncertainties and tested the angular dependence of the matrix
element calculation.

We have made the most precise measurement to date of

the inclusive jet cross section for ET>60 GeV at As51800
GeV. No excess production of high-ET jets is observed. QCD
predictions are in good agreement with the observed cross
section for standard parton distribution functions and differ-
ent renormalization scales (m50.2522.00ET where ET

5ET
max and ET

jet). We have also made the most precise mea-
surement to date of the ratio of the inclusive jet cross sec-

FIG. 96. The difference between the data and the prediction

~JETRAD! divided by the prediction for uh jetu,0.5 and 0.5,uh jetu
,1.0. The solid circles represent the comparison to the calculation

using CTEQ3M with m50.5ET
max . The shaded region represents

the 61s systematic uncertainties about the prediction.

TABLE XLVIII. The calculated x2 for k(uh jetu,1.0) ~15 degrees of freedom!, k(uh jetu,0.5) ~18 DOF!,
and k(0.5,uh jetu,1.0) ~15 DOF! and for the ratio k(uh jetu,0.5)/k(0.5,uh jetu,1.0). The probability of

obtaining a larger x2 is also given.

PDF m k(uh jetu,1.0) k(uh jetu,0.5) k(0.5,uh jetu,1.0) Ratio

x2 Prob. x2 Prob. x2 Prob. x2 Prob.

CTEQ3M 0.25ET
max 24.7 0.05 26.4 0.09 38.3 0.001 29.1 0.02

CTEQ3M 0.50ET
max 5.7 0.98 11.2 0.89 8.9 0.88 14.1 0.52

CTEQ3M 0.75ET
max 6.1 0.98 11.2 0.89 9.1 0.87 13.6 0.56

CTEQ3M 1.00ET
max 6.3 0.97 12.1 0.84 9.2 0.87 13.3 0.58

CTEQ3M 2.00ET
max 6.0 0.98 12.5 0.82 11.5 0.71 13.0 0.60

CTEQ3M 0.25Ax1x2s 12.7 0.63 28.7 0.05 10.2 0.81 14.9 0.46

CTEQ3M 0.50Ax1x2s 6.1 0.98 14.5 0.70 8.8 0.89 13.8 0.54

CTEQ3M 1.00Ax1x2s 7.7 0.93 13.4 0.77 13.3 0.58 14.3 0.51

CTEQ4M 0.50ET
max 5.8 0.98 11.5 0.87 8.3 0.91 14.0 0.52

CTEQ4A1 0.50ET
max 5.8 0.98 13.1 0.79 8.1 0.92 14.1 0.52

CTEQ4A2 0.50ET
max 6.5 0.97 12.4 0.83 8.0 0.93 14.4 0.50

CTEQ4A4 0.50ET
max 5.8 0.98 11.7 0.86 8.5 0.90 14.5 0.49

CTEQ4A5 0.50ET
max 5.7 0.98 11.4 0.88 8.7 0.89 14.9 0.46

CTEQ4HJ 0.50ET
max 5.6 0.99 11.4 0.88 6.8 0.96 14.2 0.51

MRS~A8! 0.50ET
max 6.8 0.96 11.0 0.89 8.3 0.91 14.4 0.49

MRST 0.50ET
max 8.8 0.89 16.0 0.59 12.9 0.61 14.5 0.49

MRST(g↑) 0.50ET
max 8.4 0.91 16.7 0.54 10.2 0.81 14.2 0.51

MRST(g↓) 0.50ET
max 13.9 0.54 23.1 0.19 19.6 0.19 14.4 0.50
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tions at As5630 and 1800 GeV. The NLO QCD predictions
yield satisfactory agreement with the observed data for stan-
dard choices of renormalization scale or PDF. In terms of the
normalization however, the absolute values of the standard
predictions lie consistently and significantly higher than the
data.

We have measured the dijet angular distribution over a
large angular range and the inclusive dijet mass spectrum for
a pseudorapidity range of uh jetu,1.0. QCD NLO predictions,
using several PDF’s, show good agreement with the ob-
served inclusive dijet mass spectrum. Since we found good

agreement, the data have permitted us to provide sensitive
limits on the existence of possible non-standard model phe-
nomena.
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,uh jetu,1.0 for data ~solid circles! and theoretical predictions for

compositeness models with various values of LLL
1 ~various lines;

see Sec. IV B for model details!. The error bars show the statistical

uncertainties. The shaded region represents the 61s systematic

uncertainties about the JETRAD prediction.

 

FIG. 98. The probability distribution ~solid curve!
P(suj8)P(j8)/Q(`) for the theoretical prediction JETRAD with m
5ET

max . The dashed curve shows the integral of the probability

distribution and the dotted line shows the 95% C.L. limit on the

compositeness scale, 2.73 TeV. The most probable value for the

compositeness scale is LLL
1

5` .

TABLE XLIX. The 95% confidence level limits in TeV for the

left-handed contact compositeness scales for different models.

PDF Renorm.

scale m
Compositeness scale

LLL
1 LLL

2

1/L2 1/L4 1/L2 1/L4

CTEQ3M 0.25ET
max 3.51 3.21 2.87 2.80

CTEQ3M 0.50ET
max 2.93 2.45 2.56 2.38

CTEQ3M 0.75ET
max 2.88 2.43 2.52 2.36

CTEQ3M 1.00ET
max 2.73 2.38 2.49 2.35

CTEQ3M 2.00ET
max 2.84 2.39 2.48 2.35

CTEQ4M 0.50ET
max 2.92 2.45 2.55 2.38

CTEQ4A1 0.50ET
max 2.96 2.47 2.55 2.38

CTEQ4A2 0.50ET
max 2.74 2.39 2.53 2.36

CTEQ4A4 0.50ET
max 2.76 2.40 2.54 2.37

CTEQ4A5 0.50ET
max 2.96 2.47 2.58 2.39

CTEQ4HJ 0.50ET
max 2.87 2.42 2.58 2.38

MRS~A8) 0.50ET
max 2.97 2.47 2.59 2.39

MRST 0.50ET
max 3.00 2.50 2.58 2.39

MRST(g↑) 0.50ET
max 3.00 2.50 2.57 2.39

MRST(g↓) 0.50ET
max 2.93 2.45 2.57 2.38

TABLE L. 95% confidence level limits in TeV for different

contact compositeness scale for different models calculated using

an analytic LO prediction @38# ~see Sec. IV B for a description of

the models!.

Model Interference term X

11 21

LLL
X 2.2 2.2

LV
X 3.2 3.1

LA
X 3.2 3.1

L (V2A)
X 2.7 2.7

LV8

X 2.0 2.3

LA8

X 2.1 2.1

L (V2A)8

X 1.7 1.9
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APPENDIX: x2 STUDIES

In this paper we have made quantitative x2 comparisons
between theoretical predictions and data to determine which
predictions provide better agreement. The systematic uncer-
tainties in the inclusive jet cross section ~Secs. XI and XII!
and the dijet mass spectrum ~Sec. XIV! are highly correlated.
An inappropriate definition of the uncertainties in x2 analy-
ses may result in theoretical predictions that have an average
normalization below the data yielding a better fit ~Peelle’s
Pertinent Puzzle @60#!. The first section of this appendix de-
scribes alternative methods for calculating the x2 and our
choice of an appropriate method. The second section de-
scribes studies of the probability distributions for the analy-
ses presented in this paper.

1. Definition of x2

The x2 is given by

x2
5(

i , j
d iV i j

21d j , ~A1!

where d i is the difference between the data and the expected
cross section for bin i, and V i j is element i , j of the covari-
ance matrix, with each element given by

V i j5r i j~Ds i
statDs j

statd i j1Ds i
sysDs j

sys! ~A2!

where d i j is the Kronecker delta function, r i j51 for i5 j ,
and r i j is the correlation of the systematic uncertainties be-
tween cross section bins i and j.

The analyses presented in this paper are based on using
the fractional systematic uncertainties in each bin, but there
are several ways of calculating the impact of the absolute
systematic uncertainty on the x2 values. We can use:

~1! Fractional uncertainty multiplied by the observed
cross section.

~2! The fractional uncertainty multiplied by a smooth fit to
the observed cross section @61# ~which is normalized to the
observed integrated cross section!.

~3! The fractional uncertainty multiplied by a theoretical
prediction.

This appendix discusses these choices. In previous publica-
tions of the inclusive jet cross section @8# and the dijet mass
spectrum @25# the x2 values were calculated using the first
option.

The choice of calculation for the absolute systematic un-
certainty used in the x2 is investigated using the measure-
ment of the dijet mass spectrum ~Sec. XIV!. A theoretical
prediction, called the ansatz ~A!, based on a fit to the ob-
served cross section ~Fig. 86! is obtained by normalizing the
fit to the observed integrated cross section @cf. option ~2!#.
We also define a floating ansatz ~FA! through a multiplicative

factor X that is used to change the normalization of the an-
satz (FA5XA). A comparison between the ansatz and the
data is given in Fig. 99.

If the systematic uncertainty is given by the product of the
fractional uncertainty and the observed cross section in each
bin @option ~1!#, the minimum value of the x2 of the floating
ansatz is obtained for a normalization of X50.965 ~the
dashed line in Fig. 99!. This is clearly not the best visual fit
to the observed cross section. When this test is repeated us-
ing option ~2!, the preferred normalization is X51.0 ~Fig.
100!. Using several different predictions from JETRAD @op-
tion ~3!# also yields X51.0 as a best fit ~not shown!.

Calculating systematic uncertainties using the observed
cross section per bin introduces a statistical component to the
systematic uncertainty; i.e., when the cross section fluctuates
to a small value in a given bin the absolute systematic un-
certainty also fluctuates to a smaller value. The smaller val-
ues of cross section therefore appear to be more precise rela-
tive to any given theory. This bias has been called Peelle’s
Pertinent Puzzle @60#.

We choose to rely on options ~2! and ~3! for determining
systematic uncertainties. The choice depends on the question
that is posed. In our work we wish to ‘‘Determine the prob-
ability that the theoretical prediction could have produced
the observed number of events.’’ This requires that we deter-
mine the systematic uncertainties using the theoretical pre-
dictions @option ~3!#. For example, if we underestimated the
integrated luminosity the number of predicted events would
also be underestimated.

This choice of x2 definition means that the current results
differ from those published previously for the inclusive jet
cross section @8# and the dijet mass spectrum @25#. Table LI
summarizes the differences in x2 values for the dijet mass
analysis. The x2 values in Table LI are calculated using the
same luminosity definition as given in Ref. @25#, and differ
from those given in Table XLVIII. The x2 changes most for
theoretical predictions with the largest normalization differ-
ences with the data. If the theoretical prediction has a smaller
normalization than the data then the size of the systematic
uncertainties are reduced, hence increasing the value of the
x2.

2. Probabilities

The probability that a given theoretical prediction agrees
with the data for a given x2 is calculated assuming that the
x2 is given by the standard distribution @62#

f ~x;n !5

x (n/221) exp~2x/2!

2n/2G~n/2!
, ~A3!

where n is the number of degrees of freedom ~DOF! in the
data. The probability of getting a value of x2 larger than the
one obtained is then given by

P~x2;n !5E
x2

`

f ~x;n !dx . ~A4!
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Hence, for the probabilities quoted in Secs. XI and XIV to be
reliable, the x2 distribution for comparisons between theo-
retical predictions and the data must follow Eq. ~A3!.

The distribution of x2 for comparisons with the dijet mass
spectrum was tested by developing a Monte Carlo program
that generates many trial predictions based on the ansatz

~with a total of 15 bins, or 15 degrees of freedom!. The first
step is to generate trials based on statistical fluctuations. The
true number of events per bin is given by the ansatz. The
trial spectra are then generated for each bin by sampling a
Poisson distribution with a mean defined by the true number
of events. The x2 for each of these trials is calculated using
the difference between the true and the generated values.

FIG. 99. The difference between the dijet mass cross section for

uh1,2u,1.0 and the ansatz ~see text!. The dashed line shows the best

fit obtained by using the standard x2 and absolute systematic un-

certainties obtained using the product of the fractional systematic

uncertainties and the measured cross section in each bin @option

~1!#.

FIG. 100. The x2 for the ansatz as a function of the floating

normalization X for option ~2! ~see text!. The minimum x2 is ob-

tained for a normalization of X51.0. The short vertical line indi-

cates a normalization of X50.965, illustrating the bias of option

~1!.

FIG. 101. The x2 distribution generated by sampling the ansatz

cross section using only statistical fluctuations. The histogram

shows the generated distribution, and the curve is a fit to the histo-

gram using Eq. ~A3!. The fitted number of degrees of freedom is

15.08.

FIG. 102. The x2 distribution generated by sampling the ansatz

cross section using only statistical fluctuations ~solid curve!, and

fluctuations based on the uncertainties in the dijet cross section as a

function of dijet mass ~dotted curve!.
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Figure 101 shows the x2 distribution for all of the generated
trials. The distribution is fitted to Eq. ~A3!, with the best fit
obtained for n515.0860.20, which is consistent with the
expected value of n515 for a normalized distribution of
bins.

The final step is to assume that the uncertainties are the
same as the uncertainties in the measurement of the dijet

cross section. Trial spectra are generated using these uncer-
tainties in order to obtain a x2 distribution ~see the dotted
curve in Fig. 102!. It is clear that the x2 distribution is very
similar to that predicted by Eq. ~A3!; hence any probability

TABLE LI. The x2 for the cross section in dijet mass for

uh jetu,1.0 ~15 degrees of freedom!.

PDF m Published x2 @25# Updated x2

x2 Probability x2 Probability

CTEQ3M 0.25ET
max 12.2 0.66 28.9 0.02

CTEQ3M 0.50ET
max 5.0 0.99 5.8 0.98

CTEQ3M 0.75ET
max 5.3 0.99 5.9 0.98

CTEQ3M 1.00ET
max 5.4 0.99 6.1 0.98

CTEQ3M 2.00ET
max 4.2 1.00 6.4 0.97

CTEQ3M 0.25Ax1x2s 8.6 0.90 14.6 0.48

CTEQ3M 0.50Ax1x2s 4.8 0.99 6.8 0.96

CTEQ3M 1.00Ax1x2s 5.1 0.99 8.9 0.88

CTEQ4M 0.50ET
max 4.9 0.99 6.3 0.97

CTEQ4A1 0.50ET
max 5.0 0.99 6.5 0.97

CTEQ4A2 0.50ET
max 5.7 0.99 7.2 0.95

CTEQ4A4 0.50ET
max 4.9 0.99 6.4 0.97

CTEQ4A5 0.50ET
max 4.8 0.99 6.2 0.98

CTEQ4HJ 0.50ET
max 5.4 0.99 6.8 0.96

MRS~A8! 0.50ET
max 6.3 0.97 6.9 0.96

MRST 0.50ET
max 6.2 0.98 10.9 0.76

MRST(g↑) 0.50ET
max 6.3 0.97 9.6 0.84

MRST(g↓) 0.50ET
max 6.5 0.97 16.7 0.33

FIG. 103. The x2 distribution generated by sampling the ansatz

cross section using all of the systematic uncertainties of the dijet

cross section. The histogram shows the generated distribution and

the curve is a fit to the histogram using Eq. ~A3!. The fitted number

of degrees of freedom is 14.660.2.

FIG. 104. The x2 distribution generated by sampling the inclu-

sive jet cross section ansatz using only statistical fluctuations ~solid

curve!, and fluctuations based on the uncertainties in the inclusive

jet cross section ~dotted curve!.

FIG. 105. The x2 distribution generated by sampling the ratio of

inclusive jet cross sections ansatz using only statistical fluctuations

~solid curve!, and fluctuations based on the uncertainties in the in-

clusive jet cross section ~dotted curve!.
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generated using Eq. ~A4! should be approximately right. The
resulting x2 distribution was fitted using Eq. ~A3! ~Fig. 103!
and yielded n514.660.2.

The study of the x2 distribution was repeated for the mea-
surement of the inclusive jet cross section, which has 24 bins
~DOF!. Figure 104 shows the resulting distributions for sta-
tistical fluctuations ~solid curve! and the systematic uncer-
tainties in the inclusive jet cross section ~dotted curve!. The
two distributions agree for x2 values below approximately
15, and then begin to diverge. The distribution based on the
cross section uncertainties has a longer tail than the statistical
x2 distribution. This implies that all the probabilities quoted
in Sec. XI are slightly underestimated.

Finally, the ratio of inclusive jet cross sections ~Sec. XII!

was also examined with the results of the study given in Fig.
105. The resulting distribution is similar to the one obtained
for the inclusive jet cross section, with the distribution based
on the uncertainties having a larger tail than the standard x2

distribution. The maximum deviation between the probabil-
ity obtained assuming the standard distribution and the mea-
sured distribution is 2.9%, and probabilities quoted in Sec.
XII will therefore be slight underestimates of the correct
probabilities.

The studies presented describe the x2 comparisons made
between the observed data and the theoretical predictions.
We have demonstrated that they give an accurate representa-
tion of the probability of agreement between a given theoret-
ical prediction and the data.
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