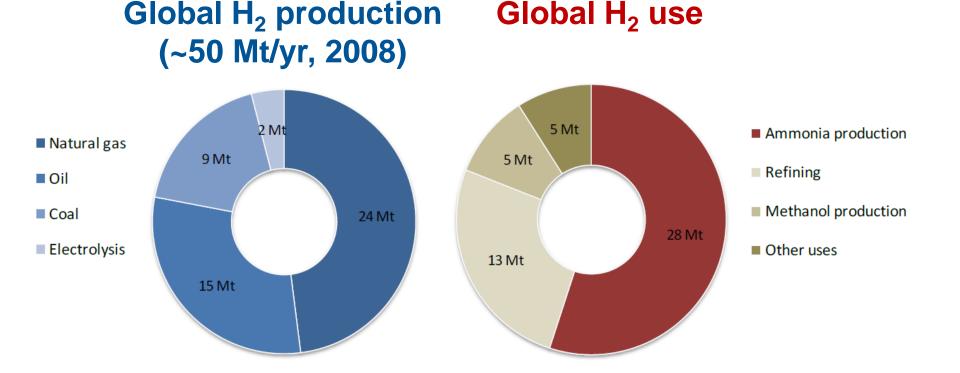


High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst

M. Broda^a, V. Manovic^b, Q. Imtiaz^a, A. M. Kierzkowska^a, E. J. Anthony^c, C. R. Müller^a

^aLaboratory of Energy Science and Engineering, ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland ^bCanmetENERGY, Natural Resources Canada, 1 Haanel Drive, Ottawa K1A 1M1, Canada ^cSchool of Applied Science, Cranfield University, Bedfordshire MK43 0AL, England



Laboratory of Energy Science and Engineering

DMAVT Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

Introduction

P. Zakkour and G. Cook, CCS industry roadmap-high purity CO₂ sources: final draft sectoral assessment, Carbon Counts, UK, 2010.

Steam methane reforming accounts for ~50 % of the global hydrogen production

Reforming reaction:

 $CH_4 + H_2O \leftrightarrow CO + 3H_2$

 $\Delta H^{o}_{25 \circ C}$ = + 206 kJ/mol

Water-gas-shift reaction:

 $CO + H_2O \leftrightarrow CO_2 + H_2$

 $\Delta H^{o}_{25 \circ C}$ = - 41 kJ/mol

Disadvantages:

- Highly endothermic
- High operating temperatures \rightarrow catalyst sintering and coke formation
- Overall process is complex and comprises several unit operations
- Further purification steps are required to produce high-purity hydrogen,
 e.g. preferential oxidation (PROX)

M. Balat, Possible method for hydrogen production, energy spurces, part A: recovery, utilization, and environmental effect, 2008, 31, 39-50.

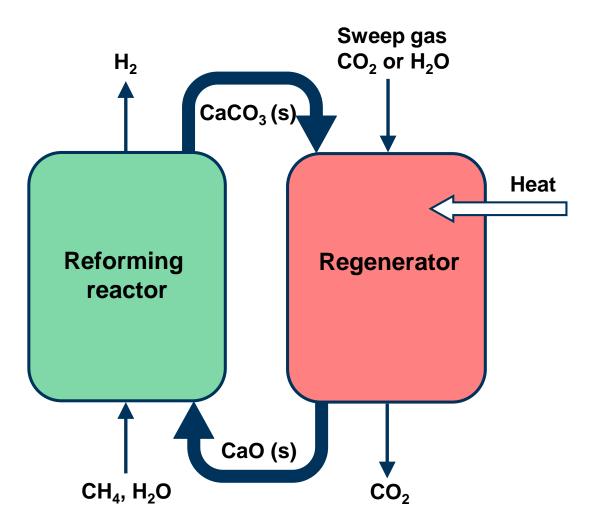
Sorption-enhanced steam methane reforming (SE-SMR)

Reforming and shift reaction:

 $\begin{array}{ll} \mathsf{CH}_4 + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO} + 3\mathsf{H}_2 & \Delta \mathsf{H}^\circ_{25\,^\circ\mathsf{C}} = + \ 206 \ \text{kJ/mol} \\ \mathsf{CO} + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{CO}_2 + \mathsf{H}_2 & \Delta \mathsf{H}^\circ_{25\,^\circ\mathsf{C}} = - \ 41 \ \text{kJ/mol} \end{array}$

CO₂ absorption reaction, e.g. carbonation of CaO: CO₂ + CaO ↔ CaCO₃ $\Delta H^{o}_{25 \circ C} = -178 \text{ kJ/mol}$

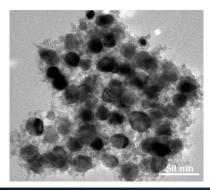
Overall: $CH_4 + 2H_2O + CaO \leftrightarrow CaCO_3 + 4H_2$ $\Delta H^{\circ}_{25 \circ C} = -13 \text{ kJ/mol}$

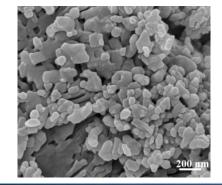

Advantages:

- Reduced operating temperature ~ 450 630 °C
- Elimination of the shift reactor and catalyst
- Reduction, or possibly even elimination, of subsequent purification steps

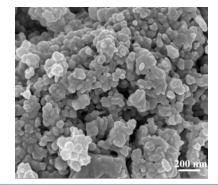
DEPART Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

Schematic diagram of the SE-SMR process


Material options for the SE-SMR reaction:


- 1. Limestone + reforming catalyst
- 2. Synthetic CaO-based sorbent + reforming catalyst
- 3. Bifunctional catalyst sorbent

Materials studied here:

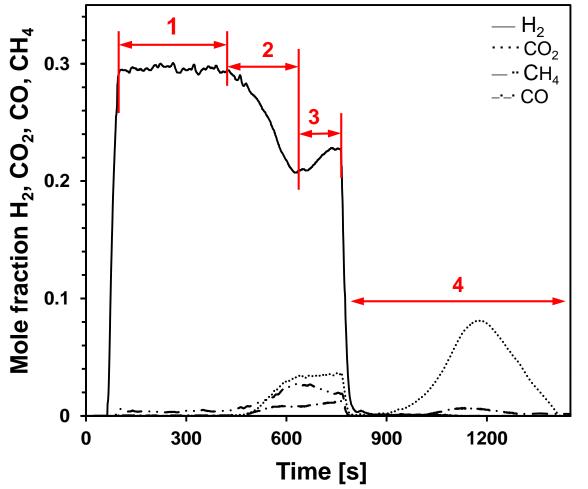

• Ni-based catalyst (47 wt.% Ni) CaO-based sorbents

Limestone

Pellets (90 wt.% CaO,10 wt.% cement)

Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

ΓΛΛΔ\/Τ


Synthesis of Ni-based catalyst (hydrotalcite-based)

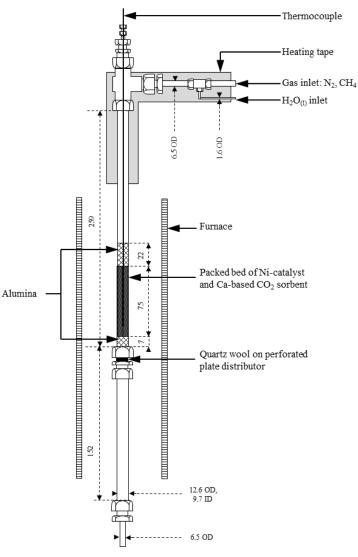
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SE-SMR reaction + regeneration

1. Pre-breakthrough period

- Complete CH₄ conversion and high H₂ selectivity
- Fast absorption of CO₂ via the formation of CaCO₃

2. Breakthrough period

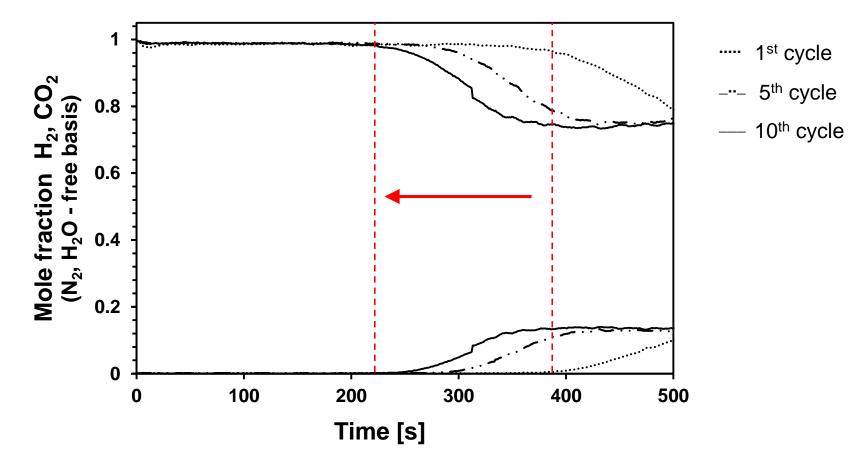

 Fairly sharp decrease in the mole fraction of H₂ and breakthrough of CO₂

3. Post-breakthrough period

4. Calcination

DMAVT Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

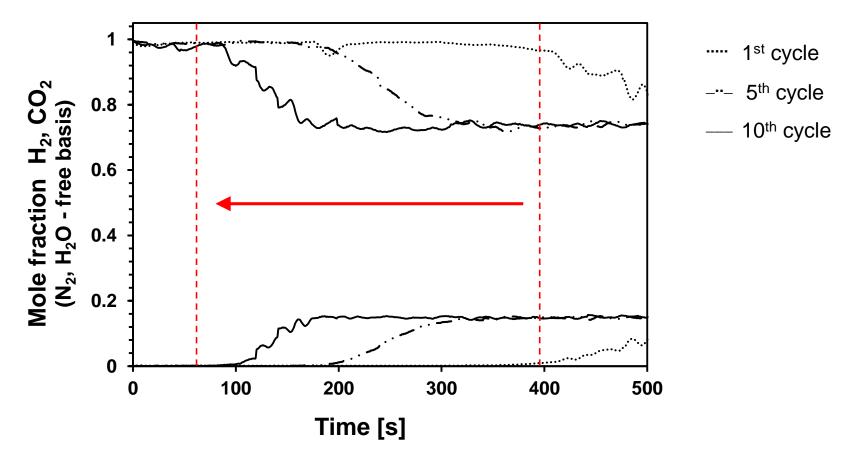
Fixed-bed reactor



- Particle size: 300-710 μm
- Reforming temperature: 550 °C
- Calcination temperature: 750 °C
- H_2O/CH_4 ratio: 4

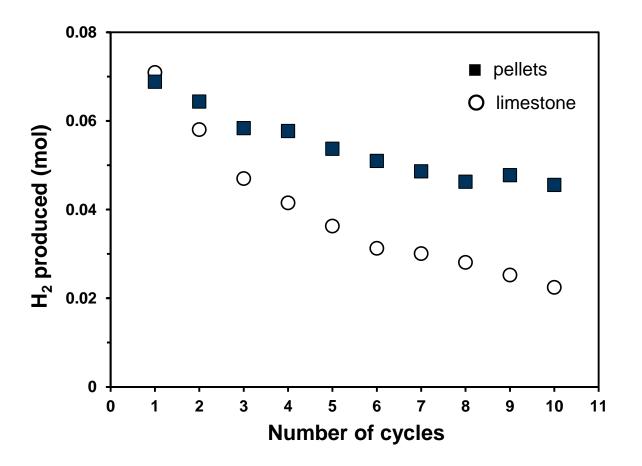
Broda et al., ACS Catal., 2, 1635-1646, 2012

SE-SMR reaction (Ni-catalyst + pellets)

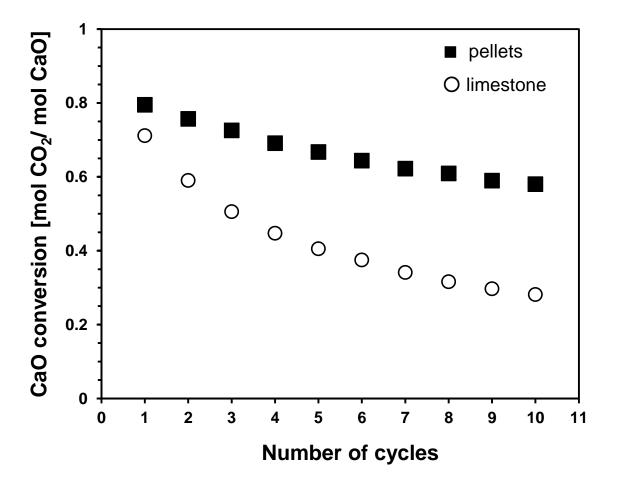


The time at which breakthrough occurs decreased from ~380 to ~280 s, but stabilized after the 5th cycle.

2nd September 2013


SE-SMR reaction (Ni-catalyst + limestone)

For limestone, the time at which breakthrough occurs decreased continuously from ~370 s in the 1st cycle to 95 s in the 10th cycle.


H₂ production

- After the 8th cycle, Ni-catalyst + pellets show a stable pre-breakthrough production of H₂
- Continuous deactivation of Ni-catalyst + limestone.

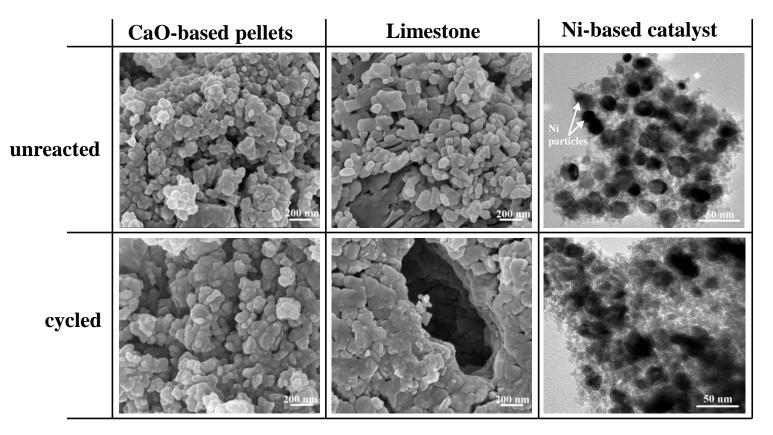
DIMANT Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

CaO conversion

After 10 cycles, the pellets showed a ~110 % higher CaO conversion than the reference limestone.

Characterisation of the materials

Unreacted materials			
	CaO-based pellets	Limestone	Ni-based catalyst
BET surface area [m²/g]	28	30	175
BJH pore volume [cm³/g]	0.35	0.32	0.36
After 10 SE-SMR cycles			
BET surface area [m²/g]	18	9	93
BJH pore volume [cm³/g]	0.15	0.06	0.33


 The BET surface area and BJH pore volume of limestone drastically decreased over 10 SE-SMR cycles.

• The Ni-based catalyst and the pellets possessed good thermal stability.

DEPART Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

Structural changes with SE-SMR cycles

- The initial morphology of the synthetic CO₂ sorbent and Ni-based catalyst did not change appreciably over 10 cycles.
- The cycled limestone lost its nano-structured morphology completely due to its intrinsic lack of a support.

Conclusions

- At a reaction temperature of 550 °C and using a steam-to-methane ratio of 4, equilibrium conversion of methane was achieved for both systems, resulting in the production of high-purity hydrogen (~99%).
- The pellets showed better performance in the SE-SMR reaction than limestone, demonstrated by a high cyclic CaO conversion, and in a higher quantity of H₂ produced during the pre-breakthrough period.
- The favourable performance of the pellets was attributed to their stable nano-structured morphology stabilized by homogeneously dispersed mayenite.
- The cycled limestone lost its nano-structured morphology completely over 10 SE-SMR cycles due to its intrinsic lack of a support component.

Acknowledgment

Swiss National Science Foundation for financial support (Project 200021_135457/1)

FÖRDERUNG DER WISSENSCHAFTLICHEN FORSCHUNG

Electron Microscopy Center of ETH Zurich (EMEZ) for providing access and training to electron microscopes.