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Introduction
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Global H2 production

(~50 Mt/yr, 2008)

Global H2 use

P. Zakkour and G. Cook, CCS industry roadmap-high purity CO2 sources: final draft sectoral assessment, Carbon Counts, UK, 2010.  
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Reforming reaction:

CH4 + H2O  CO + 3H2 Ho
25 ºC= + 206 kJ/mol

Water-gas-shift reaction:

CO + H2O   CO2 + H2 Ho
25 ºC= - 41 kJ/mol

Steam methane reforming accounts for ~50 % of the global 

hydrogen production

Disadvantages:

• Highly endothermic 

• High operating temperatures → catalyst sintering and coke formation

• Overall process is complex and comprises several unit operations

• Further purification steps are required to produce high-purity hydrogen, 

e.g. preferential oxidation (PROX)

M. Balat, Possible method for hydrogen production, energy spurces, part A: recovery, utilization, and environmental effect, 2008, 

31, 39-50. 
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Reforming and shift reaction:

CH4 + H2O  CO + 3H2 Ho
25 ºC = + 206 kJ/mol

CO + H2O   CO2 + H2 Ho
25 ºC = - 41 kJ/mol

CO2 absorption reaction, e.g. carbonation of CaO: 

CO2 + CaO  CaCO3 Ho
25 ºC = -178 kJ/mol

Overall: CH4 + 2 H2O + CaO  CaCO3 + 4 H2 Ho
25 ºC = -13 kJ/mol

Sorption-enhanced steam methane reforming (SE-SMR)

Advantages:

• Reduced operating temperature ~ 450 – 630 oC

• Elimination of the shift reactor and catalyst

• Reduction, or possibly even elimination, of subsequent purification steps



Schematic diagram of the SE-SMR process
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Material options for the SE-SMR reaction:
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1. Limestone + reforming catalyst

2. Synthetic CaO-based sorbent + reforming catalyst

3. Bifunctional catalyst - sorbent

• Ni-based catalyst
(47 wt.% Ni)

Materials studied here:

• CaO-based sorbents

Limestone Pellets 
(90 wt.% CaO,10 wt.% cement)
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Synthesis of Ni-based catalyst (hydrotalcite-based)

Broda et al., ACS Catal., 2, 1635-1646, 2012

2. Precipitation using 
NaOH and Na2CO3

3. pH adjustment 

to 8.6 using HNO3 4. Reflux at 80 oC for 16 h

5. Drying, 70 oC, 72 h

6. Calcination 

(600 oC, 6 h)

1. Aqueous solution 

of Mg2+, Ni2+ and Al3+
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SE-SMR reaction + regeneration

2nd September 2013 8Laboratory of Energy Science and Engineering

___ H2
. . . . CO2
__ .. CH4
_._. CO

4

4. Calcination

1 1. Pre-breakthrough period

• Complete CH4 conversion and high 

H2 selectivity

• Fast absorption of CO2 via the 

formation of CaCO3

2

2. Breakthrough period

• Fairly sharp decrease in the mole 

fraction of H2 and breakthrough of 

CO2

3

3. Post-breakthrough period
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Fixed-bed reactor 

Broda et al., ACS Catal., 2, 1635-1646, 2012

 Particle size: 300-710 mm

 Reforming temperature: 550 oC

 Calcination temperature: 750 oC

 H2O/CH4 ratio: 4
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SE-SMR reaction (Ni-catalyst + pellets)
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The time at which breakthrough occurs decreased from ~380 to ~280 s, but 

stabilized after the 5th cycle. 

..... 1st cycle

_.._   5th cycle

___  10th cycle



SE-SMR reaction (Ni-catalyst + limestone)
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For limestone, the time at which breakthrough occurs decreased continuously from 

~370 s in the 1st cycle to 95 s in the 10th cycle.
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H2 production
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• After the 8th cycle, Ni-catalyst + pellets show a stable pre-breakthrough production of H2

• Continuous deactivation of Ni-catalyst + limestone.



CaO conversion
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After 10 cycles, the pellets showed a ~110 % higher CaO conversion than the

reference limestone.
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Characterisation of the materials

Unreacted materials

CaO-based pellets Limestone Ni-based catalyst

BET surface area [m2/g] 28 30 175

BJH pore volume [cm3/g] 0.35 0.32 0.36

After 10 SE-SMR cycles

BET surface area [m2/g] 18 9 93

BJH pore volume [cm3/g] 0.15 0.06 0.33

• The BET surface area and BJH pore volume of limestone drastically

decreased over 10 SE-SMR cycles.

• The Ni-based catalyst and the pellets possessed good thermal stability.



Structural changes with SE-SMR cycles
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Ni-based catalystCaO-based pellets Limestone

unreacted

cycled

(c) (e)

(f)(d)

Ni 

particles

• The initial morphology of the synthetic CO2 sorbent and Ni-based catalyst did

not change appreciably over 10 cycles.

• The cycled limestone lost its nano-structured morphology completely due to its

intrinsic lack of a support.



Conclusions
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• At a reaction temperature of 550 oC and using a steam-to-methane ratio of 4, equilibrium

conversion of methane was achieved for both systems, resulting in the production of

high-purity hydrogen (~99%).

• The pellets showed better performance in the SE-SMR reaction than limestone,

demonstrated by a high cyclic CaO conversion, and in a higher quantity of H2 produced

during the pre-breakthrough period.

• The favourable performance of the pellets was attributed to their stable nano-structured

morphology stabilized by homogeneously dispersed mayenite.

• The cycled limestone lost its nano-structured morphology completely over 10 SE-SMR

cycles due to its intrinsic lack of a support component.
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