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Recent progress in nanoscale optical physics is associated with the development of a new branch of
nanophotonics exploring strong Mie resonances in dielectric nanoparticles with a high refractive index.
The high-index resonant dielectric nanostructures form building blocks for novel photonic metadevices
with low losses and advanced functionalities. However, unlike extensively studied cavities in photonic
crystals, such dielectric resonators demonstrate low quality factors (Q factors). Here, we uncover a novel
mechanism for achieving giant Q factors of subwavelength nanoscale resonators by realizing the regime
of bound states in the continuum. In contrast to the previously suggested multilayer structures with zero
permittivity, we reveal strong mode coupling and Fano resonances in homogeneous high-index dielectric
finite-length nanorods resulting in high-Q factors at the nanoscale. Thus, high-index dielectric resonators
represent the simplest example of nanophotonic supercavities, expanding substantially the range of
applications of all-dielectric resonant nanophotonics and meta-optics.
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The trapping of light in localized modes is extremely
important for various applications in photonics including
lasing [1], sensing [2,3], harmonic generation [4,5], Raman
scattering [6], and photovoltaics [7,8]. For many optical
devices, it becomes critical to localize electromagnetic
fields in subwavelength volumes. Plasmonic structures
based on metals allow the subwavelength localization of
light by means of surface plasmon polaritons [9]. However,
metals impose inevitable losses, which limit the device
performance and efficiency. In contrast, high-index dielec-
tric nanoparticles offer a novel way for the subwavelength
localization of light due to the Mie resonances being
limited only by radiation damping [10]. Unlike metallic
nanoscale structures, dielectric nanoparticles support both
electric and magnetic Mie modes that expand substantially
the applications of meta-optics [11]. Also, dielectric mate-
rials with a high refractive index are available in a broad
spectral range. At the same time, the standard Mie theory
predicts relatively low values of the quality factor
(Q ≈ 5–10) for nanoparticles made of conventional optical
materials such as Si, Ge, and AlGaAs, in visible and near-
IR spectral ranges.
However, for many applications of all-dielectric nano-

photonics, it is very desirable to achieve higher values of
theQ factor. One way to enhance theQ factor is to increase
the size of the resonator, for example, by confining waves
by cavities in photonic crystals [12] or by exploiting
whispering gallery modes (WGMs) [13] in disks and
high-order Fabry-Pérot modes in elongated rods [14].
Another way is to arrange several resonators in space
and excite collective modes [15,16]. An alternative

approach for enhancing the Q factors is to use the anapole
mode with the spectrally overlapped electric and toroidal
dipole modes [17,18]. As a result, the Q factor of the
anapole mode may approach Q ≈ 30 [19]. Here we suggest
a novel approach based on the concepts of bound states in
the continuum and supercavity modes.
The physics of bound states in the continuum (BIC) with

a potentially infinite lifetime attracted a lot of attention in
photonics [20–23]. Albeit true BIC can exist in structures
that are infinitely extended at least at one of the spatial
dimensions [24], finite-size samples can support their
analogue in the form of supercavity modes [25], with
the Q factor growing rapidly before reaching a maximum
value limited by the finite-size effects. In accord with the
Friedrich-Wintgen theory of BIC [26], the radiating tails
of leaky modes can cancel out each other via destructive
interference resulting in rapid growth of theQ factor. As an
alternative to spatial infinity, one can consider a subwave-
length core-shell particle made of material with either
infinite or zero permittivity [27,28]; however, for optical
frequencies, such materials are not yet common. The earlier
studies of high-Q microcavities in the regime of avoided
resonance crossing [29] can also be linked to the BIC
concept [26]. In this way, a pair of strongly coupled modes
of a microcavity may interfere destructively outside the
resonator [29] realizing the BIC conditions. Recently, it
was shown that even a simple waveguiding system can
support BIC by employing an anisotropic material and
vectorial nature of electromagnetic fields [30]. It is cru-
cially important that the modes with mixed polarizations
may allow a substantial reduction of the resonator’s
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dimensions, and they can be engineered to realize the
supercavity regime [31].
In this Letter, we reveal that subwavelength dielectric

resonators with a high refractive index can support the
supercavity modes with unexpectedly high Q factors. For
an illustrative case of a single dielectric cylindrical reso-
nator, this occurs when two eigenmodes with different
polarizations, associated with the Mie resonances and
Fabry-Pérot resonances of a finite-length nanorod [32],
strongly interact near the avoided crossing regime (Fig. 1).
Because these modes are approximately orthogonal inside
the resonator, they interfere predominantly outside, realiz-
ing the so-called bound states in the continuum and
supercavity regime [25] when the subwavelength dielectric
resonators demonstrate high values of the Q factor.
We calculate the scattering cross section of the dielectric

finite-extent cylindrical resonator as a function of its aspect
ratio r=l. Here we analyze the modes excited by a TE-
polarized plane wave; however, similar effects are observed
in the case of TM waves. For generality, we use the
normalized size parameter x ¼ kr being a product of the
wave number k and resonator radius r. To reveal the strong
mode coupling effects, we start by setting a high value of
the resonator permittivity ε ¼ 80. The color map shown in
Fig. 2(a) exhibits two families of resonances with the linear
dependencies on the aspect ratio r=l. This includes the
slow-varying TE-polarized (Mie-like) modes mapped to the
Mie resonances of an infinitely long cylinder [see Fig. 2(b)]
and rapidly varying (Fabry-Pérot-like) modes with the
TM and TE polarization. Here, we employ the standard

mode classification [33], however we have to notice that
both TE and TM modes are neither pure transverse electric
or magnetic modes but they have a mixed polarization. The
first index m corresponds to the azimuthal number of the
mode, whereas the other two indices k and n enumerate
the Mie and Fabry-Pérot resonances, respectively. Because
of different spectral shifts of the Mie and Fabry-Pérot
modes when the aspect ratio varies, the modes can intersect
at certain points [as shown by red and green circles in
Fig. 2(a); other high-m narrow modes in Fig. 2(b) dem-
onstrate similar effects]. Only the modes with the same
azimuthal index m could interact, and they undergo
coupling each other with the avoided crossing scenario
at special values of the aspect ratio parameter r=l with a
nearly complete disappearance of spectral lines (see the
supercavity mode (SM) point in Fig. 1). We notice that a
similar spectral feature was observed in the reflectance
spectra of a photonic-crystal membrane supporting
BIC [23].

C
yl

in
de

r 
as

pe
ct

 r
at

io
 r

 /l

Normalized frequency x = ωr  /c

E

Hk

TE-wave

A D

F

SMB

C

TE

TE

TM

TM

Supercavity mode

FIG. 1. Illustration of strong mode coupling and a bound state
in the continuum supported by a high-index dielectric resonator.
The frequency of the TE (Mie-type) mode is a vertical line
connecting points A and F. When the nanorod aspect ratio varies,
this line crosses with the frequency of the TM (Fabry-Pérot-type)
mode that connects points D and C. This avoided crossing
behavior is accompanied by the formation of the supercavity
mode with mixed polarization at the SM point. The curve
thickness corresponds to the linewidth in the scattering spectra.
Insets show the field patterns at marked solid circles.
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FIG. 2. Dispersion of modes in a high-index dielectric reso-
nator. (a) Plane-wave scattering spectra of a dielectric nanorod
with ε ¼ 80 vs the (radius-to-height) aspect ratio. Nearly vertical
TEmkn modes correspond to the Mie resonances of an infinite
nanowire [with the spectrum shown in (b)] that can be calculated
by a rigorous Mie theory. The avoided crossing of the modes with
the azimuthal numbers m ¼ 0 and m ¼ 1 are marked by red and
green circles, respectively. Real parts of the eigenfrequencies are
obtained by the resonant-state expansion method and are shown
by small circles. The inset in (a) illustrates electric and magnetic
fields for the modes with different azimuthal numbers m.
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Figure 3 shows the spectra corresponding to the avoided
crossing that occurs for TE020 (Mie-like) and TE012 (Fabry-
Pérot-like) modes of the dielectric nanoresonator. In the
scattering spectra [see Fig. 3(a)], each mode is manifested
by an asymmetrical Fano line shape. We study the spectra
in detail through the line characteristics such as the central
position, damping (proportional to the inverse value of the
Q factor), and Fano asymmetry parameter calculated with
the help of the classical Fano formula [34,35]. Outside the
avoided crossing regime, the frequency shifts of both Mie
and Fabry-Pérot modes are described by linear relations
[see Figs. 2(a) and 3(b)]. For shorter resonators, when
r=l > 0.72, the spectrum exhibits a pair of asymmetric
resonances. The lower-frequency feature corresponds to the
excitation of the TE020 (Mie-like) mode at x ¼ 0.66, and
the higher-frequency mode is the TE012 (Fabry-Pérot-type)
mode at x ¼ 0.73. For longer resonators, when r=l < 0.65,
the sequence of the modes is reversed: The Fabry-Pérot
mode appears at x ¼ 0.60, while the Mie-type mode
appears at almost the same position x ¼ 0.64. For
0.65 < r=l < 0.72, the modes undergo a strong coupling
accompanied by a typical avoided crossing.
Since the modes correspond to asymmetric Fano-like

line shapes, the damping parameter cannot be determined
directly from the linewidth, but it can be calculated together
with the Fano parameter q by fitting to the Fano formula.
The dependence of these two parameters on the resonator
aspect ratio r=l is shown in Figs. 3(c) and 3(d). For small
values of the aspect ratio (r=l < 0.62), both modes are
characterized by positive q and comparable damping
parameters. When the aspect ratio increases, the character-
istics of the lower-frequency mode do not vary substan-
tially. In contrast, for the high-frequency mode, both

the parameters change dramatically, demonstrating the
resonant features in a narrow range of the aspect ratio
values, 0.69 < r=l < 0.71. At r=l ¼ 0.703, the asymmetry
parameter tends to infinity, and then it becomes negative.
The insets in Fig. 3(c) show a change of the scattering
spectra in a small range of the aspect ratio values,
0.698 < r=l < 0.703. At the same time, the Q factor
exhibits a typical dependence of the BIC state [24,25],
with the maximum value Q ¼ 65 × 103 limited by finite-
size effects.
We notice that the extreme values of both damping and

Fano parameters are realized at r=l ¼ 0.703. In the weak-
coupling regime, the Fano asymmetry parameter is known
to correspond to the damping rate [35,36], and the case
jqj → ∞ corresponds to the uncoupling of the resonance
from the continuum [37]. Hence, we expect similar features
also in the case of the strong-coupling regime, and that
suggests that the Fano parameter may be employed for the
analysis of specific properties of the BIC states. Indeed,
the relation between the Fano resonance and BIC was
discussed earlier in the context of electronic transport [38],
and the limit jqj → ∞ corresponding to the BIC condition
was termed as “collapse of Fano resonance.” Also, the
asymmetric Fano line shape was identified in the reflection
spectra from a photonic-crystal membrane sustaining BIC
[23]. Here, we show that an infinite value of the Fano
parameter corresponds to BIC or a supercavity mode.
To verify that the effective damping of the higher-

frequency mode indeed vanishes, we calculate eigenfre-
quencies of the resonator. We employ a rigorous method of
resonant-state expansion [39]. The real parts of calculated
eigenfrequencies are added to Fig. 2(a). Their positions are
in excellent agreement with the features in the scattering

(b) (c) (d)(a)

FIG. 3. Characterization of the supercavity modes supported by a dielectric nanoscale resonator. (a) Scattering spectra of a nanorod
with ε ¼ 80 under the condition of the supercavity mode (m ¼ 0). The supercavity mode occurs at r=l ¼ 0.701 (shown in red). Spectra
are relatively shifted by 100 dB. (b) Frequencies of the Mie-type TE020 and Fabry-Pérot-type TE012 modes in the avoided crossing
regime for the modes with the azimuthal number m ¼ 0. (c) Fano parameter for both modes. The insets show higher-frequency spectral
features in the linear scale for the values in a narrow range of r=lmarked by orange, magenta, blue, and red circles (r=l ¼ 0.698, q ¼ 1;
r=l ¼ 0.699, q ¼ 0; r=l ¼ 0.700, q ¼ −1; and r=l ¼ 0.703, q → ∞). (d) Calculated Q factor for a typical supercavity with the
maximum close to Q ¼ 65 × 103. Data in (b)–(d) are obtained by fitting to the Fano formula. Cyan and green curves correspond to the
low- and high-frequency modes, respectively.
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spectra. The analysis of the imaginary parts of the resonator
eigenfrequencies confirms that in the vicinity of the
avoided crossing point the radiation losses of one mode
decrease substantially, revealing its BIC nature. In particu-
lar, for ε ¼ 80 the Q factor of the supercavity mode is
found to be 63 700, being in an agreement with the results
obtained from a fitting of the scattering spectra.
Next, we discuss the conditions of the supercavity

regime and BIC states in dielectric resonators. For the
values of permittivity from the interval 4 ≤ ε ≤ 100, we
calculate the resonator eigenvalues by means of the
resonant-state expansion method [39] as functions of the
aspect ratio r=l. We focus on two anticrossing regions
marked by circles in Fig. 2(a) for the azimuthal numbers
m ¼ 0 and m ¼ 1, respectively. For each value of permit-
tivity, the Q factor behaves similar to the dependence
presented in Fig. 3(d). The maximum value of Q (in the
regime of the supercavity mode) vs ε is shown in Fig. 4(a).
For ε > 10, this dependence is well approximated by a
power law, Q ¼ 0.04ε3.2, for m ¼ 0, and Q ¼ 0.1ε2.3, for
m ¼ 1. In particular, for a Si nanoresonator with ε ¼ 13,
the lower-frequency supercavity mode with m ¼ 1 dem-
onstrates a Q of about 50 that is at least an order of
magnitude higher than the Q factor of a Si sphere
Q ¼ 13.4, for the magnetic dipole mode, and Q ¼ 6, for
the electric dipole mode. In contrast, the supercavity mode
with m ¼ 0 has a Q of about 200, that is sufficient for
strong nonlinear effects at the nanoscale [5].
Figure 4(b) demonstrates the sizes of a cylindrical

resonator (normalized by the wavelength) as functions of
the material permittivity. Four curves correspond to two
diameters (circles) and two heights (squares) for the regime
of the supercavity mode with azimuthal numbers m ¼ 0
(red) and m ¼ 1 (cyan), respectively. Resonators operate in
the subwavelength regime at moderate values of ε > 3.5.
The Si resonators are shown in the insets. Both dimensions
are approximately half wavelength, being much smaller
than WGM resonators exploiting high-order m modes.
Importantly, since material losses may significantly

lower the values of the Q factors [28], we should study
the effect of imperfections. Total losses can be defined by
a sum of radiation, absorptions, and surface scattering,
namely, Q−1

rad þQ−1
abs þQ−1

ss . We find that in dielectric
nanoresonators the Q factors of supercavity modes are
restricted by the quantity ReðεÞ=Imð2εÞ. For undoped
crystalline silicon, Qabs > 1010 for λ > 1.5 μm. Losses
due to surface scattering can be estimated as Qss ≈ 1013

[40]. Thus, these two mechanisms are negligible relative
to the radiation losses Q ≈ 200. Additionally, we verify
the robustness of the effect under inevitable fluctuations of
the geometrical sizes and observe that a change of the
resonator diameter ΔD < 15 nm changes the Q factor by
less than 2%.
We notice that the mode interference associated with

the BIC state can be described in terms of the Friedrich-

Wintgen theory [26] developed earlier for electronic BIC
states. This theory assumes that a pair of discrete states
interact through the continuum of delocalized states.
This interaction shifts the energy levels of the discrete
states, and at certain conditions the states undergo a strong
mode coupling. As a result, the damping rate of one state
increases, while the damping rate of the other state
decreases until it vanishes and BIC appears. In photonic
systems, a pair of resonator modes can be described by the
Friedrich-Wintgen theory provided the size of the optical
modes is negligible relative to the wavelength in the media.
The calculated damping rate being inverse to the Q factor
shown in Fig. 3(d) exhibits a strong suppression (peak in
the Q factor) being in excellent agreement with the
predictions of the Friedrich-Wintgen theory. When the
dielectric permittivity increases, one achieves higher Q

10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

102

103

104

105

104 6 10020 40 60

S
i

S
i

Q
 fa

ct
or

N
or

m
al

iz
ed

 s
iz

es
 (

d/
λ,

 l  /
λ)

 

Subwavelength

ε

m=1

m=0

(a)

(b)

Q = 0.1·ε2
.3

Q = 0.04·ε3
.2

λSi

Si

Si

Si

m = 1

m >> 1, r >> λ

m = 0

Q = 200

Q = 200

Q = 48

Q = 48

diameter d
height l

Size > λ WGM modes

FIG. 4. Calculated Q factors of the supercavity modes realized
in subwavelength dielectric resonators. (a) Dependence of the Q
factor of the modes with the azimuthal numbers m ¼ 0 and
m ¼ 1 on the dielectric permittivity. For high values of permit-
tivity, the Q factor demonstrates a power growth. (b) Relative
dimensions of a dielectric cylindrical resonator supporting a
supercavity mode. All sizes are normalized by the resonant
wavelength. A resonator becomes subwavelength below a boun-
dary marked by a horizontal line. Diameters are depicted by
circles; heights are shown by squares. The insets illustrate the
cases of a silicon resonator for m ¼ 0 and m ¼ 1. All data in (a)
and (b) are calculated by the resonant-state expansion method.
The case of silicon is marked by a vertical line.
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factors [see Fig. 4(a)], because the modes become close to
the theoretical idealization. This theory suggests how to
engineer the resonator properties for achieving really high
Q factors for simple geometries.
In summary, we have revealed that subwavelength high-

index dielectric resonators can support the supercavity
modes with high Q factors, provided their parameters
are tuned to match the BIC conditions. For Si resonators,
our approach suggests Q ∼ 200, that is sufficient for many
applications. We believe that our finding opens new
horizons for nanoscale metadevices including low-
threshold nanolasers, biosensors, parametric amplifiers,
and nanophotonics quantum circuits.
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