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Abstract In order to perform finite element (FE) analyses 

of patient-specific abdominal aortic aneurysms, geometries 

derived from medical images must be meshed with suitable 

elements. We propose a semi-automatic method for gen-

erating conforming hexahedral meshes directly from con-

tours segmented from medical images. Magnetic resonance 

images are generated using a protocol developed to give 

the abdominal aorta high contrast against the surround-

ing soft tissue. These data allow us to distinguish between 

the different structures of interest. We build novel quadri-

lateral meshes for each surface of the sectioned geometry 

and generate conforming hexahedral meshes by combining 

the quadrilateral meshes. The three-layered morphology of 

both the arterial wall and thrombus is incorporated using 

parameters determined from experiments. We demonstrate 

the quality of our patient-specific meshes using the ele-

ment Scaled Jacobian. The method efficiently generates 

high-quality elements suitable for FE analysis, even in the 

bifurcation region of the aorta into the iliac arteries. For 

example, hexahedral meshes of up to 125,000 elements are 

generated in less than 130 s, with 94.8 % of elements well 

suited for FE analysis. We provide novel input for simula-

tions by independently meshing both the arterial wall and 

intraluminal thrombus of the aneurysm, and their respective 

layered morphologies. 
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1 Introduction 

An abdominal aortic aneurysm (AAA) is a pathological dil-

atation in a segment of the abdominal aorta, where the aortic 

diameter is greater than 3 cm or 50 % greater than the unin-

volved proximal vessel [16]. One of the biggest risks associ-

ated with this disease is weakening of the aortic wall, which 

can lead to dissection or rupture of the artery. It is possible 

that blood stagnates in the dilation, inducing formation of an 

intraluminal thrombus (ILT) [8]. In such AAAs, three differ-

ent structures may exist: the AAA wall, ILT and lumen. 

A high mortality rate is associated with the rupture of 

AAAs [19]. Currently, it is not possible to predict when 

a particular AAA will remain stable or rupture, and treat-

ment by surgical intervention involves significant risks 

to the patient. Methods currently under investigation to 

improve rupture risk prediction include those based on 

numerical simulations, most often using the finite element 

(FE) method [26]. FE simulations for AAAs can be patient 



specific and permit modeling complex stress states that 

include effects from the ILT. In the future, such results may 

improve clinical rupture risk prediction based on preopera-

tive anatomical images. 

Recent progress in medical imaging supports clinicians 

in diagnosis and subsequent treatment for various dis-

eases in different stages. New technologies and methods 

in magnetic resonance imaging (MRI) as well as computed 

tomography angiography (CTA) have enhanced soft tissue 

contrast and enabled clinicians to distinguish between the 

soft tissue structures of interest. Different acquisition pro-

tocols, especially in MRI, open the possibility of differenti-

ating between the AAA wall and the ILT within the context 

of AAA imaging. 

Generating an appropriate computational mesh is prereq-

uisite for applying several numerical techniques, including 

those based on FE analysis [10]. Such meshes represent the 

geometry of interest using a set of polyhedral elements. Com-

monly, these elements are tetrahedra (four connected nodes 

creating four triangular faces) or hexahedra (eight connected 

nodes creating six quadrilateral faces). Many fast and robust 

methods exist in the literature for automatically generating 

tetrahedral meshes of arbitrary geometries, cf. [7,14,29]. 

Building computational meshes from hexahedra is far 

more restrictive, and only a limited number of relatively 

simple geometries can be constructed using high-quality 

hexahedral elements [23]. However, for a wide range of 

applications, hexahedral-based meshes are preferred. First, 

to achieve the same solution, accuracy for a given FE anal-

ysis requires far more tetrahedral elements then hexahe-

dral elements, and this leads to higher computational costs 

(both time and memory) [6, 21]. Even more, when the aim 

is to apply FE analysis, tetrahedral meshes produce accept-

able displacement results but are relatively inaccurate for 

predicting stresses [18, 20]. Hexahedral mesh generation 

is constrained by the need to decompose a desired geom-

etry (repeatedly) into simpler sub-geometries that can be 

meshed automatically [11, 17]. 

In the specific case of vascular structures, generating 

hexahedral meshes is especially challenging due to the com-

plex 3D branching anatomy. Hence, we propose a specific 

algorithm designed to work with patient-specific geometries 

obtained from preoperative imaging. Each patient's aneu-

rysm is unique, characterized by its location and shape, and 

must be accurately represented for subsequent analyses to 

be meaningful. About 90 % of abdominal aneurysms are 

located below the renal arteries [16]. The histological struc-

ture and the mechanical characteristics of the infra-renal 

aorta differ from those of the thoracic aorta [28]. Thus, our 

investigation focuses on modeling the lower part of the aorta 

and the aortic bifurcation into the iliac arteries. 

The geometry under study is roughly described as a 

tubular structure in the shape of an inverted Y, distorted by 

the aneurysm and ILT wherever present. Regarding shape, 

an aneurysm can be fusiform or saccular. Fusiform aneu-

rysms are most common and bulge the whole perimeter of 

the aorta, while saccular aneurysms bulge only on one side. 

We account for both cases with our method. If blood stag-

nates in the aneurysm and forms an ILT, it exists as a con-

forming structure with the aortic wall, i.e., the ILT's outer 

contour is the same as the wall's inner contour. Therefore, 

resulting meshes must also be conforming. 

A fully automatic algorithm for generating hexahedral 

meshes of arbitrary geometries has not yet been achieved. 

Furthermore, to the authors' knowledge, there are no auto-

matic algorithms which provide automatic meshing of 

bifurcating structures. The literature on this topic generally 

deals with planar bifurcations, i.e., centerlines which evolve 

in a single plane, e.g., [15, 27]. Antiga et al. [1] proposed 

a method for generating high-quality hexahedral meshes 

of bifurcating vessels using the Cooper scheme, based on 

reconstructing 3D models with a level set technique, ana-

lyzing them with a skeletonization algorithm and automati-

cally decomposing the result into branches. Later, Antiga 

and Steinman [2] developed a decomposition and mapping 

method based on centerlines which consists of robustly 

decomposing the surface into its constituent branches and 

mapping each branch onto a template parametric plane. 

De Santis et al. [3-6] proposed several methods based 

on combinations of surface slicing, spline reconstruction 

and mapping. For example, these authors developed meth-

ods to generate conforming, structured hexahedral meshes 

from triangulated surfaces [5] or from centerline-based 

synthetic descriptors (centerlines, radii and centerline nor-

mals) in combination with block structures [6]. In this latter 

work [6], the authors presented conforming meshes of the 

arterial wall and its lumen, but they have not segmented the 

outer contour of the wall from the surrounding soft tissues, 

and the wall is thus reconstructed from the lumen contour 

by assuming a constant or radius-dependent wall thickness. 

Furthermore, they did not account for the ILT. 

In this study, we present a novel and robust method 

for generating conforming hexahedral meshes of both the 

aortic wall and the ILT. We construct these meshes using 

largely high-quality elements, especially at the bifurca-

tion, that are suitable for FE analysis of tissue stresses. Our 

method accounts for the evolution of the vessel's center-

line, which may develop outside a single plane, and gener-

ates the mesh directly from segmented images without the 

requirement to reconstruct triangular surfaces. 

2 Methods 

We detail our method for generating two conforming 

(largely) hexahedral meshes, one for the AAA wall and 



another one for the ILT, based on patient-specific MRI data. 

To achieve this goal, we start from MRI data which we 

generate using a protocol developed to give the abdominal 

aorta high tissue contrast against the surrounding soft tis-

sue. The quality of these data allows us to segment contours 

representing the ILT where present, as well as the lumen 

and outer arterial edge. We then construct three quadrilat-

eral meshes: one represents the outer surface of the arte-

rial wall; another representing the inner arterial wall; and 

a third representing the inner surface formed by the throm-

bus, but complemented by the lumen surface where the 

thrombus is not present. 

If one seeks to generate regularly shaped hexahedral ele-

ments, the irregular geometry of the bifurcation presents 

a serious difficulty, and hence, our main challenge in this 

work is generating high-quality elements at the aortic bifur-

cation into the iliac arteries. We detail a novel method to 

handle meshing of the bifurcation region. We build a series 

of quadrilateral meshes based on partitioning this region. 

Finally, we combine the quadrilateral meshes to form con-

forming hexahedral meshes. We demonstrate the perfor-

mance of our method on four MRI studies of patients with 

AAAs near the aortic bifurcation into the iliac arteries. 

We implemented our method using MATLAB R2009a 

(Mathworks Inc., Natick, MA, USA). 

2.1 Image data and segmentation 

Different MRI acquisition protocols open up the possibility 

of differentiating between different soft tissue structures. 

We developed an MRI protocol focused to provide high 

contrast for the AAA wall and the ILT against the surround-

ing soft tissue. If no contraindications existed, we perform 

MRI studies using a 1.5 T Aera scanner (Siemens, Erlan-

gen, Germany) on patients with AAAs of diameter larger 

than 5 cm. We registered the MRI study at the clinical trial 

center of the University Hospital of Leuven (study num-

ber S 52774) and obtained ethical approval from the ethical 

committee UZ Leuven. 

Regarding the MRI data specifically, we use a sagit-

tal and transversal balanced steady-state free precession 

(bSSFP) sequence as a localizer, with 20 sagittal slices of 

5 mm slice thickness and 30 transversal slices of 6 mm 

slice thickness, both with no intersection gap, a field of 

view (FOV) of 380 mm, a matrix size of 320 x 260, a time 

to repetition/time to echo (TR/TE) of 4.41 ms/2.21 ms, a 

flip angle of 62° and a one signal average. Thereafter, we 

completed a pulse triggered, three slice Tl Turbo Spin 

Echo (TSE) sequence with 6 mm slice thickness, TR/TE of 

800 ms/62 ms, FOV of 160 mm and a matrix of 256 x 256 

and a flip angle of 180°. Next, we perform a coronal 

breath-hold fast low-angle shot (FLASH) 3D sequence 

after intravenous administration of a standardized dose of 

Fig. 1 Images of a representative abdominal aortic aneurysm where 

the three structures of interest are observed (1 lumen, 2 intraluminal 

thrombus and 5 aortic wall): a magnetic resonance image; b seg-

mented image containing contours of the structures 

0.1 mmol/kg Gd-DOTA (Dotarem, Guerbet, France). We 

execute this in the arterial phase with a slab thickness of 

96 slices of 1.25 mm, 384 x 336 matrix size, TR/TE of 

3.04 ms/1.09 ms and a FOV of 400 mm and a flip angle of 

25°. 

After acquisition, we evaluate image quality and tissue 

contrast for the AAA wall and the ILT in order to select 

images which best meet our objectives. After analysis, 

we select the transversal bSSFP sequence for segmenta-

tion and reconstruction of the patient-specific geometry 

(see Fig. la). We use three 3D binary images of the aor-

tic wall, the ILT and the lumen for each patient. For each 

structure, we extract contours from the binary images (see 

Fig. lb). After segmentation, we apply a Gaussian smooth-

ing to remove inaccuracies (unlikely edges due to noise or 

manual segmentation errors), where we take care to avoid 

distorting the shape of the structures of interest, e.g., reduc-

ing the contours to circles or ellipses. Although bare con-

tours may be applied, linear interpolation is used between 

the points obtained from the manual segmentation perform-

ing a smoothing process results in softer and more realistic 

representations. The smoothing process applies a Gaussian 

filter (er = 3) to the contours obtained from the segmenta-

tion, starting at the first point of the contour. We repeat this 

process starting at the last point of the contour such that the 

process is independent of position and to avoid distortion. 

The final result is an average of these smoothed contours. 

The process thus removes only high frequency features. 

2.2 Bifurcation modeling 

2.2.1 Division of the bifurcation into vessels 

Our method for modeling the bifurcation begins by divid-

ing it into three distinct vessels, following Lee et al. [13]. 

We perform this division by defining three planes, which 

intersect in a single straight line. Figure 2 illustrates the 

three planes in a representative patient-specific mesh: 



Fig. 2 Three planes at the bifurcation, used to develop a representa-

tive patient-specific mesh: a plane and vessel position at the bifurca-

tion; b expanded view with planes and isolated vessels 

Fig. 3 A representative set of patient-specific contours showing the 

position of the points required to divide the bifurcation region into 

distinct vessels (with anterior (A); posterior (P); bottom (B); left (L); 

right (7?)) and the arcs defined by the intersection of the resulting 

planes and the contours 

planes 1, 2 and 3 in Fig. 2a and expanded in Fig. 2b. We 

define each plane by the respective common line and an 

additional point. The positions of these three points, and the 

two points needed to define the original straight line, are 

critical as these determine the quality of the division and 

the resulting mesh. We place these five points as follows: 

anterior (A)—on the lumen surface, in front of and above 

the bifurcation; posterior (P)—on the lumen surface, in 

back of and above the bifurcation; bottom (B)—on the wall 

surface, in the bottom part of the bifurcation; left (L)—on 

the lumen surface and above the anterior A and posterior 

P points; right (R)—on the lumen surface and above the 

points A and P. Points A and P define the common straight 

line and must be located above the iliac arteries. Point B 

must be placed below the aorta, and points L and R must be 

located in a position above the line AP. Figure 3 illustrates 

the position of these five points on the bifurcation of a rep-

resentative set of patient-specific contours. 

2.2.2 Division of the vessels into sections 

Next, we calculate the intersections of these three planes 

with the segmented contours (arcs in the example shown 

in Fig. 3). Points A and P define the direction (we define 

a unit vector AP) used for dividing the three vessels into 

sections (we divide the vessel of the abdominal aorta into 

a left and a right section, while we divide the iliac arter-

ies into interior and exterior sections). Thereby, we divide 

the volume into six sections, which we model indepen-

dently. Using this method, we control the number and qual-

ity of the quadrilaterals generated in each section using six 

parameters, which we adjust to tune the mesh density and 

quality. We define these six parameters as the longitudinal 

divisions of the aorta (LAort¡) and the iliac arteries (Lmiac, 

LLIliac), and circumferential divisions of the right (CRight), 

left (CLeft) and bottom (CBottom) sides. 

We require care to achieve meshes at the transition zones 

between all six independent sections sufficient for subse-

quent use in FE simulations. In our process for defining 

these regions, we pay special attention to transition zones 

between the different sections to avoid poor mesh quality. 

For each closed vessel contour, we calculate the lumen cen-

terline using the centroid of the enclosed area (C in Fig. 4a, 

and Cj and C2 in Fig. 4b). The composition of these cen-

troid points determines the lumen centerline. Next, we 

apply a separate process for the segments of the aorta and 

those of the iliac arteries. For the aorta contours, we apply 

the vector AP (anterior-posterior) at the center of each con-

tour (see Fig. 4a). We extend this vector in both directions 

to obtain the two intersection points of this extended vec-

tor and the vessel contour. We assign each contour to its 

corresponding region (left or right) and set the number of 

divisions in each region according to the aforementioned 

parameters CRight and CLeft. 

We modify our process for defining these regions for 

axial slices with two contours (i.e., in the iliac arteries) 

since we intend that the size of the external regions is 

greater than the internal ones (see Fig. 4b). Again, we apply 

the vector APat the center of each contour and determine 

the intersections of their extensions with the two vessel 

contours. However, we need two additional points to define 

the required regions. We obtain these additional points in 

the following. First, we determine the point M at the mid-

point of the line segment from point A to point P (origi-

nally used to determine the vector AP). The projection of 

M normal to the imaging planes onto the current imaging 
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Fig. 4 Representative arterial contours from two different imaging planes: a aortic artery with area center C, vector AP and resulting regions for 

meshing; b iliac arteries with projection point M', area centers Ct and C2, vectors AP and resulting regions for meshing 

Fig. 5 Representative image-

based contours used for quadri-

lateral mesh and centerline gen-

eration: a initial axial contours; 

b longitudinal lines; c resulting 

quadrilateral mesh; d resulting 

set of center points 

(a) (b) (c) 

plane with the two vessel contours determines the location 

of M'. Next, we link the point M' with the centers of the 

iliac contours Ct and C2 to determine the line segments 

M'Cl and M'C2. For each of these segments, we calculate 

a perpendicular segment through the center of each vessel 

contour. The intersections of these segments and the ves-

sel contours provide the second set of desired points. Thus, 

we calculate four intersection points on each vessel contour 

and define the internal region using two points that form 

the smallest segment of the vessel contour that intersects 

the segment M'C1 in the case of the first vessel contour (or 

M'C2 in the case of the second vessel contour). 

2.3 Quadrilateral mesh and centerline generation 

Once we determine the different sections and set the corre-

sponding parameters, we build a quadrilateral mesh of each 

section. We divide the initial axial contours of the regions 

(see Fig. 5a) according to the circumferential division 

parameters CRight, CLeft and CBottom, with the points equally 

spaced over the contours. The union of corresponding 

points from each axial contour generates a set of longitu-

dinal lines (see Fig. 5b). We divide these lines according 

to the longitudinal division parameters Lp •^Rlliac and 

LLIliac. The resulting points are not equally spaced along the 

longitudinal lines due to the dilation of the AAA. We space 

the points further apart the closer they are to the bifurca-

tion. Once again, the union of corresponding points results 

in a new set of circumferential lines. We combine the sets 

of circumferential and longitudinal lines to form a mesh of 

quadrilateral elements (see Fig. 5c). We apply this process 

for the axial contours generated from the lumen surface, 

ILT and outer edge of the arterial wall. 

In order to build hexahedral meshes from resulting quad-

rilateral meshes, we require a set of points along the lumen 

centerline for each axial contour parallel to the imaging 

planes. We calculate these points from our quadrilateral 

mesh of the lumen surface. We follow the longitudinal 



line containing point A and the longitudinal line contain-

ing point P, and for each axial contour, we determine mid-

point of the line segment between the corresponding points. 

We use these midpoints as the lumen centerline data (see 

Fig. 5d). 

2.4 Hexahedral mesh generation 

In order to generate two conforming hexahedral meshes, 

one of the aortic wall and one of the ILT, we require the 

lumen center points and the three quadrilateral meshes, 

where we take one of them as a reference. The choice of 

the reference mesh is arbitrary, and in this case, we have 

chosen the quadrilateral mesh of the external surface of the 

arterial wall. To ensure generation of undistorted hexahe-

dral elements, we first refine the quadrilateral elements of 

the remaining meshes (the inner arterial wall and ILT sur-

face meshes). We perform a ray-casting technique based 

on the reference mesh. Thereby, we trace a ray from each 

point of the mesh to its associated center point. Wherever 

this ray intersects with the surface defined by the quadri-

lateral mesh of the inner face of the arterial wall, we define 

a new point. We use this new set of points to update the 

original quadrilaterals and thereby refine the mesh of the 

internal face. Finally, we construct the desired hexahedral 

mesh of the arterial wall by joining the quadrilaterals of the 

external and internal faces of the wall. 

Similarly, we repeat this process for generation of a hex-

ahedral mesh of the ILT. In this case, our reference is the 

set of points determining the new quadrilateral mesh of the 

inner face of the arterial wall. Again, we apply a ray-cast-

ing technique with the lumen centerline points to construct 

a new quadrilateral mesh for the inner surface of the ILT 

(or repeating the lumen surface where ILT is not present). 

We then join the quadrilateral meshes of both the inner face 

of the ILT and the inner face of the arterial wall to build 

a hexahedral mesh of the ILT We remove any hexahedral 

elements with zero volume, i.e., wherever the ILT does not 

exist, so that the inner face of the ILT is equal to the lumen 

surface. Since the ILT is not necessarily present along the 

whole AAA, the interface between surfaces with ILT and 

without ILT will generate coincident nodal points. Along 

this interface, at the edges of the ILT, we define collapsed 

hexahedral elements (generalized elements with less than 

eight distinct nodes) by merging coincident nodes, in order 

to obtain softer transitions, cf. [30]. 

Both the arteries and thrombi constitute distinct layered 

morphologies, and each of these layers has a distinct his-

tological structure and different mechanical properties. In 

order to generate patient-specific meshes which account for 

the layered morphology of both the arteries (intima, media 

and adventitia) and thrombi (luminal, medial and abluminal 

portions), we use experimentally determined through the 

thickness ratios. We partition elements of the aortic wall 

into three elements along the radial direction, representing 

intima, media and adventitia. In the same way, we partition 

elements of the thrombus mesh into three layers represent-

ing the luminal, medial and abluminal thrombi layers [25]. 

Ratios for the arterial layers, relative to the composite arte-

rial wall, are 0.19 for the intima, 0.44 for the media and 

0.37 for the adventitia, cf. [22]. In the thrombus, the layer 

ratios are 0.38 for the luminal, 0.38 for the medial and 0.24 

for the abluminal layer [25]. With this partitioning process, 

we alter neither the longitudinal nor circumferential topol-

ogy of the meshes, and hence, the originally conforming 

structures retain this property. 

2.5 Inspection of mesh quality 

Within the context of the FE method, the quality of the 

finite elements obtained from the mesh generation greatly 

affects both the convergence of the simulations and the 

resulting approximations to the solutions of the governing 

partial differential equations. Additionally, accuracy in the 

representation of the true, patient-specific in vivo geometry 

also influences the applicability of the results [12]. Metrics 

for mesh quality must detect inverted elements (elements 

with negative volume, which generate meaningless results 

or prevent solution convergence) and provide an estimate 

of the mesh's fitness for use in numerical simulations. 

Several factors affect the quality of a FE mesh, i.e., its 

usefulness in numerical simulations, and these depend on 

the type of calculation and on the desired results. For the 

analysis of solid structures, the Scaled Jacobian is a com-

mon quality metric [6]. We evaluate the Jacobian Jk at the 

element center k = 0 using the principal axes, and at each 

node k, k e [1,...,8], of each hexahedral element as the 

triple scalar product of the edges connected to that node 

(eki,ek2,ek3) using 

Jk = ek\ • (ek2 x ek3). (1) 

The modulus of (1) represents six times the volume of 

the tetrahedron enclosed by these three edges. We evaluate 

the Scaled Jacobian of an element as the minimum of each 

nodal Jacobian (Jk from (1)) divided by the length of the 

three corresponding edges (eki,ek2,eia) using 

Scaled Jacobian mm 
ke[0,...,i 

Jk 

\\eki\\\\ek2\\\\ek3\ 
(2) 

where the Scaled Jacobian takes the range [—1, 1] for a 

hexahedral element, with —1 corresponding to the worst 

possible elements and +1 the best possible ones (NB: only 

elements with a nonzero, positive Scaled Jacobian are suit-

able for FE analysis [12]). The Scaled Jacobian applies 

only to regular hexahedral elements having eight (distinct) 

vertices at different spatial locations in 3D space. Hence, 



\H Scaled Jacobian [-] 

1 

(b) (c) (d) 0.5 

(e) (f) (g) (h) 

Fig. 6 Resulting hexahedral meshes for four representative abdomi- quality: a-d AAA walls; e-h corresponding ILTs (NB: we do not 

nal aortic aneurysms (AAAs) and their corresponding intraluminal include collapsed elements in this analysis) 

thrombi (ILTs) using the Scaled Jacobian as a measure of element 

we remove elements with collapsed nodes from our sub-

sequent figures and statistics. We use the open source pro-

gram Paraview (Kitware, Inc., Clifton Park, New York, 

USA) to evaluate the Scaled Jacobian, among other quality 

metrics, which in turn uses the Verdict library [9, 24]. 

3 Results 

We test our method on four representative MRI studies of 

patients with AAAs near the aortic bifurcation into the iliac 

arteries. Once we select our five bifurcation points manu-

ally (A, P, B, L and R), we are able to generate conform-

ing hexahedral meshes, e.g., containing 125,000 elements 

in approximately 130 s using an Intel Core2Duo processor 

E8400 at three GHz, eight GB RAM and a 64-bit operating 

system. 

The individual thrombi have distinctly different shapes 

(with fusiform or saccular aneurysms) and are located at 

different positions along the aorta and within the AAA. In 

all cases, our method generates high-quality elements mod-

eling the arterial wall (including particularly the bifurca-

tion) and ILT, as shown in Fig. 6. Figure 6a-d illustrates 

the resulting conforming hexahedral meshes of the arterial 

wall, and Fig. 6e-h illustrates their corresponding ILTs (not 

to scale). We shade the meshes in Fig. 6a-h according to 

the Scaled Jacobian of the mesh elements, recall that we 

exclude elements with collapsed nodes from our figures. 

Figure 7a illustrates, for the four representative MRI 

studies, the distribution of the Scaled Jacobian values for 

the separated layers of the AAA walls, while Fig. 7b illus-

trates the same for the separated layers of the ILTs. In both 

figures, bars represent the arithmetic means, while brack-

eted lines represent the standard errors. 



(a) AAA wall 

eO.O O.O-0 2 
Unacceptable 

0.2-0.4 0.4-0.6 0.6-0.8 

Scaled Jacobian [-] 

o 
41 
O) 

s 
c 
<D 

2 
£L 

100 

90 

a;i 

70 

60 

50 

40 

33 

23 

(b) ILT 

I I Medial 

I I Luminal 

~lAfiliiminal 

é 
SA 

0.8-1.0 
Excellent 

<0.0 0 0-0.2 
unacceptable 

0.2-0 4 0.4-0.6 0.6-0 8 

Scaled Jacobian \-] 

oa-i o 
Excellent 

Fig. 7 Results for four representative abdominal aortic aneurysms 

(AAAs) and their corresponding intraluminal thrombi (ILTs) as dis-

tribution frequencies (%) of the Scaled Jacobian values determined 

for individual layers: a the AAA wall and b the ILT. Bars represent 

the arithmetic means, and bracketed lines represent the standard 

errors (NB: we do not include collapsed elements in this analysis) 

In Figs. 6 and 7, recall that we remove elements with 

collapsed nodes from our mesh quality analysis as the cal-

culation of the Scaled Jacobian degenerates in this special 

case of repeated nodes. Importantly, there are relatively few 

of these collapsed elements which are only used in the tran-

sition to the ILT. Their relative distribution in the ILT mesh 

is 16.0 ± 4.03 % (M ± SD), while their relative distribu-

tion in the entire mesh (aorta plus ILT) is 3.62 ± 0.63 %. 

The application of collapsed elements in FE analysis may 

affect solution convergence and accuracy. Fortunately, 

at the transition to the ILT, we do not generally see large 

solution gradients, which are more difficult to capture. 

Nonetheless, stress distributions within collapsed elements 

should be viewed with caution. Elements with Scaled Jaco-

bian values in the range of 0.5-1.0 are well suited for FE 

analysis [2]. Negative values signify invalid (inverted) ele-

ments ill-suited for FE analysis. For the ILTs, the element 

quality is generally at a very high level: there are no ele-

ments with negative Scaled Jacobian values, and 94.8 % of 

the total elements exhibit Scaled Jacobian values greater 

than 0.5. Importantly, note that the (layered) wall shapes 

are generally more complex than the thrombi shapes. 

Nonetheless, the elements of the AAA wall are also of high 

quality: 87.8 % of elements in the wall exhibit Scaled Jaco-

bian values greater than 0.5, while only 0.22 % fall below 

0.2. In the examples shown, we use approximately 25,000 

elements per mesh (suitable for FE analysis), but the dis-

tribution of the Scaled Jacobian values does not change 

markedly with meshes of up to 125,000 elements (results 

not shown). 

To study the distribution of relatively poor quality ele-

ments, we review a representative patient-specific AAA. To 

this end, Fig. 8 illustrates, for a single representative mesh, 

the Scaled Jacobian in the range of 0.0-0.5, where we con-

sider elements with Scaled Jacobian > 0.5 as high-quality 

elements. The relatively low-quality elements do not occur 

in the region of the bifurcation, but rather at regions where 

the surfaces of the original geometry lie relatively paral-

lel to the original MR imaging planes, either due to the 

presence of the ILT or due to the tortuosity inherent to the 

arteries. 

4 Discussion 

In this work, we propose a novel procedure for generating 

conforming hexahedral meshes of AAAs and their corre-

sponding thrombi with high-quality elements, particularly 

in the area of the bifurcation into the iliac arteries. First, 

we separate the bifurcation into isolated vessels. We then 

divide each vessel into sections, each of which we mesh 

independently. Next, we build quadrilateral meshes of each 

isolated structure of the AAA. Finally, we generate con-

forming hexahedral meshes by adjusting and combining 

the quadrilateral meshes. 

4.1 Comparison to the state of the art 

In the literature, it is a relatively standard procedure to 

divide vessel bifurcations into independent vessels for 

meshing using a set of manually selected points. This pro-

cedure was first presented by Lee et al. [13], where they 

developed a method for meshing the lumen using hexahe-

dral elements for studies in computational fluid dynamics. 

In this work, we use a modified approach to mesh not the 

lumen, but the AAA wall and corresponding ILT for solid 
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Fig. 8 Representative result for a patient-specific abdominal aortic 

aneurysm: Scaled Jacobian shown with range 0.0-0.5 to evaluate the 

lower quality elements. Relatively low-quality elements do not occur 

in the region of the bifurcation, but rather at regions where the sur-

faces of the original geometry lie relatively parallel to the original 

magnetic resonance imaging planes 

analysis. In their method, the authors defined four points 

used to divide the bifurcation into separate vessels based 

on a 2D projection of the 3D model. In our application, 

the diseased state of the aorta results in the possibility of 

severe tortuosity in the iliac arteries. In such a case, the 2D 

projection proposed in the reported work breaks down, and 

hence, we define five points using the full 3D contours. 

To put our method into context, we review the previous 

work in [6] who meshed a patient-specific AAA geometry 

determined from CTA using their custom method. Starting 

from the geometry of the lumen, the authors reconstructed 

the arterial wall by assuming a constant wall thickness and 

then mesh both the lumen and arterial wall using hexahe-

dral elements. In their example, they do not account for the 

specific arterial layers (intima, media and adventitia) nor 

the thrombus or its layers. Our method affords more flex-

ibility, and the division of the vessels (branching) into six 

independently modeled sections permits applying nonuni-

form distributions of elements. An inhomogeneous distri-

bution is capable of generating smaller hexahedra in the 

regions of interest and larger hexahedra elsewhere. The 

proposed method permits defining the longitudinal and cir-

cumferential divisions of the vessels' sections, and a nonu-

niform distribution of the elements can be achieved as long 

as the number of the divisions is maintained. Currently, 

creating regions with a higher number of divisions (longi-

tudinal or circumferential) than others is not considered, 

as it would suppose the use of collapsed hexahedra in the 

volume. 

We use the Scaled Jacobian to evaluate the fitness of our 

hexahedral meshes for use in FE analysis. For a representa-

tive mesh, the majority of elements have Scaled Jacobian 

values greater than 0.5, similar to the results presented in 

[6]. Both our method and that from [6] generate hexahedral 

meshes of the aortic wall (in our case also distinguishing 

between the arterial wall and thrombus, and including their 

respective layers) generated from geometries that evolve 

out of a single plane. While the results for mesh quality 

and computational time cannot be directly compared, we 

observe that for meshes of around 125,000 elements, both 

the distribution of Scaled Jacobian values and the percent-

age of elements inside the acceptable range (0.5-1.0) are 

similar. However, De Santis et al. use a constant wall thick-

ness for the artery, do not account for its layered morphol-

ogy and do not have an ILT in their representative example. 

All of these details facilitate the likelihood of their method 

generating a higher portion of well-shaped elements. Fur-

thermore, while our method appears to be significantly 

faster (131 vs. 1,892 s to generate a mesh of approximately 

125,000 elements), the result depends on the specific exam-

ples meshed as well as the hardware and software imple-

mentation used to generate the result. It is important to note 

that we have not optimized our algorithmic implementation 

developed in MATLAB. 

4.2 Summary and future work 

Our method generates high-quality, patient-specific meshes 

of the AAA arterial wall and corresponding thrombus 

(including their layered morphologies) for use in FE analy-

sis, e.g., in the evaluation of rupture risk of the aneurysm. 

Such improvements may provide greater fidelity in the FE 

estimates of, e.g., tissue stresses. We have tuned our MRI 

sequences to provide high contrast for the arterial tissue 

against the surrounding soft tissue, so that we determine the 

required information reliably. Our efficient method, based 

on manual segmentation of the MR Images that effectively 

distinguish between the different structures of interest, dif-

ferentiates between the arterial wall and the ILT, and recon-

structs a reasonable estimate of the actual wall thickness. 

Quality analysis on the four representative meshes shown 

here confirms that our method generates excellent meshes 

for use in FE analysis, even at the bifurcation regions where 

mesh generation is generally difficult. 

Future work aims at improving the resulting mesh qual-

ity and further automation of the method. As a result of the 

ray-casting technique, relatively low-quality elements are 



likely generated in surface regions nearly parallel to the 

original MR Imaging slices. The application of sweeping 

techniques, which account for both the line tangent to the 

centerline and its normal plane, could improve the elements 

in these regions and thus improve the overall distribution 

of elements suitable for FE analysis. Additionally, an auto-

mated method for the selection of the vessel decomposition 

points could be implemented. 
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