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Accurate sequence information, genome assemblies and annotations 

are the foundation for genetic and genome-wide studies. The major 

factors that limit de novo genome assembly are heterozygosity and 

repetitive sequences, such as TEs, which are often collapsed to single 

copies in draft genomes1. In recent years, however, evidence support-

ing the importance of TEs in genome evolution, genome structure, 

regulation of gene expression and epigenetics has been mounting2–5. 

The characterization of sequences and the distribution of TEs within 

a genome is, therefore, of great importance.

Until now, the study of epigenetically controlled characteristics 

in perennial plants has been hampered by the draft status of their 

genome sequences. In the case of apple, a draft was produced6 but 

remained incomplete with inaccurate contig positions7; this hindered 

its utility for genetic and epigenetic studies. De novo sequencing and 

assembly of a new genome for apple, using technologies of the third 

generation, had thus become a necessity.

In the last few years, single-molecule sequencing and optical-map-

ping technologies have emerged8, which are well suited for assembling 

genomic regions that contain long repetitive elements. Recently, sev-

eral high-quality genome assemblies have been published using one or 

both technologies9–14. The use of long-read sequencing technologies 

may also tackle potential assembly issues that are related to the pres-

ence of highly similar sequences resulting from whole-genome dupli-

cation events that frequently occurred in angiosperm genomes15.

In addition to DNA sequence modifications, it has been shown that 

epigenetic variations contribute to genome accessibility, functionality 

and structure16,17. Several studies have demonstrated that local DNA 

methylation variants, which are represented by differential cytosine 

methylation at particular loci, can have major effects on the transcrip-

tion of nearby genes and can be inherited over generations18–20.

Apple, like most other fruit tree crops, is propagated by graft-

ing onto rootstocks, which over time can allow the acquisition and 

propagation of epimutations, via variation in DNA methylation states 

that can influence various phenotypes, such as fruit color21,22. Thus, 

knowledge of the epigenetic landscape of apple cultivars could provide 

new tools to study somatic variants, leading to the development of 

epigenetic markers for marker-assisted selection.

To produce a high-quality apple reference genome and methylome, 

we generated a de novo assembly of a ‘Golden Delicious’ doubled-

haploid tree (GDDH13) composed of 280 assembled scaffolds and 

arranged into 17 pseudomolecules, which represent the 17 chromo-

somes of apple. This assembly resulted from a combination of short 
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(Illumina) and long sequencing reads (PacBio), along with scaffolding 

based on optical maps (BioNano) and a high-density integrated genetic 

linkage map23. This chromosome-scale assembly was complemented 

by a detailed de novo annotation of genes based on RNA sequencing 

(RNA-seq) data, TE annotation and small RNA alignments.

To understand the potential role of epigenetic marks on fruit devel-

opment, we constructed genome-wide DNA methylation maps that 

compared different tissues and two isogenic apple lines that produce 

large or small fruits. This led to the identification of differential  

DNA methylation patterns that are associated with genes involved  

in fruit development.

This work provides a solid foundation for future genetic and epi-

genomic studies in apple. Furthermore, our TE annotation provides 

novel insights into the evolutionary history of apple and may contrib-

ute to explaining its divergence from pear.

RESULTS
Genome sequencing, assembly and scaffolding
The doubled-haploid Golden Delicious line (GDDH13, also coded 

X9273) used in this study is the result of breeding efforts that were 

initiated at INRA in 1963 (ref. 24) (Supplementary Fig. 1 and Online 

Methods). Homozygosity of this line was confirmed with microsat-

ellite markers that are distributed along the apple genome (data not 

shown) and by observation of the k-mer spectrum of Illumina reads 

derived from GDDH13 (Fig. 1a and Supplementary Note).

To perform de novo assembly of the GDDH13 genome, we com-

bined three different technologies: short-read sequencing, long-read 

sequencing and optical mapping (Fig. 1b). Using DNA from the leaves 

of GDDH13, we generated ~120-fold coverage of Illumina paired-end 

reads (72 Gb), 80-fold coverage of Illumina Nextera mate-pair reads 

(58 Gb) at three different insert sizes (2, 5 and 10 kb) and ~35-fold 

coverage of PacBio sequencing data (24 Gb; 2,837,045 subreads with 

a mean length of 8,474 bp). The Illumina paired-end reads were first 

assembled using SOAPdenovo25, and the resulting contigs were com-

bined with the PacBio reads using the DBG2OLC assembler26. This 

resulted in an assembly that consisted of 2,150 contigs with an N50 of 

620 kb (i.e., 50% of the assembly was contained in contigs ≥620 kb in 

size) (Supplementary Table 1) and a total length of 625.2 Mb, which 

were subsequently corrected by using the Illumina paired-end reads 

(94,896 single-base assembly errors corrected; 1,054,709 insertions 

(1,466,015 bp) and 123,510 deletions (178,733 bp)) and scaffolded by 

using Illumina mate-pair reads with BESST (assembly N50 increased 

from 620 kb to 699 kb).

Next, using a ~600-fold-coverage BioNano optical map, we gen-

erated a consensus map that resulted in an assembly of 649.7 Mb. 

This consensus map was then used for the hybrid assembly with the 

corrected scaffolds, which, together with single-nucleotide poly-

morphism (SNP) markers derived from a high-density genetic link-

age map23, allowed the construction of the 17 pseudochromosomes 

(Supplementary Table 2 and Supplementary Note). To estimate the 

genome size, we calculated different k-mer frequency distributions of 

the Illumina reads. The estimated GDDH13 genome size of 651 Mb 

was very close to the 649.7-Mb size in the consensus map.

Assessment of genome quality
We assessed the quality of the assembly by using two independent 

sources of data. First, we used the SNP markers that were mapped on 

the previously mentioned integrated genetic linkage map to validate 
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Figure 1 Assembly and validation of the GDDH13 doubled-haploid apple genome. (a) k-mer (23 bp) spectra of the doubled-haploid GDDH13 and 

the heterozygous Golden Delicious33 genomes. The x axis represents k-mer multiplicity, and the y axis represents the number of k-mers with a given 

multiplicity in the sequencing data. The green dashed line represents the ideal Poisson distribution fitted on the data of GDDH13. (b) Overview of the 

processing pipeline used for the assembly of the GDDH13 genome (see Supplementary Note for details). (c) Graphical representation of the location 

of SNP markers on the physical map (x axis), as compared to their position on the integrated genetic map (y axis), for Chr11 of the GDDH13 genome. 

Each marker is depicted as a circle on the plot (1,069 data points). The colors depict the chromosomes as follows: red for Chr01, light green for Chr04, 

pink for Chr08, blue for Chr10 and violet for Chr11. (d) Graphical representation of the mean local recombination rates between successive SNP 

markers along Chr11 (3-Mb sliding window, 1-Mb shift, threshold 4). The x axis represents the physical positions of the means on Chr11, and the y 

axis indicates the recombination ratio (centiMorgan (cM)/Mb) in each 3-Mb sliding window. (e) Heat map of genotypic linkage disequilibrium (LD; r2) 

in Chr11 in the ‘Old Dessert’ INRA apple core collection. Shown are the graphical representation of the location of SNPs on the physical map (top) with 

correspondence to their order in a regular distribution (bottom) of Chr11 (1,461,195 data points). The color bar indicates the level of LD, from high LD 

(red) and low LD (blue).
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scaffold assembly. Of the 15,417 SNP probe sequences, we identified 

sequence homology in the GDDH13 genome for 14,732 of them. We 

then assessed their position on the scaffold assemblies by comparing 

their location on the integrated genetic linkage map. In total 14,117 

of the mapped markers (95.8%) were found to be located at their 

expected positions (Supplementary Note). To visualize these data, we 

plotted the genetic distance against the physical distance of the genetic 

markers for each chromosome (Supplementary Fig. 2); the data for 

chromosome (Chr) 11 is shown as an example in Figure 1c. This 

analysis showed that there was very little discrepancy between the 

physical and genetic maps. For comparison, we plotted these markers 

to the heterozygous apple genome (v 1.0; Supplementary Fig. 3). We 

also plotted the recombination rates in sliding windows of 3 Mb on 

this chromosome (Fig. 1d) and identified a decrease in recombination 

frequency toward the middle of Chr11.

Second, we estimated the level of linkage disequilibrium (LD) 

using the r2 parameter between all pairwise SNP comparisons by 

using marker data that were derived from an apple core collec-

tion27,28. In the present version of the GDDH13 genome, we did not 

identify any abrupt jumps in LD, indicating the overall robustness 

of the assembly (Fig. 1e and Supplementary Fig. 4). Using previ-

ously published genetic data29, we generated a haplotype map for 

GDDH13, which allowed the identification of recombination break-

points (Supplementary Fig. 5).

Finally, the completeness of the assembly was tested by searching 

for 248 core eukaryotic genes30 (CEGs). In total, 237 of 248 CEGs were 

completely present, and 7 CEGs were partially present, indicating that 

fewer than 2% of the CEGs could not be detected, which compared 

very favorably with other assemblies31.

Genome annotation
To obtain a global view of the apple transcriptome, we performed a 

high-throughput RNA-seq analysis on poly(A)-enriched RNAs from 

nine libraries that originated from different genotypes and tissues. 

RNA-seq reads were assembled, and the resulting contigs were mapped 

to the scaffolds and integrated in the EuGene combiner pipeline32. 

In total, we identified 42,140 protein-coding genes (which represent  

23.3% of the genome assembly) and 1,965 non-protein-coding genes 

(Supplementary Table 2 and Supplementary Note). Evidence of 

transcription was found for 93% of the annotated genes.

To further evaluate the quality of the annotation, a comparison with 

annotations of previous apple genome assemblies6,33 was performed 

using the BUSCO v2 method, which is based on a benchmark of 1,440 

conserved plant genes34. The results indicate that our apple genome 

annotation is the most complete, despite having the lowest number 

of predicted genes (Table 1).

The de novo annotated genes were named using the following 

convention: MD (for Malus domestica) followed by the chromo-

some number and gene number on the chromosome (in steps of  

100) going from top to bottom according to the linkage map, for 

example, MD13G0052100.

Previously published small RNA (sRNA) data35 were also mapped 

to the genome. We found that most 21- and 22-nt-long sRNAs mapped 

to protein-coding genes, whereas most 24-nt-long sRNAs mapped to 

TEs. The distribution of 23-nt-long sRNAs was evenly included in 

both types of genomic features (Supplementary Fig. 6).

Ancestral genome duplication
Intragenomic synteny of GDDH13 was assessed using SynMap (CoGe; 

http://www.genomevolution.org) and visualized with Circos36. Results 

of this analysis (Fig. 2) showed an even clearer genome duplication 

pattern than has previously been reported6. Only very few regions 

showed no synteny to other parts of the genome (for example, the 

middle part of Chr04).

Transposable elements and annotation of repeat sequences
To produce a genome-wide annotation of repetitive sequences, TE 

consensus sequences (provided by the TEdenovo detection pipeline37) 

were used to annotate their copies in the whole genome. To refine this 

annotation, we performed two iterations of the TEannot pipeline. 

In the GDDH13 genome, TEs represented 372.2 Mb (57.3% of the 

649.7 Mb BioNano assembly; Supplementary Table 2). Excluding 

undefined bases (Ns), the TE content of the total nucleotide space in 

the final annotation was 59.5% of the assembly. The most abundant 

repeats in this genome are retrotransposons or class I elements (74.8% 

of TE content, 42.9% of genome assembly), and in particular long ter-

minal repeat retrotransposons (LTR-RTs), which represent 66% of this 

type of repeat, whereas non-LTR retrotransposons (LINE and SINE) 

accounted for 7% (Fig. 3a and Supplementary Table 2). DNA trans-

posons or class II elements (DNA transposons and Helitrons) make 

up 23% of the TE content (13.4% of the genome assembly; Fig. 3a 

and Supplementary Table 2). A complete list of identified TEs, their 

integrity and copy number can be found in Supplementary Table 3.

Table 1 Comparison of the GDDH13 genome with previously 

published assemblies of the apple genome

GDDH13 Li et al.33

Velasco  

et al.6

Sequenced genome size (Mb) 643.2* 632.4 603.9

N50 (kb) 5,558 112 16

Pearson correlation coefficient  

 with genetic map

0.897 NA 0.667

TE proportion (%) 57.3 (of BioNano 

assembly)

NA 42.4

Annotated protein-coding genes 42,140 53,922 63,141

Complete BUSCOs 94.9% 51.5% 86.7%

Fragmented BUSCOs 2.6% 18.8% 5.6%

Missing BUSCOs 2.5% 29.7% 7.7%

*See Supplementary Table 2. NA, not available.
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We ran the REPET38 pipeline on the PacBio contigs, which allowed 

us to identify an additional hyper-repetitive consensus sequence 

(Genbank entry KX869746). This consensus sequence was auto-

matically classified as a 9,716-bp LTR-RT with over 500 full-length 

copies, and it accounted for 3.6% of the genome assembly (22.3 Mb). 

We termed this TE consensus sequence HODOR (high-copy Golden 

Delicious repeat). At the chromosomal level, a higher density of 

HODOR copies coincided with particular regions of each chromo-

some that show reduced recombination levels, whereas the den-

sity level of other TEs remained constant or was decreased at these 

same regions (Fig. 3b and Supplementary Fig. 7). Even though the 

retrotransposon consensus sequence has clear 5′ and 3′ LTRs that 

are 1.8 kb in size, there are no homologies with typical TE-related 

sequences encoding a gag protein, a reverse transcriptase or an inte-

grase. However, we found partial sequence similarity to the Malus 

domestica Copia-100 element present in RepBase Update39, corre-

sponding to different domains such as gag pre-integrase, RNase H and 

integrase. These results suggest that HODOR is a non-autonomous 

LTR retrotransposon derivative or LARD (large retrotransposon 

derivative). We scanned the genome and were able to identify TEs 

that could contribute to the mobilization of HODOR (Supplementary 

Table 3 and Supplementary Note). Notably, we also found significant 

(BLASTX e-values ≤ 1 × 10−29) similarities with sequences encoding 

three short bacterial proteins of unknown function (Supplementary 

Fig. 8a), and mining of transcriptome data35 showed HODOR to be 

primarily transcribed in the sense and antisense orientations in apple 

seeds (Supplementary Fig. 8b).

To investigate the evolutionary history of TEs in the apple genome, 

we plotted the distribution of identity values between genomic copies 

and their consensus sequences (Fig. 3c). Distributions for all classes 

of repeats showed a peak at 77% identity. By considering the muta-

tion rate that has been reported for LTR-RTs in plants (1.3 × 10−8 base 

substitutions per site per year40,41), we estimated the age of those inser-

tions as described by the International Human Genome Sequencing 

Consortium42. We concluded that the peak at 77% identity corresponded 

to an insertion age of around 21 million years ago (Mya) (Fig. 3c).  

We also noted a second peak, particularly for LINE elements, at 98% 

identity that corresponded to a TE burst at ~1.6 Mya (Fig. 3c).

The apple methylome
To investigate the apple methylome, we produced genome-wide maps 

of DNA methylation content at single-base resolution for GDDH13 

leaves and young fruits43,44.

Globally, in leaves we found DNA methylation levels of 49%, 39% 

and 12% in the CG, CHG and CHH sequence contexts (where H is 

adenine, thymine or cytosine), respectively (Fig. 4a). DNA methyla-

tion was not evenly spread throughout the chromosomes (Fig. 4b 

shows the profile for Chr11; see Supplementary Fig. 9 for the profiles 

for all of the chromosomes), and peaks of methylation coincided with 

recombination cold spots.
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As expected45,46, there are reduced overall DNA methylation levels 

in gene sequences, whereas TEs are extensively methylated (Fig. 4c). 

For genes, we identified three major types of DNA methylation pat-

terns. Genes in cluster 1 were characterized by high levels of DNA 

methylation in the gene body in the CG and CHG contexts, which 

was concomitant with high DNA methylation in the surrounding 

regions. Genes in cluster 2 had low CG, and very low CHG and 

CHH, methylation in the gene itself, yet there were increased levels 

in the surrounding region. Finally, genes in cluster 3 featured low 

DNA methylation levels in both the gene body and in the surround-

ing regions (Supplementary Fig. 10). This last cluster contained 

the largest number of genes (27,179; 64.5% of all genes), showing 

that in apple, genes are generally depleted for DNA methylation.  

By mining previously produced large transcriptome data sets for 

apple35, we found that genes covered with very high levels of DNA 

methylation (cluster 1) showed the lowest expression levels (1.58 

median log2 value), whereas cluster 2 and cluster 3 genes had higher 

log2 values (3.3 and 2.8, respectively). This result confirmed that 

the amount of DNA methylation surrounding genes influences 

their expression level. As one example of TEs, we assessed the DNA 

methylation levels for HODOR and found that HODOR was almost 

completely methylated in the CG (90% methylated) and CHG (65% 

methylated) contexts but that it had much less methylation in the 

CHH context (3%) (Fig. 4c).

DNA methylation and fruit development
To assess how DNA methylation contributes to fruit development, 

we first compared DNA methylation levels between leaves and 

fruits. We called differentially methylated regions (DMRs) using a 

hidden Markov model (HMM)-based approach47. In total, we iden-

tified 1,017 high-confidence DMRs in all contexts between leaves 

and fruits, and we observed a very strong bias for DMRs contain-

ing methylation changes in the CHH context (875 DMRs; 86.0%)  

(Fig. 5a). We identified 294 genes that contained DMRs in their pro-

moter region—14 DMRs were in the CHG context and showed increased 

amounts of DNA methylation in leaves, whereas the remaining 280 

DMRs were found in the CHH context and showed increased amounts  

of DNA methylation in fruits. Thus, most methylation differ-

ences between leaves and fruits occurred at CHH sites, with a 

robust increase observed in the developing fruit. Among genes 

with DMRs that were 2 kb upstream of their transcription start site  

(TSS), we identified several apple orthologs of Arabidopsis genes with 

important roles in flower and fruit development and in epigenetic 

regulation (Fig. 5b).

Next we wanted to test whether DNA methylation could have a 

role in the regulation of fruit size. We took advantage of GDDH18, 

an isogenic line that was obtained from the same haploid that pro-

duced GDDH13 (Supplementary Note). Whole-genome sequenc-

ing showed the presence of 27 homozygous SNPs within genes  

between the two trees, with nine of these SNPs resulting in amino 

acid changes (Supplementary Table 4). Although the GDDH13 and 

GDDH18 trees were indistinguishable, the GDDH18 fruits were much 

smaller (Fig. 5c) because of a reduced number of cell layers in the 

parenchyma (Fig. 5d).

To elucidate whether the difference in fruit size could have an epi-

genetic basis, whole-genome bisulfite sequencing was performed on 
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samples that were collected at 3 d before pollination (or –3 d after 

pollination (DAP); when fruits have a similar size and number of 

cell layers) and at 9 DAP (a few days before observing significant 

phenotypic differences between the fruits). As expected from their 

common origin, only a limited number of high-confidence DMRs  

(n = 197) could be found between young fruits of GDDH13 and 

GDDH18 at –3 DAP. Of these, 47 DMRs were located within 2 kb 

upstream of the TSS of genes. Similarly, we identified a total of 148 

high-confidence DMRs between fruits of GDDH13 and GDDH18 at 

9 DAP. From this analysis, we found that 53 genes contained DMRs 

in their promoter region (i.e., within 2 kb upstream of the TSS). At 

both time points a majority of genes with DMRs showed a decrease in 

methylation in their promoter region for GDDH18 (Supplementary 

Table 5). Notably, in both comparisons, DMRs in the CG–CHG and 

CHG contexts were over-represented.

The overlap of DMRs between the two time points analyzed 

included 22 genes with DMRs in their promoter regions, with 

most of them (n = 17) showing lower methylation in GDDH18 

(Supplementary Table 5). Several of the 22 genes have orthologs 

in other species with a role that could explain the observed size 

difference between the GDDH13 and GDDH18 fruits—including 

SQUAMOSA PROMOTER-BINDING PROTEIN LIKE 13 (SPL13, 

MD16G0108400), 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE 

SYNTHASE 8 (ACS8, MD15G0127800) and CYTOCHROME 

P450 FAMILY 71 SUBFAMILY A POLYPEPTIDE 25 (CYP71A25, 

MD14G0147300), which belong to the minority of genes with 

increased methylation in GDDH18.

DISCUSSION
As a prerequisite to epigenomic studies in apple, we decided to produce 

a high-quality reference genome for apple. An advantage for us was 

the availability of the homozygous GDDH13 doubled-haploid line. 

Assembling a genome that is both highly heterozygous and recently 

duplicated into a haploid consensus sequence presents a substantial 

challenge. This is exemplified by the comparison of our first assembly 

steps to a recently published report on a heterozygous Golden Delicious 

apple genome sequence33. Following hybrid assembly of PacBio 

and Illumina reads, Li and colleagues33 reported a N50 of 112 kb,  

whereas we obtained a N50 of 620 kb at that same step. These results 

highlight the power of haploids or doubled haploids in genome 

sequencing projects48, particularly in those for apple, which is not only 

highly heterozygous but has also undergone a recent whole-genome 

duplication (ref. 6 and this study). The optical mapping then allowed 

us to produce scaffolds with a N50 of 5.5 Mb, which, in association 

with a high-density integrated linkage map, yielded highly contigu-

ous pseudomolecules. In this new apple genome, we followed a newer 

convention23 in which the orientation of Chr10 and Chr05 became 

aligned by the inversion of Chr05. We chose to invert Chr05 because it 

is the least frequently reported of the two in previous genetic studies on 

quantitative trait loci (QTL), gene discovery and characterization.

We estimated the genome size of GDDH13 to be 651 Mb 

(Supplementary Table 2), which suggested that the GDDH13 genome 

may be smaller than that of the heterozygous Golden Delicious line, 

which was recently estimated to be 701 Mb (ref. 33). Although the 

GDDH13 tree looks similar to the heterozygous Golden Delicious 

GeneID DMR context Arabidopsis annotation Putative function

MD01G0162300 CHH Sugar isomerase (SIS) domain-containing protein Carbohydrate metabolism

MD13G0052100 CHH AP1 (APETALA1); DNA binding / transcription factor Development

MD06G0169300 CHH AGL8 (AGAMOUS-LIKE 8), FUL (FRUITFUL) Development

MD02G0223400 CHH SUVH1 (SU(VAR)3-9 HOMOLOG 1) Epigenetic regulation

MD06G0019200 CHH CHROMOMETHYLASE 2 (CMT2) Epigenetic regulation

MD01G0157100 CHH SEP1, AGL2 (AGAMOUS LIKE-2); DNA binding / transcription factor Flower/ovule development

MD15G0009100 CHH CLV1 (CLAVATA 1); ATP binding / kinase/ protein serine/threonine kinase Fruit development

MD03G0074700 CHH ATEXPA4 (ARABIDOPSIS THALIANA EXPANSIN A4) Fruit development and ripening

MD14G0002100 CHH Short-chain dehydrogenase/reductase (SDR) family protein Fruit ripening

MD03G0017900 CHH EIL3 (ETHYLENE-INSENSITIVE3-LIKE3); transcription factor Fruit ripening

MD03G0223600 CHH ATGID1B/GID1B (GA INSENSITIVE DWARF1B) Fruit set, fruit growth
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Figure 5 Differentially methylated regions between apple tree leaves and young fruits. (a) DMR content in samples of GDDH13 leaves and young fruits 
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Most of the DMRs (86%) were identified in the CHH context. (b) Selection of GDDH13 genes that present a DMR within a region 2 kb upstream of the 

TSS. The apple gene ID, the methylation context of the DMR, the orthologous Arabidopsis gene annotation and the function of the encoded protein are 

listed. (c,d) Representative image comparing the fruit sizes of heterozygous Golden Delicious, GDDH13 and GDDH18 at harvest (c) and quantification 

of the number of cell layers in the parenchyma of GDDH13 (orange) and GDDH18 (green) fruits, as assessed by microscopy (n = 12 data points per 
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counterpart (including tree architecture, flowering time and fruit 

appearance; Supplementary Fig. 1), it is possible that through the 

consecutive steps of selfing, haploid development and chromosome 

doubling, some minor parts of the genome might have been lost or 

re-arranged. Thus, it is possible that some of the genome sequence 

might be missing in the GDDH13 assembly.

Our gene prediction analysis reduced the estimated number 

of annotated genes in apple from 63,541 (Genome Database for 

Rosaceae, see URLs and ref. 6) to 42,140, which is much closer to the 

42,812 genes that have been reported for pear49 and the 45,293 genes 

that were identified after filtering out overlapping genes from the 

original apple genome annotation49 (Supplementary Note).

TEs also have an important role in structuring genomes. The in-

depth TE annotation we performed showed a major TE burst in apple 

that we estimated to have happened around 21 Mya. This affected 

all types of TEs, suggesting that the precursor of the modern apple 

underwent environmental changes with resulting stresses that led to 

the activation of these TEs50. The observed TE burst corresponds to 

the Miocene epoch (23 Mya to 5 Mya) and may coincide with two 

events: the divergence between pear and apple48 and an uplift event 

occurring at the Tian Shan mountains51, which cover the region where 

the ancestor of the apple originates from52. We hypothesize that these 

TE bursts, which presumably must have been very different in the 

predecessor of pear and apple, have contributed to the diversification, 

and possibly even speciation, of these plants.

Although our analyses using previously reported approaches53 did 

not identify any characteristic short centromeric repeat sequence 

in the apple genome, we can hypothesize the putative localization 

of centromeres on the GDDH13 chromosomes. We found that the 

regions in which we observed a decrease in the recombination rate 

between successive markers of the integrated linkage map coincided 

with the regions that showed an increase in the estimated level of LD 

in the core apple collection, as well as an increase in DNA methyla-

tion levels. In addition, we identified HODOR, the most repetitive 

consensus sequence in the apple genome, as being over-represented in 

these same genomic regions. These findings suggest that centromeric 

regions in the GDDH13 genome may be located within the regions 

that show an over-representation of HODOR. Future studies will show 

whether HODOR has a role in the centromere structure in the apple 

genome. Blast searches have revealed that the HODOR sequence also 

exists in pear, and because of its origin from potential horizontal gene 

transfer events, it will be of great interest to investigate when HODOR 

first appeared during the Rosaceae evolution.

The genome-wide distribution of DNA methylation peaked in 

putative centromeric regions of high LD and high HODOR content. 

As has been observed in Arabidopsis43, TEs were enriched and genes 

strongly depleted for DNA methylation. The 10% of genes that pos-

sess high levels of DNA methylation (gene body and surrounding 

region; Supplementary Fig. 10), globally showed a very low level of 

transcription, and these genes may be expressed during very specific 

developmental stages or tissues. The comparison of the apple leaf and 

fruit methylomes revealed a noteworthy pattern—the fruit globally had 

higher CHH DNA methylation levels, which suggested increased activ-

ity of the RNA-directed DNA methylation machinery in this organ54. 

Consistent with this observation, it has been shown for Arabidopsis 

that cell-type-specific DNA methylation differences mainly occur at 

CHH sites55. Notably, DNA methylation differences in the CHH con-

text between leaf and fruit tissues occurred next to 294 genes. Several 

of these were found to be orthologous to genes that are known to be 

important regulators of flower and fruit development in other species. 

This suggests that apple fruit development is regulated by epigenetic 

processes, which is consistent with data obtained in tomato, demon-

strating that DNA methylation is important for fruit ripening56–58.

In addition, among the major agronomical traits that contribute to 

both yield and quality, fruit size is one of the most important for many 

domesticated crops. Two of the key determinants that are known to 

alter plant organ size are cell number and cell size59. Here we inves-

tigated fruit size difference between two isogenic doubled-haploid 

apple lines. We found that the number of cell layers in the parenchyma 

of GDDH13 fruits increased more rapidly than those in the paren-

chyma of the smaller GDDH18 fruits, with significant differences 

being observed as early as 21 DAP. To identify regulators that contrib-

uted to the difference in fruit size between the two doubled-haploid 

apple lines, we found three genes that potentially contributed to the 

cell number difference, and these contained DMRs in their promoter 

regions (Supplementary Note).

The identification of potential molecular mechanisms that con-

trol cell-division-related processes by DNA methylation provides new 

insights into the understanding of this important process. However, 

by comparing the GDDH13 and GDDH18 genomes, we identified 

nine SNPs that affect protein sequences, and thus we cannot currently 

exclude a genetic effect.

The high-quality reference apple genome sequence reported here 

offers unprecedented insights into the genome dynamics of a tree and 

provides an important basis for future studies, not only in apple but 

also in other Rosaceae species.

URLs. Structural and functional annotations are available through 

our genome browser: https://iris.angers.inra.fr/gddh13/. The Whole-

Genome Shotgun project can be found in GenBank under: https://

www.ncbi.nlm.nih.gov/nuccore/MJAX00000000.1 The REPET pack-

age v2.5 used to detect TEs used in this study can be found here: 

https://urgi.versailles.inra.fr/Tools/REPET SynMap- CoGe: http://

www.genomevolution.org Genome Database for Rosaceae: http://

www.rosaceae.org.

METHODS
Methods, including statements of data availability and any associated 

accession codes and references, are available in the online version of 

the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Genome assembly of GDDH13. Hybrid assembly. The genome assembly 

was performed using a combination of sequencing technologies: PacBio RS 

II reads, Illumina paired-end reads (PE) and Illumina mate-pair reads (MP). 

First, Illumina PE reads were separately assembled using SOAPdevo 2.223  

(ref. 25). Next, the PacBio reads and Illumina contigs were combined to per-

form a hybrid assembly using the DBG2OLC pipeline26.

Assembly polishing. A polishing of the assembly using the Illumina paired-

end reads was performed. The 120× Illumina reads were mapped to the contigs 

using BWA-MEM61. This alignment was then used with Pilon 1.17 (ref. 62) 

to correct the assembly.

Mate pair scaffolding. A total of 8.5 Gb of Illumina MP data (approximate 

sequencing depth = 15×), with an insert size varying between 2 kb and 10 kb, 

was used to scaffold the assembly. The MP reads were mapped on the corrected 

contigs using BWA-MEM. The alignments were processed with the BESST63 

software to scaffold the assembly.

BioNano scaffolding. A BioNano optical mapping analysis was performed, 

and data was collected and analyzed with IrisViewer (v2.5). The 397 BioNano 

maps, with a N50 of 2.649 Mb and a total length of 649.7 Mb, were used in the 

hybrid assembly step with the scaffolds obtained from the MP scaffolding to 

assemble the final scaffolds in IrisViewer.

Scaffold validation and anchoring to the genetic map. An integrated mul-

tiparental genetic linkage map of apple23 that was composed of 15,417 SNP 

markers was used to organize and orientate the scaffolds into chromosome-

sized sequences. The probe sequences of the 15,417 markers64 were mapped 

onto the genome using BWA-MEM. The physical and genetic positions of the 

mapped markers were used to place and orient the scaffolds and contigs rela-

tive to each other. Detailed methodological details describing the assembly 

processes can be found in the Supplementary Note.

Linkage disequilibrium (LD). The ‘Old Dessert’ INRA core collection, com-

prising 278 accessions27, was genotyped with the Axiom Apple-480K SNP 

genotyping array28. LD was estimated with the r2 statistics using the R pack-

age snpStats (R package version 1.16.0). Heat maps of pairwise LD between 

markers were plotted using the R package LDheatmap65.

RNA sequencing (RNA-seq) analysis. To maximize the number and diversity 

of genes that were identified by RNA-seq, mRNA was purified from vari-

ous organs at multiple developmental stages derived from seven cultivars and 

hybrids. A total of nine libraries were generated (see Supplementary Note 

for more details).

The cDNA sequencing libraries were constructed following the manufactur-

er’s instructions (Illumina, San Diego, CA, USA), and the Illumina GA process-

ing pipeline Cassava 1.7.0 was used for image analysis and base-calling.

DNA extraction from leaf and developing fruits, and bisulfite sequenc-

ing. Young leaves from GDDH13 and developing fruits from GDDH13 

and GDDH18 (two biological replicates from independently grafted trees)  

were collected 3 d before pollination (–3 DAP, with petals, sepals, anthers 

and styles removed) and 9 DAP. DNA was purified using the Macherey-Nagel 

NucleoSpin plant II DNA extraction kit (Germany), following the manufac-

turer’s instructions. Bisulfite treatment was applied to determine the cyto-

sine methylation status, using the Epitect bisulfite kit (Qiagen) and 100 ng 

of genomic DNA.

Whole-genome bisulfite sequencing was performed, and DMRs between 

leaves and young GDDH13 fruits, and between GDDH13 and GDDH18 fruits, 

at –3 DAP and 9 DAP were computed according to Hagmann et al.47. DNA 

methylation distribution plots and gene clustering analyses by methylation 

patterns were performed with deepTools66.

Small RNA alignment. Apple sRNA sequences derived from mature fruit 

parenchyma35 were aligned to the Golden Delicious doubled-haploid pseudo-

molecules using BWA-MEM. Only perfectly mapped sequences were consid-

ered further, and reads with identical sequences were allowed to be mapped 

to two or more loci.

Genome annotation. RNA-seq data derived from nine different libraries 

was de novo assembled using Trinity67 and SOAPdenovo-trans68. For each 

library, the assembly with the highest N50 value was chosen to annotate the 

genes. 2,033 mRNAs and 326,941 expressed sequence tags (ESTs) extracted 

from the NCBI nucleotide and EST databases, respectively, were also used for 

gene prediction.

The structural annotation of coding genes was performed using EuGene32 

by combining Gmap transcript mapping69, similarities detected with plant pro-

teomes and Swiss-Prot, and ab initio predictions (interpolated Marlov model and 

weight-array matrix for donor and acceptor splicing sites). Moreover, the EuGene 

prediction was completed by tRNAscan-SE70, RNAmmer71 and RfamScan72 to 

annotate non-protein-coding genes, including those encoding tRNA, rRNA, 

miRNA and snoRNA, and other regions with proof of transcription but without 

significant similarities and coding potential (named ncRNA).

Functional annotation of proteins was performed using InterProScan73. 

The functional annotation was then completed by the prediction of targeted 

signals using the TargetP software74.

Genome synteny. SynMap (CoGe, see URLs) was used to identify collinear-

ity blocks using homologous coding sequence pairs. Detailed methodological 

details on the annotation processes can be found in the Supplementary Note.

Comparison of annotation between the heterozygous Golden Delicious and 

GDDH13 genomes. Malus domestica predicted gene (MDP) sequences obtained 

from the heterozygous genome annotation6 were mapped to the GDDH13 

genome assembly using the best BLAT75 hit. Comparison of the two genome 

annotations was done using Bio++76.

Repeat annotation. The TEdenovo pipeline37,77 from the REPET package v2.5 

(see URLs) was used to detect TEs in genomic sequences and to provide a 

consensus sequence for each TE family. Consensus TE sequences were used 

to annotate the TE copies in the whole genome using the TEannot pipeline38 

from the REPET package v2.5. Consensus sequences that were classified as 

potential host genes because they contain host gene Pfam domains were kept 

from this study. The same process was used to identify the HODOR consensus 

sequence on the PacBio assembly with the REPET pipeline. TE insertion ages 

were calculated using the adapted T = K/r formula for nonduplicated LTR 

sequences, where K is the sequence divergence, and r is the substitution rate78. 

The observed sequence divergence was corrected with the Jukes and Cantor 

model79. Additional methodological details on the repeat annotation can be 

found in the Supplementary Note.

Data availability. This whole-genome shotgun project has been depos-

ited at GenBank under the accession code MJAX00000000.1. The raw 

Illumina mRNA sequences were submitted to the NCBI under BioProject 

ID PRJNA191060, and the GDDH18 genome reads were deposited under 

BioProject ID PRJNA379390. DNA methylation data can be accessed on the 

Gene Expression Omnibus website under accession codes GSE87014 and 

GSE93950. Structural and functional annotations are available through our 

genome browser (https://iris.angers.inra.fr/gddh13/).
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