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Summary

Genome-scale reconstructions of metabolism are com-

putational species-specific knowledge bases able to

compute systemic metabolic properties. We present a

comprehensive and validated reconstruction of the bio-

technologically relevant bacterium Pseudomonas putida

KT2440 that greatly expands computable predic-

tions of its metabolic states. The reconstruction rep-

resents a significant reactome expansion over

available reconstructed bacterial metabolic net-

works. Specifically, iJN1462 (i) incorporates several

hundred additional genes and associated reactions

resulting in new predictive capabilities, including

new nutrients supporting growth; (ii) was validated

by in vivo growth screens that included previously

untested carbon (48) and nitrogen (41) sources;

(iii) yielded gene essentiality predictions showing

large accuracy when compared with a knock-out

library and Bar-seq data; and (iv) allowed mapping

of its network to 82 P. putida sequenced strains

revealing functional core that reflect the large

metabolic versatility of this species, including aro-

matic compounds derived from lignin. Thus, this

study provides a thoroughly updated metabolic

reconstruction and new computable phenotypes for

P. putida, which can be leveraged as a first step

toward understanding the pan metabolic capabilities

of Pseudomonas.

Introduction

The group Pseudomonas comprises a heterogeneous

and large group (>100) of Gram-negative, gamma-

proteobacterial species (Palleroni, 2010). They show a

noteworthy metabolic versatility and adaptability, enabling

colonization of diverse niches (Silby et al., 2011). Pseu-

domonas are of great interest because of their impor-

tance in human and plant diseases, e.g., P. aeruginosa

(Gellatly and Hancock, 2013) and P. syringe (Morris

et al., 2013), and due to their potential for promoting plant

growth and biotechnological applications, e.g., P. flu-

orescens (Loper et al., 2012) and P. putida (Wu et al.,

2011; Roca et al., 2013). Among this group, P. putida

has been widely used as a model environmental bacte-

rium free of undesirable biotechnological traits such as

virulence factors (Udaondo et al., 2015). Pseudomonas

putida strains can degrade a large array of chemicals,

including xenobiotic compounds, while exhibiting a

remarkable resistance to organic solvents and other envi-

ronmental stresses, making P. putida strains highly val-

ued biocatalysts (Nikel et al., 2014; Loeschcke and

Thies, 2015; Franden et al., 2018; Kohlstedt et al., 2018).

In addition, P. putida strains are amenable to genetic

modification and are therefore seen by many as ideal

workhorses for synthetic biology-based cell factories

(Nikel and de Lorenzo, 2018).

This high level of interest in P. putida has led to intense

genome-scale metabolic modelling efforts of strain

KT2440; the best-characterized strain and the first to be

completely sequenced (Nelson et al., 2002). Four genome

scale models (GEMs) for KT2440 have been previously

published, formally known as iJN746 (Nogales et al.,

2008), iJP850 (Puchalka et al., 2008), PpuMBEL1071
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(Sohn et al., 2010) and iJP962 (Oberhardt et al., 2011).

Recently, two new consensus models, formally iEB1050

(Belda et al., 2016) and PpuQY1140 (Yuan et al., 2017),

have been published based on the genome reannotation

of this strain and the integration of reactomes already pre-

sent in previous P. putida GEMs respectively. Unfortu-

nately, due to the nature of this approach, which only

allows the inclusion of new metabolic capabilities based

on computational evidence with scarce experimental vali-

dation, and/or from previous reconstructions, the available

GEMs of P. putida still lack coverage of the known metab-

olism captured in decades of P. putida literature. Thus,

these previous P. putida models fall into what we consider

to be models of primary metabolism. Thus, as often occurs

with current GEMs, their utility falls short of true and full

genome-scale studies (Monk et al., 2014).

We demonstrate here that all metabolic knowledge

available for a single species, even a genus, can be man-

ually collected and used for high-quality metabolic model-

ling of a particular strain capable of addressing deep

system-wide inquiries. We deliver a complete and manu-

ally curated metabolic reconstruction of P. putida

KT2440, named iJN1462. This detailed reconstruction

not only largely captures the metabolic features of this

strain, but it represents a computational scaffold for future

semi-automatic reconstruction of the Pseudomonas

group. To demonstrate this potential, we built 82 strain-

specific model drafts of metabolism for P. putida using

iJN1462 as a scaffold in order to analyse the shared met-

abolic capabilities of various P. putida strains. Overall,

the strains all possess broad metabolic capabilities indic-

ative of growth potential in a variety of environments and

have several strain-specific differences that could be

areas of investigation to identify strains of interest for

industrial applications.

Results

Reconstruction content and enhancements

iJN1462 represents a significant expansion over previous

reconstructions of P. putida KT2440 and is comparable

to other high-quality E. coli models. (Table 1, SI1 Fig. S2).

iJN1462 contains 1462 gene products (38% of the func-

tionally annotated protein products in the KT2440

genome), 2929 reactions and 2155 non-unique metabo-

lites. The reconstruction includes 410 unique citations

associated to reconstruction content and 2048 of the

reactions have at least one citation supporting its inclu-

sion (Table S1).

The major enhancements of iJN1462 over previous P.

putida reconstructions are found in its strain-specific

metabolism (Fig. 1A). Some of these subsystems demon-

strate well-known metabolic features of P. putida, such

as diverse growth sources for both carbon and nitrogen,

or tolerance to heavy metals and some industrially rele-

vant solvents. Additional subsystems, such as cell enve-

lope biosynthesis or fatty acid metabolic pathways, were

improved based on recent literature and experimental

efforts (Table S1). Altogether, these expansions help bet-

ter understand the capabilities of P. putida and define an

accurate biomass reaction for in silico experiments.

Pseudomonas putida is interesting due to its ability to

grow in a variety of environments. New catabolic path-

ways were included in iJN1462, with several also being

experimentally validated. These captured the metabolic

versatility of P. putida (Jiménez et al., 2010) as new sub-

systems, such as aromatic compound metabolism, and

several alternate carbon and nitrogen source subsystems

were included. For instance, the complete modelling of

the sarcosine, 2,5-dioxopentanoate, polyamines and

isovaleryl-CoA metabolism has been included based on

legacy data and completely validated by growth and gene

knockout analysis (SI1, Fig. S3-6). We also performed a

detailed reconstruction of alginate biosynthesis, a Pseu-

domonas polysaccharide with high biotechnological and

clinical interest. Furthermore, Pseudomonas has a robust

iron uptake metabolism that plays a major role in niche

colonization and pathogenesis (Cornelis, 2010; Wiens

et al., 2014). Accordingly, the iron metabolism has been

modelled, including the biosynthetic pathway for

pyoverdine (a non-ribosomal peptide acting as side-

rophore) of P. putida KT2440 based on structural studies

(Matthijs et al., 2009).

Pseudomonas putida catabolizes a large variety of

fatty acids (de Waard et al., 1993). Subsequently, the

metabolism of fatty acids has been extensively

expanded. In addition to saturated fatty acids, the catabo-

lism of triacylglycerides, mono and poly-unsaturated fatty

acids, phenylacyl and thioacyl fatty acids has been

reconstructed. The metabolism of unsaturated fatty acids,

present in other bacterial models such as iML1515 (Monk

et al., 2017), has also been revisited and extended by

the inclusion of a NADPH-dependent 2,4-dienoyl-CoA

reductase, which is required for the β-oxidation of polyun-

saturated fatty acids and substrate-specific cis-3-trans-

2-enoyl-CoA isomerase reactions (de Waard et al.,

1993). As a direct consequence, the potential substrates

for polyhydroxyalkanoate (PHA) synthesis via β-oxidation

have experienced a significant increase and 24 different

PHA monomers can be synthetized by iJN1462 (Fig. S7).

Even though the production of PHA is one of the most

prominent biotechnological capabilities of P. putida, the

PHA metabolism is absent in most of the previous GEMs

except for iJN746 and PpuMBEL1071 (Table 1).

Other areas of significant expansion involved cell enve-

lope biosynthesis and cofactor and prosthetic group bio-

synthesis (Fig. 1A). Within cell envelope biosynthesis,

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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specific peptidoglycans from P. putida and the complete

lipopolysaccharide biosynthesis pathway have been

modelled in great detail based on available data

(Quintela et al., 1995; Rodríguez-Herva et al., 1999).

Modelling of the cellulose, rhamnose and trehalose

metabolism have also been included. Biosynthesis of

most cofactors and prosthetic groups known to be pre-

sent in Pseudomonas was revisited in iJN1462. Some of

them, such as biosynthesis of pyrroloquinoline quinone

(PQQ), are modelled here for the first time. These

updates allowed for the assignment of the correct elec-

tron carrier to quinoproteins of Pseudomonas and a very

accurate and strain-specific biomass reaction.

A detailed P. putida-specific biomass objective function

(BOF) based on existing experimental data was con-

structed to enable in silico experiments. The BOF

includes macromolecular composition (van Duuren et al.,

2013), glycerophospholipid content (Rühl et al., 2012),

murein composition (Quintela et al., 1995), lipopolysac-

charide (King et al., 2009) and species-specific soluble

metabolites such as pyoverdine (Matthijs et al., 2009)

and PQQ. A new value for non-growth associated growth

maintenance was also included based on recent findings

(Ebert et al., 2011). This highly strain-specific BOF con-

trasts with those present in previous reconstructions

which lack P. putida’s specific lipids, lipopolysaccharides,

Fig. 1. Comparison of iJN1462 to pre-
vious metabolic reconstructions.

A. Comparison of the number of reac-

tions in a subsystem for three P.

putida metabolic reconstructions.
Subsystems belonging to primary

and strain-specific metabolisms are

shaded in green and orange respec-

tively. B. A multi-correspondence
analysis (MCA) scatter plot showing

the multiple correspondence analysis

of the metabolic content, in terms of

reactions and metabolites, of avail-
able metabolic reconstructions (see

Monk et al., 2014). The amount of

explained variance represented by

each component is shown in paren-
theses. Reconstructions that are

close to each other in the diagram are

likely to have similar metabolic con-

tent. Most of the reconstructions
analysed cluster around the origin.

Reconstructions for Yeast (iND750

and iMM904) are significantly different,

including specific metabolic content.
Reconstructions of Enterobacterial

strains form a clearly differentiated

group. Finally, iJN1462 is located

far away from the origin, showing
very different reactome.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology
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peptidoglycans and most cofactors and vitamins

(Fig. S8). In addition, we formulated a core biomass reac-

tion including metabolites that are completely essential

for growth according to experimental reports (Feist et al.,

2007). The core BOF indeed describes a viable cellular

composition under rich nutritional conditions. In fact,

many of the metabolites missing from the CORE biomass

have been related to metabolic robustness but not essen-

tiality in P. putida. Among others, specific lipids such as

cardiolipin (involved in organic solvent resistant),

pyoverdine (responsible for providing iron under limita-

tion), PQQ (cofactor essential for the catabolism of cer-

tain alcohols), several vitamins and cofactors (involved in

specific carbon source catabolisms), and so forth. There-

fore, a strain having the cellular composition described

by the core biomass, although extremely fragile from a

metabolic robustness point of view, it should be likely a

viable cell. Finally, the availability of both biomass func-

tions in P. putida models represents an interesting

update and the possibility to provide more accurate pre-

dictions when compared with models having only one.

This is because while the core biomass function makes

sense for analyses such as the assignment of gene

essentiality under rich conditions or for strain designing

endeavours, the full biomass catches better carbon flux

distributions. Details of the new biomass reactions and

their formulation are depicted in SI 1 and Table S3.

The metabolic expansion of the reactome represented

by iJN1462 became evident when its content was com-

pared with 22 pre-existing GEMs by means of multiple

correspondence analyses (Tenenhaus and Young,

1985). While the previous P. putida reconstruction

iJN746 is located close to the centre of coordinates

together with most of the current GEMs, iJN1462 is

placed far away from the origin, thus suggesting its

higher and more organism-specific metabolic content

(Fig. 1B). Highlights this fact, iJN1462 includes 1501 new

reactions not found in any of the other models examined

(Fig. 1B, Table S6). The largest portion of these reactions

come from expanding P. putida’s metabolic capabilities

toward new substrates, with 255 new carbohydrate

metabolism reactions and 367 new transport reactions.

Lipid metabolism with 231 new reactions is the only other

subsystem responsible for a large number of new reac-

tions. Most other subsystems had between 25 and

100 new reactions unique to iJN1462. These new reac-

tions demonstrate the uniqueness of iJN1462 and just

how much previously non-modelled information is

contained.

Reconstruction validation

A large GEM with many genes and reactions does not

always equate to a high-quality GEM. In order to validate

iJN1462 as a predictive model of P. putida, in silico test

results were compared to several in vivo experiments.

Comparisons included phenotypes on different nutrient

sources, growth rates and measured carbon flux, as well

as gene essentiality as determined by knockout strains

and Bar-Seq experiments. Additionally, new standards

are being developed to help ensure newly developed

GEMs are standardized and of high quality. The Memote

tool was used to evaluate the model as compared to

other models (Lieven et al., 2018).

To assess the ability of iJN1462 to predict phenotypes,

we first evaluated all the potential carbon, nitrogen, sul-

phur, phosphorus and iron sources supporting in silico

growth (Table S2). iJN1462 was able to use a signifi-

cantly higher number of nutrients compared to previous

reconstructions (Fig. 2). iJN1462 can grow on 142 and

71 new carbon and nitrogen sources respectively, many

of which have never been experimentally reported as

nutrients in P. putida (Table S2). We experimentally vali-

dated the accuracy of the growth predictions by per-

forming growth screens (see Methods) with special

emphasis on those nutrients that have not been tested

thus far in P. putida (SI1 Table S2). The overall accuracy

of growth predictions was high, predicting 79% and 84%

(p-values of Fisher’s exact test were less than 10−12, and

overall Matthews correlation coefficient of 0.608) of the

growth phenotypes observed for carbon and nitrogen

sources respectively (Fig. 2, Table S2). Therefore,

iJN1462 largely captures the metabolic versatility of

Pseudomonas.

Comparisons of growth rate predictions and PHA pro-

duction rates (Table 2) with experimental values provided

further validation of the model. The prediction accuracy

of iJN1462 significantly exceeds that of previous P.

putida GEMs. However, iJN1462 grew faster than

KT2440, suggesting an incomplete adaptation of KT2440

to these sugars as carbon sources and/or certain over-

flow of metabolism. When the observed secretion rates

for gluconate and 2-ketogluconate were included in the

model as additional constraints, iJN1462 fits the experi-

mental growth rate on glucose. iJN1462 also had a high

level of accuracy concerning growth rate and production

rate of PHA when grown on octanoate with limited nitro-

gen and oxygen (Table 2). These experiments demon-

strate good capabilities to predict at least growth

phenotypes and rates.

Since accurate predictions of growth rates alone can-

not guarantee the quality of GEMs, we compared flux

predictions on glucose to experimentally reported values

(Blank et al., 2008). We found a good correlation

between predicted and experimental values, with

Kendall’s τ = 0.80, significantly higher than for the

iEB1050 and PpuQY1140 models, τ = 0.53 and τ = 0.68

respectively (Fig. 3, Fig. S12). A well-known trait of

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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Pseudomonas is the activation of the pyruvate shunt as

a main source of oxaloacetate bypassing to the malate

dehydrogenase (MDH) (del Castillo et al., 2007; Blank

et al., 2008). Despite this alternative pathway being less

efficient from an energetic point of view, this feature of

Pseudomonas guarantees a high level of NADPH, which

is critical in providing metabolic robustness, including tol-

erance to oxidative stress (Blank et al., 2008; Chavarría

et al., 2012; Berger et al., 2014). iJN1462 fails to predict

the activation of the pyruvate shunt as an alternative

source of oxaloacetate since flux balance analysis

excludes suboptimal flux distributions (Orth et al., 2010).

We therefore performed a sensitivity analysis of flux

predictions as a function of the flux through pyruvate car-

boxylase (PC). In good agreement with experimental

results, increasing PC flux leads to a large flux decrease

through MDH, a significant increase in the flux through

Malic Enzyme (ME2), and a slight increase through the

TCA cycle, pyruvate dehydrogenase and pyruvate

kinase. When the experimental flux through PC was used

as an additional constraint, the accuracy in the flux distri-

bution prediction increased significantly (τ = 0.92)

(Fig. 3). In summary, the flux predictions demonstrate the

high accuracy of iJN1462, as well as the likely role of

the mechanisms fuelling metabolic robustness such as

the pyruvate shunt, as one of the main mechanisms

Fig. 2. Identification and validation of nutrients supporting iJN1462 growth. A. The number of nutrients supporting growth in previous GEMs of P.

putida, iJN1462, and the latest GEM of E. coli iML1515. B and C. A qualitative comparison of the growth-supporting carbon and nitrogen sources

respectively, as calculated using the iJN1462, iJN746, iEB1050 and PpuQY1140 reconstructions.

Table 2. Comparison of growth performance of iJN1462 with previous GEMs of P. putida.

Carbon source

(mmol gDW−1 h−1)

Uptake rate

Secretion rate

(Gluconate)

Secretion rate

(2-Ketogluconate)

Growth rate/PHA production rate

(PHAC6 + PHAC8) (h−1)/(mmol gDW−1 h−1) References

iJN746 iEB1050 PpuQY1140 iJN1462 In vivo

Gluconate 5.1 NA NA 0.58/NA 0.67/NA 0.37/NA 0.47/NA 0.43/NA del Castillo et al. (2007)

Glucose 6.3 NA NA 0.76/NA 0.91/NA 0.50/NA 0.61/NA 0.56/NA del Castillo et al. (2007)

Glucose 7.3 NA NA 0.86/NA 1.05/NA 0.59/NA 0.71/NA 0.73/NA Ebert et al. (2011)
Glucose 10.9 2.8 2.6 0.70/NA 0.81/NA 0.49/NA 0.57/NA 0.57/NA Blank et al. (2008)

Octanoate 3.4 NA NA 0.31/1.9 NA/NA NA/NA 0.2912/1.11 0.29/1.5 Escapa et al. (2012)

Constraints used are underlined. NA, not applicable. iEB1050 and PputQY1140 models lack of Octanoate and PHA metabolisms. For growth on

octanoate as carbon source, nitrogen and oxygen uptake were constrained to 3.1 and 13.5 mmol gDW−1 h−1 respectively.

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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disturbing the linearity of genotype–phenotype relation-

ships. iJN1462 can thus predict growth capabilities,

growth rates and flux distributions for KT2440 with high

accuracy, at a comparable level to the well-developed E.

coli model.

Gene essentiality data contextualization within iJN1462

The validation of GEMs through prediction of gene

essentiality is a powerful way to assess and improve the

accuracy of prediction while providing a suitable platform

for the contextualization of knockout mutant studies at

the genome-scale (Förster et al., 2003; Covert et al.,

2004; Oh et al., 2007). We performed a gene essentiality

analysis in rich medium and then mapped the predicted

essential genes with the knockouts available in the Pseu-

domonas Reference Culture Collection (PRCC) (del Cas-

tillo et al., 2007). This approach defined an accurate in

silico LB (iLB) medium and a core BOF (See SI1,

Table S3). A total of 114 essential genes were predicted

under these conditions (Fig. 4, Table S4). Only eight

gene knockouts (7%) predicted as essential were found

to be not essential in PRCC, thus being false-negative

predictions. The accuracy of iJN1462 was further

evaluated using glucose minimal media against an exis-

ting experimental data set (Molina-Henares et al., 2010).

Seventy-eight conditionally essential genes in glucose

minimal media were predicted after excluding those also

essential in iLB. Forty-seven of the 78 predicted glucose

conditionally essential genes as well as seven predicted

glucose conditionally non-essential that were available

from the PRCC were experimentally validated to assess

the gene-essentiality accuracy compared with previous

models (Fig. 4B and C; Table S4). We found that

iJN1462 was significantly more accurate than iJN746,

iEB1050 and PpuQY1140 with 85% accuracy compared

to 57%, 65% and 63% (two-sided p-values of Fisher’s

exact test was <10−3) respectively. The strain-specific

BOF of iJN1462 allowed the correct prediction of several

genes involved in cofactor biosynthesis as essential in

contrast to previous reconstructions. Interestingly, similar

analysis performed with a GEM of P. aeruginosa mat-

ched in vivo essentiality for only 41% of in vivo essential

genes while providing an overall accuracy of 83.9%

(Oberhardt et al., 2011). Overall, the accuracy of iJN1462

is in the range of other high-quality models such as E.

coli, 93.4%, (Monk et al., 2017) and Bacillus subtilis,

93.4% (Tanaka et al., 2013).

Fig. 3. Validation of flux predictions
and overall prediction accuracy.

A. Robustness analysis of flux predic-

tions in iJN1462 obtained by varying the

flux through Pyruvate Carboxykinase
(PC). The vertical line indicates reported

flux for PC (3.1 mmol hr−1/gCDW). B

and C. Comparisons between experi-

mentally reported flux values (x-axis) in
the central metabolism of P. putida

growing on glucose and predicted flux

values obtained with iJN1462 (y-axis).

Reaction fluxes are normalized to the
glucose uptake rate. Fluxes across the

Pyruvate Carboxylase (PC), Malic

enzyme (ME2), Pyruvate kinase (PYK)

and Malate Dehydrogenase (MDH) are
indicated. In (B) no constraints are

placed on internal fluxes, while in C

Pyruvate Carboxylase flux was con-

strained to be 3.1 mmol h−1/gCDW after
having performed sensitivity analysis.
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Further model validation was performed using data

from BarSeq experiments with P. putida using three dif-

ferent carbon sources: glucose, acetate and p-coumaric

acid in minimal media (Rand et al., 2017; Price et al.,

2019; Thompson et al., 2019). Sensitivity analysis was

performed to identify a proper cut-off of gene fitness that

corresponds with gene essentiality in the model (SI 1).

The sensitivity analysis identified a range of possible cut-

offs that had similar Matthews correlation coefficients.

Using cut-offs ranging from −2.15 to −3.56 resulted in

Matthews correlation coefficients that were at least 95%

of the maximum value obtained using the selected cut-off

of −2.7. A cut-off of −2.7 was also validated by compar-

ing the conditionally essential genes determined by the

BarSeq experiments and from the PRCC knockout col-

lection. Thirty-seven of the 44 possible genes were found

to be conditionally essential in both data sets. Comparing

computational results to the BarSeq data, the accuracy

was 91% for all three carbon sources, with a Matthews

correlation coefficient of 0.434, 0.438 and 0.409 for glu-

cose, acetate and p-coumaric acid respectively. The

overall accuracy was 91% with a correlation coefficient of

0.426 (Table 3, Table S7). Similar comparisons using

models of Rhodobacter spaeroides (Burger et al., 2017)

and Synechococcus elongatus (Broddrick et al., 2016)

only had 63% and 74% accuracy respectively. These

experiments demonstrate that iJN1462 accurately

predicted the genotype–phenotype relationships regard-

ing gene essentiality in a variety of conditions.

Model evaluation using Memote

The completed iJN1462 model was also evaluated using

the Memote tool (https://memote.io/) (Lieven et al., 2018)

in order to define its completeness as a model and ana-

lyse potential flaws or shortcomings. The model’s overall

score was 91%, which suggests a very good model com-

pleteness (SI2). The main reason for the model not scor-

ing higher was a lack of annotation to outside references

for all genes, metabolites and reactions in the GEM. This

indicates that the model might be somewhat difficult to

use with certain automated tools or scripts, but its accu-

racy or usability should not be affected. The model

Fig. 4. Gene essentiality analysis and validation. A. Genes predicted to be essential in the iLB medium (i.e., rich medium) were compared with

the gene content of iJN1462 and single-gene knockouts present in the PRCC screened in rich medium. Eight (7% of total predictions) false posi-
tives were predicted by iJN1462. B. The capabilities of iJN1462, iJN746, iEB1050 and PpuQY1140 for predicting essential genes in glucose mini-

mal medium were compared to the experimental results from the PRCC Collection. C. Tabulated results for iJN1462 are given to demonstrate its

accuracy. Gene essentiality prediction was correct for 85.2% of tested genes. Blue and green denote genes that were correctly predicted as

essential and non-essential respectively. Red and tan denote incorrectly predicted genes. Genes not included in a GENRE are shown in black.
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scored 97% for the important category of consistency,

which represents accuracy in stoichiometry, mass bal-

ances, charge balances, connectivity of metabolites and

reaction cycles. The Memote analysis demonstrated that

iJN1462 is a highly complete and detailed model and can

be used as a reference for other GEM constructions.

Functional assignment of metabolic capabilities of P.

putida based on multi-strain modelling

Strain-specific GEMs have been produced that take

advantage of a highly curated reference strain to identify

unique metabolic capabilities that can be used to study

evolutionary histories and nutrient niches (Orth et al.,

2011; Monk et al., 2013; Bosi et al., 2016; Seif et al.,

2018). To show the potential of iJN1462 as a template for

modelling the Pseudomonas group, we performed a

reconstruction of 82 P. putida strains with publicly avail-

able, high depth genomes (See Methods, Table S5). This

approach, although exclude the inclusion of the strain-

specific metabolic content, resulted in highly complete

metabolic models. Analysis of these models paved the

way for research into the metabolic abilities and diversity

of different strains of P. putida. Furthermore, by keeping

only those genes present in all P. putida strains, a core-

genome metabolic model of P. putida (PP_CORE) was

obtained. PP_CORE possesses only the common meta-

bolic capabilities of all the sequenced strains of this spe-

cies and allows for comparison of where genes, reactions

and subsystems are conserved across strains.

Through the multi-strain reconstruction, we demon-

strated that P. putida strains have diverse metabolic

capabilities, yet they also maintain broad growth potential

across the whole species. We evaluated the metabolic

capabilities of each model by analysing the array of car-

bon sources supporting growth. We found that the strain-

specific models shared the high metabolic versatility of

iJN1462. Eight percent of the carbon sources available in

the models had identical growth phenotypes, with

165 carbon sources able to support growth for all strains.

Similar multi-strain reconstructions of 47 E. coli strains

and 64 S. aureus strains had only 61% and 24% agree-

ment in growth phenotypes across different carbon

sources in aerobic conditions. Meanwhile, 61 of the

226 carbon sources in P. putida featured variation

between models as shown in Fig. 5.

Analysis of the differences in metabolic capabilities

between strains could help identify possible differences

between the environmental niches that the individual

strains fulfil. Figure 5C illustrates some of the differ-

ences in a subset of the carbon substrates on which P.

putida can grow. Lignin-derived monomers and other

phenols show some of the largest diversities in catabolic

capabilities between strains. Gallate is one of the least

conserved substrates for growth (22% of strains with

predicted growth), while ferulate (35%) and coumarate

(35%) are equally not highly conserved. Gallate is nor-

mally derived from the syringyl component of lignin,

while ferulate and coumarate are derived from the

guaiacyl and p-hydroxyphenol components. The

makeup of lignin can vary significantly between plant

species resulting in different abundances of these

monomers when the lignin is broken down (Campbell

and Sederoff, 1996). There are many strains capable of

displaying growth using one group of compounds but

not another, possibly indicating that they may have

developed near varieties of plants that had different

ratios of lignin monomers.

The PP_CORE model helped identify conserved sub-

systems that define the P. putida species. The core

model identified 1073 genes found in at least 95% of the

reconstructed strains, as seen in Fig. 5A. Most of the

reactions catalysed by genes found in the core genome

are involved in central cell growth and metabolism. The

most conserved systems are Cofactor and Prosthetic

Group Metabolism (88.9%), Lipid Metabolism (88.5%),

Energy Production and Conversion (82.8%) and Nucleo-

tide Metabolism (82.7%) as seen in Fig. 5B. In contrast,

the Inner Membrane Transport, Outer Membrane Trans-

port and Alternate Growth Substrate Systems were some

of the least conserved systems at 63.6%, 77.9% and

74.8% respectively. This demonstrates that the species

is likely to grow on a wide variety of substrates. Other

strains of P. putida have demonstrated an ability to utilize

substrates as diverse as 2,4,6-trinitrotoluene and chlori-

nated aliphatic acids (Slater et al., 1979; Park et al.,

2003). Overall, this analysis shows that metabolic versa-

tility and broad growth capabilities are general features of

the P. putida species, irrespective of the strain.

Table 3. Results from comparing BarSeq in vivo fitness data with in silico simulated growth data utilizing different carbon substrates for growth.

Carbon source True positive True negative False positive False negative Accuracy Matthews correlation coefficient

Glucose 1011 37 13 87 91.3 0.434
Acetate 1011 37 12 88 91.3 0.438

Coumarate 1000 40 22 86 90.6 0.409

Overall 3022 114 47 261 91.1 0.426
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Discussion

A detailed metabolic model is a powerful tool for ana-

lysing the systems metabolic properties of its target

organism (Nam et al., 2012; Nogales et al., 2012;

Chang et al., 2013). The level of completeness and

accuracy of iJN1462 makes it one of the largest and

highest-quality genome-scale metabolic reconstructions

built to date. The thorough reconstruction process

allowed for detailed modelling of P. putida catabolism

and anabolism beyond what was captured by previous

models (Fig. 2). The high level of detail and accuracy in

iJN1462 also enabled it to be used as a template for

other model reconstructions of different P. putida

strains, in order to explore the diversity of the species.

This was a major contribution to the exploration of the

broad metabolic capabilities and potential usefulness of

P. putida strains. iJN1462 expands the metabolic

reactome available for computation, including many of

the unique metabolic pathways of Pseudomonas, a bac-

terial group with significant biotechnological and clinical

interest (Silby et al., 2011; Nikel et al., 2014).

The accuracy of the iJN1462 model’s predictions has

been validated under experimental conditions and it fea-

tures demonstrable improvements over previous models

(Table 2). C13 flux analysis showed a very high correla-

tion to in silico flux prediction. Adjustment of flux through

the PC reaction resulted in markedly improved correlation

(Fig. 3). This could be indicative of a metabolic cycle in

P. putida that results in an improved ability to respond to

changes in the environment. In laboratory and in silico

steady-state settings, the flux results in suboptimal

growth, but in P. putida’s native environments it could

result in faster responses to environmental change.

Fig. 5. Multi-strain comparison of P. putida species. A and B. The number of reactions predicted to be in the core-genome vs. the pan-genome

of P. putida by grouped subsystems. Panel B provides a breakdown of subsystems involved in growth on alternative substrates. The poly-
hydroxyalkanoate metabolism subsystem is excluded from B and had 152 of 152 reactions in the core model. C. Dark blue shows genes in at

least 95% of the strain models and considered to be part of the core genome. The lighter blue shows the accessory genes, which are responsible

for the diversity between different strains. D. A clustered heatmap of growth capabilities of P. putida strains on select carbon sources. Clustered

differences could be due to variances in environmental niches.
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Comparison with the PRCC and BarSeq knockout data

also showed very high correlations for conditionally

essential genes, although some areas for improvement

were identified. The current level of accuracy suggests

that the gene–protein relationships included are mostly

accurate and well supported. BarSeq data could also be

used for future improvements of the model by providing

genome-wide gene essentiality data for a wider variety of

growth conditions. A single experiment can demonstrate

the changes in fitness that every individual gene is

responsible for in a given set of growth conditions. In the

future, this could be used to identify missing or mis-

characterized genes for this organism.

Aside from experimental validation, iJN1462 was also

validated as a model using Memote. The Memote analy-

sis demonstrated that it is a well-characterized and well-

defined model. Although it did not receive a perfect

score, it scored highly in the important category of stoi-

chiometric consistency and was demonstrated to have

very few flaws. The Memote analysis proved to be an

effective way to quickly analyse the model and determine

improvements that would make it more accurate and use-

ful to other researchers. While there is still room for

improvement of the P. putida model, particularly in linking

model contents to external resources, we demonstrate

here that iJN1462 serves as a highly accurate represen-

tation of our current understanding of P. putida KT2440

metabolism.

We demonstrated that iJN1462 is a useful tool for

reconstructing other P. putida strains. Eighty-two GEMs

of P. putida strains were successfully created, using

iJN1462 as a template. The reconstruction and analysis

of the diversity of P. putida is comparable to what was

previously done for the better characterized E. coli (Monk

et al., 2013). The functional comparison between the P.

putida strains highlighted that metabolic versatility and

robustness are metabolic traits inherent to the whole P.

putida species. Even as draft reconstructions, which still

require careful manual curation and the addition of strain-

specific metabolic content, all the models demonstrated

growth capabilities in a wide variety of conditions includ-

ing lignin derivate metabolites. Despite lignin degradation

not having been traditionally studied in microorganisms

other than fungi, recent reports have highlighted the role

of bacteria being able to break down lignin (Bugg et al.,

2011; Huang et al., 2013). Interestingly, several P. putida

strains, including KT2440, have been found displaying

certain lignin degradation capabilities. Upon the increas-

ing metabolic knowledge and synthetic biology tools

available for this bacterial group (Franden et al., 2018;

Kohlstedt et al., 2018; Nikel and de Lorenzo, 2018) these

recent findings are driving important efforts toward the

use of lignin and recalcitrant lignin-derived metabolites as

promising feedstock toward the sustainable production of

important fine chemicals and industrial building blocks

using P. putida (Linger et al., 2014; Johnson et al., 2017;

Kohlstedt et al., 2018). This complex metabolism of aro-

matic compounds can now be optimized and redesigned

with the aim of producing fine chemicals using the large

computational arsenal provided by COBRA approaches

within the context of well-curated and strain-specific P.

putida GEMs. Thus, the collection of P. putida draft

GEMs described here represents a first step toward the

systematic analysis of the full space of biological rev-

alorization of lignin and lignin-derived monomers using P.

putida strains.

Furthermore, the addition of known or theorized meta-

bolic capabilities of different P. putida strains could

greatly contribute to the pan-genome of P. putida. It is

likely that if complete genome reconstructions were to be

carried out for all available strains of P. putida, its pan-

genome and metabolic capabilities would grow increas-

ingly larger as the metabolic versatility of the P. putida

species is revealed.

Having GEMs of different strains could aid in the identi-

fication of strains with potential for industrial applications.

Even draft reconstructions can help identify which strains

have pathways of interest and compare them with each

other in order to identify highly efficient sets of enzymes.

Identification of which GEMs have mechanisms for toler-

ance to solvents could also be used to identify strains

that might serve as a good starting platform for the bio-

production of industrially relevant compounds. Altogether,

the multi-strain reconstruction offers an excellent starting

point for identifying which strains might be of interest

without having to perform wet-lab experiments for every

possible strain.

Material and methods

Metabolic reconstruction process of P. putida KT2440

The overall workflow for the reconstruction process is

shown in SI1 (Fig. S1), and it is detailed in SI1. We

followed a manual and iterative tri-dimensional approach

based on (i) genome annotation, (ii) biochemical legacy

knowledge and (iii) phenotypic experimental validation.

As a result, a more accurate assignment of function to

297 genes was achieved (Table S1).

Constraints-based analysis

A detailed description of methods and constraints used

for analysing the models can be found in SI1. iJN1462

was initially constructed on SimPheny and exported as

an SBML file. Updates were made using Python and the

Cobrapy package. COBRA Toolbox v2.0 (Schellenberger

et al., 2011) within the MATLAB environment (The
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MathWorks Inc.) was used to analyse the models.

Tomlab CPLEX and Gurobi were used for solving the lin-

ear programming problems.

Growth experiments on carbon and nitrogen sources

Procedures for growth experiments and knockouts analy-

sis are found in SI1.

Gene essentiality predictions on iLB and glucose

The singleGeneDeletion function in the Cobra Toolbox

(Schellenberger et al., 2011) with the minimization of

metabolic adjustment algorithm (Segrè et al., 2002) were

used to simulate knockouts. Additional constraints are

available in SI1.

Pseudomonas putida multi-strain genome-scale

modelling

The multi-strain modelling was performed according to

established procedures (Orth et al., 2011). We con-

structed a gene orthology matrix between KT2440 and

the sequenced P. putida strains (Table S5). We then

identified the genes present in iJN1462 for which no

orthologous gene was found in each of the strains

analysed and subsequently removed the corresponding

GPR from iJN1462 to obtain the strain-specific models.

Gap filling was then performed to ensure growth capabili-

ties on glucose. Additional details can be found in SI1.
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