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Abstract

The Hypoxylaceae (Xylariales, Ascomycota) is a diverse family of mainly saprotrophic fungi, which commonly occur in 

angiosperm-dominated forests around the world. Despite their importance in forest and plant ecology as well as a prolific 

source of secondary metabolites and enzymes, genome sequences of related taxa are scarce and usually derived from envi-

ronmental isolates. To address this lack of knowledge thirteen taxonomically well-defined representatives of the family and 

one member of the closely related Xylariaceae were genome sequenced using combinations of Illumina and Oxford nanopore 

technologies or PacBio sequencing. The workflow leads to high quality draft genome sequences with an average N50 of 3.0 

Mbp. A backbone phylogenomic tree was calculated based on the amino acid sequences of 4912 core genes reflecting the 

current accepted taxonomic concept of the Hypoxylaceae. A Percentage of Conserved Proteins (POCP) analysis revealed that 

70% of the proteins are conserved within the family, a value with potential application for the definition of family boundaries 

within the order Xylariales. Also, Hypomontagnella spongiphila is proposed as a new marine derived lineage of Hypom. 

monticulosa based on in-depth genomic comparison and morphological differences of the cultures. The results showed that 

both species share 95% of their genes corresponding to more than 700 strain-specific proteins. This difference is not reflected 

by standard taxonomic assessments (morphology of sexual and asexual morph, chemotaxonomy, phylogeny), preventing 

species delimitation based on traditional concepts. Genetic changes are likely to be the result of environmental adaptations 

and selective pressure, the driving force of speciation. These data provide an important starting point for the establishment 

of a stable phylogeny of the Xylariales; they enable studies on evolution, ecological behavior and biosynthesis of natural 

products; and they significantly advance the taxonomy of fungi.
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Introduction

Fungal taxonomy is a constantly evolving area that has 

been greatly influenced by the advances in technology and 

research. Micro-morphological characters of many species 

were not accessible until the development of microscopes, 
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which greatly enhanced the discovery of new species since 

the seventeenth century. With the application of physi-

ological and biochemical characters since the nineteenth 

century including color reaction tests, nutrient utiliza-

tion assays or thin layer chromatography for secondary 

metabolites, fungal classification became more reliable 

(Zhang et al. 2017). Subsequently, the establishment of 

gene sequencing as a means of barcoding, and phyloge-

netic reconstructions on various taxonomic levels substan-

tially improved our concept of fungal species delimitation. 

The increasing availability of gene sequences derived from 

various genetic loci, such as ribosomal DNA (18s rDNA, 

internal transcribed spacer region 1 and 2 [ITS1/2], 5.8S 

rDNA, 28S rDNA) or protein-coding genes (beta-tubulin, 

translation elongation factor 1 alpha, DNA-directed RNA 

polymerase II subunit RPB2, etc.) transitioned phylo-

genetic inferences from single-locus to multi-loci data-

sets delivering more stable and reliable tree topologies 

(Dornburg et al. 2017; Zhang et al. 2017). Currently, the 

biological research of the twenty-first century is driven 

by the development of cost-efficient and very rapid meth-

ods to generate full genome sequences of organisms. In 

this respect, mycology is pushing into a new direction by 

implementing this new level of information to construct 

robust taxonomic frameworks, which are now referred to 

as phylogenomics (Nagy and Szöllősi 2017).

So far, phylogenomic studies have been implemented only 

in a limited number of taxonomic groups in the fungal king-

dom, despite the fact that more than 1300 fungal genomes 

have been sequenced to date according to the 1000 Fungal 

Genomes Project website (https ://1000.funga lgeno mes.org/

home/, Grigoriev et al. 2014). Given the enormous diver-

sity of fungi (up to 5.1 million estimated species; Blackwell 

2011), often only a few or single members of the families 

are covered, restricting the use of the public repository 

to address interspecific relationships on taxonomic levels 

below ordinal rank. Nevertheless, a few fungal groups were 

extensively genome sequenced due to their economic and 

scientific importance and hence offered the basis for phylog-

enomic analyses. Respective studies have been recently con-

ducted on some members of the Hypocreales (Ascomycota) 

including a set of nine Trichoderma species (Druzhinina 

et al. 2018), and in particular, on the Aspergillaceae based 

on a dataset of 45 Aspergillus species and 33 Penicillium 

species (Steenwyk et al. 2019). The latter study comprises 

so far the largest phylogenomic reconstruction on the fam-

ily level by using a 1669 gene matrix. Pizarro and cowork-

ers for the first time generated a larger number of genome 

sequences only for the taxonomic purposes to resolve 

relationships of 51 lichenized fungi of the Parmeliaceae. 

Even though their overall genome quality for the majority 

of strains was quite low (average N50 of 20,000 bp), they 

obtained 2556 orthologous single-copy genes as the basis for 

tree construction, resulting in a highly supported stable tree 

topology with monophyletic subclades (Pizarro et al. 2018).

Except for the Hypocreales and Magnaporthales (Zhang 

et al. 2018b), no other significant taxonomic groups within 

the Sordariomycetes, one of the largest classes in the Asco-

mycota with 37 orders (Wijayawardene et al. 2018), were 

subject of comparative genomic studies. Among those, the 

Xylariales are of special importance as they harbor a great 

number of taxa distributed throughout 26 families including 

phytopathogens, endophytes, saprobionts and prolific sec-

ondary metabolite producers (Helaly et al. 2018). With more 

than 350 described species, the Hypoxylaceae contributes 

considerably to the Xylariales diversity (Helaly et al. 2018). 

This family currently contains 15 genera, where the sexual 

morph is characterized by carbonaceous ascostromata with 

KOH-extractable pigments usually associated with decaying 

hardwood (Wendt et al. 2018; Lambert et al. 2019). Mem-

bers of the Hypoxylaceae are also frequently encountered in 

seed plants, lichens and algae and can even be found in insect 

nests and sponges (Pažoutová et al. 2013; U’Ren et al. 2016; 

Medina et al. 2016; Leman-Loubière et al. 2017; Sir et al. 

2019). Due to their worldwide distribution with hotspots 

in tropical regions, these fungi play an important ecologi-

cal role in particular in forested areas as wood-decomposers 

(Stadler 2011). In addition, they might have beneficial effects 

for their hosts during their endophytic life stage. Besides 

their biological relevance, family members have been found 

to produce a wide variety of natural products ranging from 

various types of pigments [e.g. azaphilones (Kuhnert et al. 

2015b; Surup et al. 2018b), tetramic acids (Kuhnert et al. 

2014b), binaphthalenes (Sudarman et al. 2016)] to com-

pounds with unusual carbon skeletons [e.g. rickiols (Surup 

et al. 2018a), sporochartines (Leman-Loubière et al. 2017)] 

to highly bioactive molecules [e.g. nodulisporic acids (Bills 

et al. 2012), sporothriolide (Surup et al. 2014), rickenyls 

(Kuhnert et al. 2015a), cytochalasins (Yuyama et al. 2018; 

Wang et al. 2019) and concentricolide (Qin et al. 2006)]. 

Even though hundreds of genes of Hypoxylaceae species 

have been sequenced in the course of phylogenetic studies, 

taxonomically relevant genome sequences of these fungi 

have been scarce. In fact, only two genome sequences from 

unambiguously identified species have been published. 

This includes an isolate of Hypoxylon pulicicidum, which 

has been sequenced in the context of the investigation of 

the nodulisporic acid biosynthesis (Nicholson et al. 2018; 

Van de Bittner et al. 2018) and an Annulohypoxylon styg-

ium strain (Wingfield et al. 2018). Further genomes are only 

available for environmental isolates mainly identified based 

on marker sequences and which therefore have limited value 

for phylogenomic analyses (Ng et al. 2012; Wu et al. 2017).

To close the knowledge gap and to offer a solid back-

bone for genomic investigations of the Hypoxylaceae, 

we attempted to create high-quality draft genomes 

https://1000.fungalgenomes.org/home/
https://1000.fungalgenomes.org/home/
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(N50 > 1Mbp) of selected taxonomically well-character-

ized representatives of the major phylogenetic clades (cf. 

Wendt et  al. 2018) within the family and one outgroup 

species from the related Xylariaceae. For the study, ex-

epitype strains of Annulohypoxylon truncatum, Hypoxylon 

fragiforme, H. rickii, H. rubiginosum, Jackrogersella mul-

tiformis, Pyrenopolyporus hunteri, Xylaria hypoxylon and 

non-type strains of Daldinia concentrica, Entonaema liq-

uescens, H. lienhwacheense, Hypomontagnella monticulosa 

and H. pulicicidum were chosen. In addition, we decided to 

sequence the genomes of a marine-derived Hypom. monticu-

losa (Leman-Loubière et al. 2017, as Hypoxylon monticulo-

sum; see Lambert et al. 2019) and an endophytic isolate of 

Hypom. submonticulosa (Burgess et al. 2017, as Hypoxylon 

submonticulosum; see Lambert et al. 2019) for complemen-

tary follow-up studies. Various genome comparison methods 

were applied to estimate the similarity of the members and 

the conserved core genes were used to calculate a phylog-

enomic backbone tree of the Hypoxylaceae. A new species 

of Hypomontagnella is described based on the results and 

the authenticity of the solely available strain of E. liquescens 

is discussed on genome-based evidence. Other results of the 

current genome sequencing campaign, revealing interesting 

findings about the intragenomic polymorphisms of the ITS 

regions have recently been published elsewhere (Stadler 

et al. 2020).

Material and Methods

General

All scientific names of fungi follow the entries in MycoBank 

and Index Fungorum, hence no authorities and years of pub-

lications are given in the text.

Selection of fungal strains

For the genome sequencing, twelve morphologically well 

characterized ascospore-derived strains of the order Xylari-

ales were chosen. The selection was comprised of eleven 

representatives of the Hypoxylaceae (Annulohypoxylon 

truncatum CBS 140778, Daldinia concentrica CBS 113277, 

Entonaema liquescens ATCC 46302, Hypoxylon fragiforme 

MUCL 51264, H. lienhwacheense MFLUCC 14-1231, 

H. pulicicidum ATCC 74245, H. rickii MUCL 53309, H. 

rubiginosum MUCL 52887, Jackrogersella multiformis CBS 

119016, Pyrenopolyporus hunteri MUCL 49339) and one 

member of the Xylariaceae (Xylaria hypoxylon CBS 122620) 

for comparison. The majority of isolates was designated as 

ex-epitype strains of the respective species in previous stud-

ies (Stadler et al. 2014a; Kuhnert et al. 2014a, 2017; Wendt 

et al. 2018) except for D. concentrica, E. liquescens, H. lien-

hwacheense, Hypomontagnella monticulosa MUCL 54604 

and H. pulicicidum, which do not represent type strains. 

Regarding upcoming studies, two endosymbiontic isolates 

of Hypomontagnella were included as well. This involves a 

marine sponge-derived strain designated as Hypom. mon-

ticulosa (originally referred to as Hypoxylon monticulosum, 

Leman-Loubière et al. 2017) and an endophytic isolate from 

Rubus idaeus identified as Hypom. submonticulosa (origi-

nally referred to as Hypoxylon submonticulosum, Burgess 

et al. 2017).

Genomic DNA preparation

All fungi were grown in 250 ml Erlenmeyer flasks contain-

ing 50 ml YMG media (10 g l−1 malt, 4 g l−1 glucose, 4 g l−1 

yeast extract, pH 6.3) for 5 to 10 days (depending on growth 

speed) at 150 rpm and 25 °C in a shaking incubator. After-

wards, mycelia were harvested by vacuum filtration using 

a Büchner funnel with filter paper (MN 640 w, Macherey–

Nagel, Düren, Germany). The biomass was then frozen with 

liquid nitrogen and ground to a fine powder in a mortar. 

The DNA extraction and purification were performed with 

the GenElute® Plant Genomic DNA Miniprep Kit (Sigma-

Aldrich, St. Louis, MO, USA) according to manufacturer’s 

instructions.

Nanopore library preparation & MinION® sequencing

MinION sequencing library with genomic DNA from the 

different fungal strains was prepared using the Nanopore 

Rapid DNA Sequencing kit (SQK-RAD04, Oxford Nano-

pore Technologies, Oxford, UK) according to the manu-

facturer’s instructions. Sequencing was performed on an 

Oxford Nanopore MinION Mk1b sequencer using a R9.5 

flow cell, which was prepared according to the manufac-

turer’s instructions.

Illumina library preparation & MiSeq sequencing

Whole-genome-shotgun PCR-free libraries were constructed 

from 5 µg of gDNA with the Nextera XT DNA Sample 

Preparation Kit (Illumina, San Diego, CA, USA) according 

to the manufacturer’s protocol. The libraries were quality 

controlled by analysis on an Agilent 2000 Bioanalyzer with 

Agilent High Sensitivity DNA Kit (Agilent Technologies, 

Santa Clara, CA, USA) for fragment sizes of 500–1000 bp. 

Sequencing was performed on the MiSeq platform (Illumina; 

2 × 300 bp paired-end sequencing, v3 chemistry). Adapters 

and low-quality reads were removed by an in-house software 

pipeline prior to polishing as recently described (Wibberg 

et al. 2016).
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Base calling, reads processing, and assembly

MinKNOW (v1.13.1, Oxford Nanopore Technologies) 

was used to control the run using the 48 h sequencing run 

protocol; base calling was performed offline using alba-

core (v2.3.1, https ://githu b.com/Albac ore/albac ore). The 

assembly was performed using canu v1.6 and v1.7 (Koren 

et al. 2017), resulting in a single, circular contig. This con-

tig was then polished with Illumina short read data using 

Pilon (Walker et al. 2014), run for eight iterative cycles. 

BWA-MEM (Li 2013) was used for read mapping in the first 

four iterations and Bowtie2 v2.3.2 (Langmead and Salzberg 

2012) in the second set of four iterations.

PacBio library preparation and sequencing

For Hypoxolon fragiforme a SMRTbell™ template library 

was prepared according to the instructions from Pacific Bio-

sciences (Menlo Park, CA, USA), following the Procedure 

& Checklist – Greater Than 10 kb Template Preparation. 

Briefly, for preparation of 15 kb libraries genomic DNA 

was sheared using g-tubes™ from Covaris, Woburn, MA, 

USA according to the manufacturer’s instructions. DNA 

was end-repaired and ligated overnight to hairpin adapters 

applying components from the DNA/Polymerase Binding 

Kit P6 from Pacific Biosciences. Reactions were carried out 

according to the manufacturer’s instructions. BluePippin™ 

Size-Selection to greater than 7 kb was performed according 

to the manufacturer’s instructions (Sage Science, Beverly, 

MA, USA). Conditions for annealing of sequencing primers 

and binding of polymerase to purified SMRTbell™ template 

were assessed with the Calculator in RS Remote (Pacific 

Biosciences). One SMRT cell was sequenced on the PacBio 

RSII (Pacific Biosciences) taking one 240-min movie. Two 

further SMRT cells were sequenced on the Sequel System 

(Pacific Biosciences) taking one 600-min movie for each 

SMRT cell.

For Hypoxolon rubiginosum a SMRTbell™ template library 

was prepared according to the instructions from Pacific Bio-

sciences, following the Procedure & Checklist – Preparing 

Greater Than 30 kb Libraries Using SMRTBell® Express 

Template Preparation Kit. Briefly, for preparation of librar-

ies genomic DNA was end-repaired and ligated overnight 

to hairpin adapters applying components from the SMRT-

Bell® Express Template Preparation Kit 2.0 from Pacific 

Biosciences. Reactions were carried out according to the 

manufacturer´s instructions. BluePippin™ Size-Selec-

tion to greater than 15 kb was performed according to the 

manufacturer´s instructions (Sage Science). Conditions for 

annealing of sequencing primers and binding of polymerase 

to purified SMRTbell™ template were assessed with the 

SMRT® Link Software (PacificBiosciences). One SMRT 

cell was sequenced on the Sequel System taking one 600-

min movie.

Genome assembly was performed within SMRTLink 

6.0.0.47841 using the HGAP4 protocol and a target genome 

size of 40 Mbp.

Gene prediction and genome annotation

Gene prediction was performed by applying Augustus 

version 3.2 (Stanke et al. 2008) and GeneMark-ES 4.3.6. 

(Ter-Hovhannisyan et al. 2008) using default settings. For 

Augustus, species parameter sets were established based on 

GeneMark-ES fungal version predictions. Predicted genes 

were functionally annotated using a modified version of the 

genome annotation platform GenDB 2.0 (Meyer 2003) for 

eukaryotic genomes as previously described (Rupp et al. 

2014). For automatic annotation within the platform, simi-

larity searches against different databases including COG 

(Tatusov et al. 2003), KEGG (Kanehisa et al. 2004) and 

SWISS-PROT (Boeckmann et al. 2003) were performed. 

In addition to genes, putative tRNA genes were identified 

with tRNAscan-SE (Lowe and Eddy 1997). Completeness, 

contamination, and strain heterogeneity were estimated with 

BUSCO (v3.0.2  Simão et al. 2015), using the Pezizomy-

cotina-specific single-copy marker genes database (odb9).

RNA-Isolation and transcriptome sequencing of Hypom. 

monticulosa

Hypomontagnella monticulosa MUCL 54604 was grown 

in two 250 ml flasks each containing 50 ml of a differ-

ent medium (DPY: 20 g  l−1 dextrin from potato starch, 

10 g l−1 polypeptone, 5 g l−1 yeast extract, 5 g l−1 mono-

potassium phosphate, 0.5 g l−1 magnesium sulfate hexahy-

drate; PDB: 24 g l−1 potato dextrose broth) for 5 days at 

25 °C and 150 rpm. Small quantities of mycelia (> 100 µl) 

were removed with a sterile inoculating loop and RNA was 

extracted from the samples using the Quick-RNA Fungal/

Bacterial Miniprep Kit (Zymo Research, Irvine, CA, USA). 

Samples were treated with DNase I (Zymo Research) accord-

ing to the manufacturer`s recommendations. In total, ~ 2 μg 

of RNA per sample was used for library preparation with 

the TruSeq mRNA Sample Preparation Kit (stranded) (Illu-

mina). Sequencing of the prepared cDNA libraries was car-

ried out on the Illumina HiSeq 1500 platform (2 × 75 bp) 

using the ‘Rapid Mode’. Data analysis and base calling were 

accomplished with in-house software (Wibberg et al. 2016). 

The sequencing raw data for all libraries have been stored 

on the EBI ArrayExpress server, accession E-MTAB-8948.

https://github.com/Albacore/albacore
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Improved gene prediction with BRAKER2 for Hypom. 

monticulosa

BRAKER2 (Hoff et al. 2019) allows fully automated train-

ing of the gene prediction tools GeneMark and AUGUSTUS 

from RNA-Seq by integrating the extrinsic evidence from 

RNA-Seq information into the prediction. Therefore, the 

RNAseq data was used for mapping to the Hypom. monticu-

losa reference genome. The sequenced reads were quality fil-

tered (> Q30) by applying the FASTX tool kit. Data of each 

condition were subsequently mapped to the Hypom. mon-

ticulosa using tophat2 (Kim et al. 2013). Two mismatches 

were allowed. The resulting BAM-files were used for the 

BRAKER2 gene prediction with default settings.

Identification and analysis of carbohydrate-related proteins

Carbohydrate active enzymes (CAZymes) among the pre-

dicted proteins of the 13 fungi were analyzed with dbCAN 

“Data-Base for automated Carbohydrate-active enzyme 

Annotation” version 7 (Yin et al. 2012) and the HMMER 

3.0 package (Mistry et al. 2013) under relaxed settings (E 

value: < 1e−5, coverage: 0.3). CAZy-family definitions were 

followed according to the CAZy database (https ://www.cazy.

org/) (Lombard et al. 2014).

Comparative genome analyses

The genomes of the sequenced and annotated fungal strains 

were used for comparative genome analyses. Comparative 

analyses between fungal genomes were accomplished using 

a modified version of the comparative genomics program 

EDGAR designed to handle eukaryotic genomes and their 

multi-exon genes (Blom et al. 2009, 2016) as described 

recently (Wibberg et al. 2015). During the analyses, iden-

tification of orthologous genes, classification of genes as 

core genes or singletons and visualization of Venn diagrams 

were performed. In addition, average nucleotide identity 

(ANI) and average amino acid identity analyses (AAI) were 

performed based on the GeneMark prediction similarly to 

previously described methods (Wibberg et al. 2015) to deter-

mine the relationship between the different species. Synteny 

analysis were performed by applying D-GENIES (Caban-

ettes and Klopp 2018).

Phylogenetic tree reconstruction

Based on the EDGAR analysis, 4912 core genes were identi-

fied. First, multiple alignments for all core protein sequences 

were created using MUSCLE (Edgar 2004). All amino acid 

alignments were subjected to automatic elimination of 

poorly aligned positions via the Castresana Lab Gblocks 

standalone application with default parameters; applying 

‘with-hal’ gap treatment and minimum block length set to 

5 (Talavera and Castresana 2007). For the Maximum-Like-

lihood (ML) tree inference, a super matrix approach was 

followed using IQTree v.1.70 (beta, Nguyen et al. 2015) with 

standard options except for the tree topology improvement 

strategy using nearest-neighbor interchange (NNI), which 

was extended to all possible interchanges instead of only 

looking for previously applied NNIs for further topology 

improvement (allnni). Protein evolutionary models and sta-

tistical support on the partitioned dataset (Chernomor et al. 

2016) was assigned with Modelfinder (Kalyaanamoorthy 

et al. 2017) following Bayesian information criteria (BIC) 

with ultra-fast Bootstrapping option (UFB, Hoang et al. 

2018). The latter was performed with 1000 UFB replicates 

in combination with 1000 replicates of SH-aLRT (Statistical 

significance in an approximate likelihood ratio test, Guindon 

et al. 2010).

For a coalescence-based phylogeny using the program 

ASTRAL III v.5.14.2 (Zhang et al. 2018a), single gene 

maximum-likelihood trees were inferred following the same 

procedure as stated before with IQTree except for the strat-

egy of Bootstrap support calculation. Here, non-parametric 

bootstrapping was applied with fast tree search option to 

decrease the computational burden. Analysis of the result-

ing dataset with ASTRAL III followed standard parameters.

For an evaluation of the four-gene phylogeny methodol-

ogy followed by Wendt et al. (2018), a whole-gene dataset 

compromised of α-actin, TEF1-α, RPB2 and TUB2 was 

subjected to molecular phylogenetic inference with prior 

curation via the gblocks Online Server and nucleotide sub-

stitution model selection with smart model selection (SMS, 

Lefort et al. 2017) following current literature methodol-

ogy with the ATGC PhyML 3.0 Online Server (Wendt et al. 

2018; Lambert et al. 2019; Guindon et al. 2010).

POCP analysis

POCP analysis was performed according to Qin et  al. 

(2014) and as previously described (Adamek et al. 2018; 

Margos et al. 2018). Briefly, for each genome pair recipro-

cal BLASTP (Altschul 1997) was used to identify homolo-

gous proteins. Proteins were considered to be conserved if 

the BLAST matches had an E-value of < 1 × 10–5, > 40% 

sequence identity and > 50% of the query sequence in each 

of the reciprocal searches. The POCP value for a genome 

pair was then determined as [(C1 + C2)/(T1 + T2)] × 100, 

where C1 and C2 are the number of conserved proteins 

between the genome pair and T1 and T2 are the total num-

ber of proteins in each genome being compared (Qin et al. 

2014).

https://www.cazy.org/
https://www.cazy.org/
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Results and Discussion

Genomic data

To gain insights into the functional differences and the phy-

logenetic relationship between all fungal strains targeted 

in this work, their genomes were completely sequenced 

by application of 3rd generation sequencing technologies. 

The respective sequences are stored on the ENA (European 

Nucleotide Archive) portal of the EMBL-EBI (https ://www.

ebi.ac.uk/) under the bioproject numbers PRJEB36622 (A. 

truncatum), PRJEB36624 (D. concentrica), PRJEB36625 

(E. liquescens), PRJEB36647 (Hypom. monticulosa), 

PRJEB37480 (Hypom. spongiphila) PRJEB36653 

(Hypom. submonticulosa), PRJEB36654 (H. fragiforme), 

PRJEB36656 (H. lienhwacheense), PRJEB36657 (H. pulici-

cidum), PRJEB36658 (H. rickii), PRJEB36693 (J. multi-

formis), PRJEB36695 (H. rubiginosum), PRJEB36696 (P. 

hunteri) and PRJEB36697 (X. hypoxylon).

The genome sequences of the analyzed fungi were mainly 

established using a combination of Nanopore and short-read 

Illumina methods. The latter data were used to improve 

base accuracy and thus significantly reduce error rates in 

the final genomes. For comparative reasons two species (H. 

fragiforme and H. rubiginosum) were randomly chosen for 

PacBio sequencing. General genome features, e.g., size, con-

tig number, GC content, and numbers of predicted genes, are 

summarized in Table 1.

The number of reads generated by Nanopore sequenc-

ing ranged from 83,869 to 937,388 with an average read 

count of 406,479. The mean read length averaged 9736 bp 

(5454–27,241 bp) with a maximum read length average 

of 470,823 bp (64,165–2,031,748 bp). Illumina polished 

assemblies resulted in a total contig number average of 55 

(16–123) with a 61 fold average coverage (14.8–125.1 fold). 

Details on the genome sequencing statistics for the individ-

ual strains are listed in the supplementary information (Tab. 

S1). Established genomes range in size from 35 to 54 Mb 

and feature GC contents around 45%.

Sequencing on the Sequel System (PacBio) resulted in 

727,768 (sub)reads with a mean length of 7823 bp for H. 

fragiforme. The genome assembly yielded 36 contigs sum-

ming up to a final genome size of 38.1 Mbp (3.6 Mbp N50 

contig length, 127× Genome Coverage). Sequencing of H. 

rubiginosum resulted in 692,592 (sub)reads with a mean 

length of 14,154 bp. The genome assembly yielded 70 con-

tigs summing up to a final genome size of 48.3 Mbp (1.1 

Mbp N50 contig length, 202× Genome Coverage).

In general, the combinatorial approach (Illumina/Nano-

pore) performed equally to the newest generation of PacBio 

sequencing in terms of generated contigs, N50 contig lengths 

and average read lengths, which resulted in 14 high quality 

draft genome sequences. PacBio sequencing yielded higher 

read numbers and higher genome coverage, but maximum 

read length with Nanopore sequencing was longer. Based on 

the obtained data, we can state that the generation of high-

quality fungal genome sequences can be achieved by differ-

ent technologies leaving mycologists with options depending 

on their personal preferences.

Table 1  Details of the genome sequences generated for the selected Xylariales

ILU Illumina, ONT Oxford Nanopore Technology, PB PacBio
a As identified by the GeneMark tool

Organism Strain Sequencing method Genome size (bp) Contigs N50 (bp) Annotated  genesa GC (%)

Annulohypoxylon truncatum CBS 140778 ONT/ILU 38,511,861 64 1,760,563 11,384 46.5

Daldinia concentrica CBS 113277 ONT/ILU 37,605,921 69 2,728,111 11,205 43.8

Entonaema liquescens ATCC 46302 ONT/ILU 39,197,785 31 3,541,465 10,384 43.4

Hypomontagnella monticulosa MUCL 54604 ONT/ILU 42,889,121 30 3,439,634 12,475 46.0

Hypomontagnella spongiphila MUCL 57903 ONT/ILU 42,173,915 16 5,039,066 12,622 46.2

Hypomontagnella submon-

ticulosa

DAOMC 242471 ONT/ILU 41,374,079 123 657,615 11,692 46.3

Hypoxylon fragiforme MUCL 51264 PB 38,198,373 36 3,581,784 10,557 46.2

Hypoxylon lienhwacheense MFLUCC 14-1231 ONT/ILU 35,785,595 61 1,602,745 9,942 45.4

Hypoxylon pulicicidum ATCC 74245 ONT/ILU 43,543,700 24 3,855,590 12,174 44.8

Hypoxylon rickii MUCL 53309 ONT/ILU 41,846,710 81 3,963,481 11,101 46.4

Hypoxylon rubiginosum MUCL 52887 PB 48,274,337 70 1,165,420 13,276 44.1

Jackrogersella multiformis CBS 119016 ONT/ILU 38,501,162 20 4,087,316 11,271 45.8

Pyrenopolyporus hunteri MUCL 49339 ONT/ILU 40,356,773 50 2,611,040 9,720 44.9

Xylaria hypoxylon CBS 122620 ONT/ILU 54,341,593 88 3,886,849 12,704 40.7

https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
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The re-sequencing of H. pulicicidum (ATCC 74245) 

resulted in a substantially improved genome quality com-

pared to the previous report (Nicholson et al. 2018). The 

genome size increased from 41.4 to 43.5 Mbp and contig 

numbers were reduced from 204 to 24. In addition, the N50 

increased almost sevenfold from 580,679 to 3,855,590 bp. 

This demonstrates that long-read technologies enable access 

to additional genomic information (here more than 2 Mbp) 

offering a much more robust basis for genomic comparisons.

In the case of X. hypoxylon, the genome sequence of a 

different strain has been published recently (Büttner et al. 

2019). The respective length of the Illumina assembly 

summed up to 42.8 Mbp, which is significantly shorter than 

what was obtained for the ex-epitype strain (54.3 Mbp) 

herein. Consequently, the number of predicted genes was 

lower as well (11,038 vs 12,704 here). These differences 

can be mainly attributed to the sequencing quality (N50 of 

0.1 Mbp vs 3.8 Mbp, and 635 vs 88 contigs in our study, 

respectively). Similar to H. pulicicidum, third generation 

sequencing resulted in a substantial gain of genetic infor-

mation (~ 15% of gene content), which makes subsequent 

analyses more reliable.

CAZyme analysis

The Hypoxylaceae are considered as endophytes that can 

switch to a saprobiontic lifestyle if necessary. However, there 

is no conclusive information on whether family members are 

able to become facultative parasites. To address this question 

at the genomic scale, a CAZyme analysis was conducted 

to investigate the number of enzymes possibly involved in 

carbohydrate interactions (Fig. 1). The number of related 

genes and modules ranged from 510 (H. lienhwacheense) 

to 780 (H. rubiginosum) with an average of 669. Glycoside 

hydrolases (GH) accounted for almost half of the identified 

enzymes (218–289), followed by the auxiliary activity pro-

teins (AA, 96–187), glycosyl transferases (GT, 89–108) and 

carbohydrate esterases (CE, 76–136). Polysaccharide lyases 

(PL) comprised only a few genes (5–16) and carbohydrate-

binding modules (CBM) accounted for approx. 7%of the 

hits (25–59). Depending on the strictness of the E-value 

settings in dbCAN (standard < 1e−15), a significant number 

of CBMs (8–21) and CEs (59–99) were not recognized, 

while the values for the other enzyme classes remained sta-

ble (see Supplementary information for more details). We 

want to highlight this result as many publications, which 

involve dbCAN analyses do not specify their parameters for 

CAZyme search. Therefore, comparisons with other datasets 

need to be treated carefully as they might lead to wrong 

conclusions.

The relatively high numbers of CAZymes in this study 

are in the range of other known saprobiontic fungi, such 

as Aspergillus oryzae or Penicillium chrysogenum (Zhao 

et al. 2013) and also match those of previously analyzed 

Fig. 1  Comparison of CAZymes classes within the Hypoxylaceae and 
Xylaria hypoxylon. Number of identified enzymes or related modules 
are displayed by horizontal bars (GT – glycosyl transferase, GH – gly-
coside hydrolase, CE – carbohydrate esterase, CBM – carbohydrate-
binding module, PL – polysaccharide lyase, AA – auxiliary activity 
enzymes). AT – Annulohypoxylon truncatum, DC – Daldinia concen-

trica, EL – Entonaema liquescens., HF- Hypoxylon fragiforme, HL 
– Hypoxylon lienhwacheense, HM – Hypomontagnella monticulosa, 
HP – Hypoxylon pulicicidum, HSM – Hypomontagnella submonticu-

losa, HSP – Hypomontagnella spongiphila, HR – Hypoxylon rickii, 
HRUB – Hypoxylon rubiginosum, JM – Jackrogersella multiformis, 
PH – Pyrenopoylporus hunteri, XH – Xylaria hypoxylon 
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X. hypoxylon and A. stygium strains (Wingfield et al. 2018; 

Büttner et al. 2019). In contrast, the P. fici genome (which is 

also used in this paper for subsequent analyses) was reported 

to contain much higher numbers of respective enzymes (460 

GHs, 138 CEs, 121 GTs, 39 PLs; Wang et al. 2015). As no 

parameters for the dbCAN analysis were reported in the cor-

responding reference, the encoded proteins of P. fici were 

re-analyzed using the same settings as for the Hypoxylaceae 

proteins. The previous results could be mostly confirmed 

except for CE, where we found even higher numbers (243), 

demonstrating that the capabilities of utilizing carbohydrate 

sources within the Xylariales can strongly vary.

When analyzing the individual families of CAZymes (a 

detailed list of which can be found in the Supplementary 

Information), a slightly higher number of proteins are cat-

egorized as cutinases (CE5, 3–8 genes) in comparison with 

the average results obtained by Zhao et al. (2013) for sapro-

biontic fungi (Ø = 1; 0–7 genes). Cutinases are responsible 

for the digestion of cutin and are usually correlated with 

plant infection events enabling a fungus to invade its host 

(Lu et al. 2018). This expanded set of CE5 enzymes cor-

responds well with the proposed initial endophytic lifestyle, 

as the entry into the host plants is a crucial step to establish 

such an association. Unfortunately, little is yet known on 

how Hypoxylaceae recognize and enter their host. Only in 

the case of Hypoxylon fragiforme has it been demonstrated 

that ascospore eclosion and germination occurs at high fre-

quency when triggered by monolignol glucosides released 

from the beech host (Chapela et al. 1993). Even though there 

is no supportive data available, it is likely that the site of 

infection is primarily located at leaf surfaces (which is also 

the main tissue to acquire endophytic isolates of Xylariales). 

The germinating spores (ascospores or conidia) can enter 

the plant either by using opened stoma or by lysing the pro-

tective cuticle layer to grow into or in-between the cells. In 

general, there is a lack of knowledge about the host range of 

the individual Hypoxylaceae species as the association of 

their stromata with certain tree species does not necessar-

ily reflect the distribution of a given species. This became, 

in particular, evident when various family members have 

been isolated from different plant parts of Viscum album and 

Pinus sylvestris (Peršoh et al. 2010), which in contrast never 

harbor Hypoxylaceae stromata. It can therefore be assumed 

that these fungi have a rather broad host range. Thus, an 

extended number of cutinases might be required to sustain 

the capacity of entering various hosts.

Pectin degrading enzymes are important to break down 

the cell wall of plants and are especially abundant in path-

ogenic fungi. Members of the majority of corresponding 

CAZYme families (CE8, PL1, PL2, PL3, PL9, PL10, GH28, 

GH78, GH88) can be found within our genomes (7 out of 

9), but the number of copies is lower than those identified 

for most phytopathogenic fungi (CE8: 2.7 vs 4.0; PL1: 1.9 

vs 5.3; PL3: 0.8 vs 3.1; PL9: 0.1 vs 0.5; GH28: 3.1 vs 7.1; 

GH78: 3.1 vs 4.3; GH88: 0.6 vs 1.3) (for detailed numbers 

see Zhao et al. 2013). Hence, Hypoxylaceae and X. hypox-

ylon encode in general the capabilities to degrade pectin 

and related carbohydrates, but to a lesser extent than plant 

pathogens.

The CAZyme analysis supports the hypothesis of Hypox-

ylaceae being endophytes without a major pathogenic life 

stage that can easily switch to a saprobiotic lifestyle based 

on their carbohydrate degrading capacities. Even though 

it is unlikely that these fungi actively harm their host, the 

nature of the symbiosis still remains obscure, and probably 

also varies during the host life cycle. Commensalistic or 

mutualistic interactions are generally possible and depend on 

the effect of the fungus on its host. The respective genome 

sequences should enable more thorough future studies to 

resolve these cryptic fungus-host interactions.

Phylogenomic analysis

Previous phylogenetic studies have shown that the Hypoxy-

laceae are a well-conserved monophyletic family (Wendt 

et  al. 2018; Daranagama et  al. 2018). In particular, the 

inclusion of house-keeping genes and calculation of multi-

locus trees has improved the topology of the corresponding 

reconstructions, which well-resolved the structure of the 

major clades. Nevertheless, the respective tree backbones 

lack support, preventing conclusive results on intergeneric 

evolutionary relationships. Therefore, we aimed to construct 

a backbone tree based on a core set of proteins derived from 

genomic data of the genome-sequenced strains and compare 

the clade relationships with those of previously published 

studies. As gene or protein trees do not necessarily reflect the 

evolutionary history of taxa, a coalescence-based ASTRAL 

species tree was calculated for comparison. Moreover, we 

wanted to estimate how well genomic trees perform in com-

parison to multilocus trees. For the calculations, Pestalotiop-

sis fici was chosen as the outgroup due to its taxonomic clas-

sification in the Xylariales (note that the taxonomic position 

of the species is still under debate, as recent studies suggest 

a placement into the new order Amphisphaeriales, a pro-

posed sister taxon of the Xylariales, see Jaklitsch et al. 2016; 

Hongsanan et al. 2017; Liu et al. 2019; Hyde et al. 2020 for 

discussion on this topic) and the relatively high quality of the 

genome sequence (Wang et al. 2015). An EDGAR analysis 

revealed the presence of 4912 homologous genes located 

in all 15 genomes, the amino acid sequences of which were 

used to assess the relative phylogenetic position of the fungi. 

The concatenation of the 4912 GBLOCKS-cured amino 

acid alignments resulted in a data matrix with 2,532,758 

sites, from which 49.0% were constant and 28.5% variable 

sites. Cured single loci alignments for species-tree inference 

ranged from 44 to 4781 amino acids (median 437.5 ± 358.4 
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aa). Alignment length, selected substitution models, distinct 

patterns, log-likelihood, constant and variable sites for each 

alignment are summarized in the supplementary material. 

The resulting gene and species tree showed identical topolo-

gies with four major clades (C1–C4, Fig. 2), which include 

all Hypoxylaceae species except H. rubiginosum. The back-

bone and all branches received maximum bootstrap support 

or posterior probability values in both phylogenomic recon-

structions. As expected, X. hypoxylon forms a sister clade 

to the Hypoxylaceae, where H. rubiginosum is located at a 

separate branch at the base of the family clade.

Clade 1 (C1) is composed of H. fragiforme and H. 

rickii with both species displaying similar branch lengths. 

These taxa have been already demonstrated to be closely 

related based on morphological, chemotaxonomical and 

phylogenetic data (Kuhnert et  al. 2014a, 2015c). They 

mainly differ in their stromata shape (hemispherical vs. 

effused-pulvinate) and distribution (temperate zones vs 

tropical zones).

The second clade (C2) contains H. pulicicidum, A. trun-

catum and J. multiformis. Before the erection of Jackroger-

sella, the latter two species were placed in the same genus 

based on their morphological similarities (carbonaceous 

layer surrounding the perithecia, ostioles higher than the 

stromatal surface, dehiscent perispore with conspicuous 

thickening). However, their strongly deviating secondary 

metabolite profiles in conjunction with completely reduced 

stromatal discs set them clearly apart (Kuhnert et al. 2017; 

Wendt et al. 2018). In contrast, the relationship with H. 

pulicicidum does not seem obvious in the first place, but the 

Fig. 2  Phylogenomic vs multigene phylogenetic reconstruction 
of the Hypoxylaceae. A, B: Comparison of a maximum-Like-
lihood phylogenetic tree inferred from a supermatrix approach 
(lL =  − 21,719,985.1679) of 4912 curated concatenated protein align-
ments (A, IQTree) with a species tree (quartet score = 3,750,366, 
normalized = 66.61%) of coalescence-based phylogenetic inference 
(B, ASTRAL III). Bootstrap and SH-alRLT support values of 1000 
replicates are given on nodes for the inferred consensus tree A. Multi-
locus bootstrap values (MLBS) and posterior probability (pp) values 

for the species tree are given on nodes for tree B. Branch length for 
tree A is shown as nucleotide substitutions per site. C Four-gene phy-
logenetic inferences based on the full gene sequences of alpha-actin, 
beta-tubulin, RPB2 and TEF1-α with lLn =  − 50,232.40147 prior 
curation of the alignment via gblocks and GTR + G + I nucleotide 
substitution model as determined by Smart Model Selection (SMS). 
Bootstrap support values of 1000 replicates above 50% are shown 
at corresponding nodes. Scale bar indicates nucleotide substitution 
rates. The different subclades (C1–C4) are highlighted in colors
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presence of papillate ostioles in overmature stromata and 

reduced discs in younger material morphologically resem-

bles the main characteristics of Jackrogersella. In addition, 

the appearance of cohaerin-type stromatal pigments in H. 

pulicicidum (and closely related Hypoxylon species, see 

Sir et al. 2019) is completely restricted to these taxa and 

members of Jackrogersella. Based on the phylogenomic 

reconstruction and taxonomic significant similarities, it can 

be speculated that Annulohypoxylon is derived from Jack-

rogersella, which by itself shares a common ancestor with 

Hypoxylon. Hence, Annulohypoxylon in its current defini-

tion represents in an evolutionary context one of the derived 

genera in the Hypoxylaceae.

The genus Hypomontagnella forms the third clade (C3) 

in the phylogenomic tree. Two of the representatives are 

endosymbiontic isolates (Hypom. submonticulosa from plant 

and Hypom. spongiphila from a marine sponge) and only 

Hypom. monticulosa is stroma-derived. The marine isolate 

was originally identified as Hypom. monticulosa and is now 

treated as a distinct new species based on the genomic com-

parisons (see the taxonomic section for more details). The 

Hypomontagnella clade is located on a long branch sup-

porting its status as a distinct genus. Due to the sister clade 

placement of C3 to C4 Hypomontagnella taxa are evolu-

tionarily closer to Daldinia and Pyrenopolyporus than to 

other genera included in this study (note that the taxonomic 

position of H. lienhwacheense is unclear). This result con-

tradicts a previous study where Hypomontagnella grouped 

with C2 in a multigene phylogenetic tree (based on the ITS, 

28s rDNA, RPB2 and TUB2 loci) with statistical bootstrap 

support (Lambert et al. 2019). These differences might be 

caused by the restricted sample size in our analysis but could 

also indicate that phylogenomic data better resolve the taxo-

nomic relationship of Hypomontagnella. Future studies with 

a larger taxon selection will prove whether the organization 

of this basic phylogenomic tree remains stable.

In clade 4 (C4), the representatives of Daldinia, Pyr-

enopolyporus and H. lienhwacheense clustered together. 

The peltate to hemispherical shape of Pyrenopolyporus 

stromata and its naphthalene content are reminiscent of 

Daldinia and underline their relationship. The position 

of H. lienhwacheense is inconclusive especially since the 

metabolite profile of this taxon is unique among all analyzed 

Hypoxylaceae species (unpublished data). In addition, its 

stromata are irregular in form with conspicuous elevations. 

The latter could be an evolutionary precursor of peltate asco-

mata, which further evolved into hemispherical shapes. In a 

recently published phylogenetic analysis with a much larger 

taxon selection, H. lienhwacheense also clustered with Dal-

dinia species and Pyrenopolyporus species but lacked sup-

port and had no close relatives (Sir et al. 2019). Moreover, 

the genome of H. lienhwacheense is the smallest among all 

sequenced species herein with a size reduction of 12.5 Mbp 

compared to H. rubiginosum. Therefore, it is possible that H. 

lienhwacheense represents a derived lineage and has under-

gone heavy gene or chromosome loss in the course of adap-

tation. Due to its isolated position in the phylogenies, the 

genome characteristics and metabolite profile, its affinities 

with Hypoxylon are only supported by certain morphological 

features. The data would justify the erection of a new genus, 

but we refrain from this for the time being as we see the 

necessity to include the putative relatives H. lividipigmen-

tum, H. lividicolor and H. brevisporum in a corresponding 

study. The lack of viable cultures for the latter two species 

currently prevent such an approach.

Hypoxylon rubiginosum appears as a basal branch within 

the Hypoxylaceae. Based on the branch length and position 

(sister group of the Xylariaceae), this fungus most likely 

represents an old lineage. Still, the morphological habitus 

of H. rubiginosum is typical for the family and has little in 

common with the genus Xylaria. To deduce the divergent 

evolution of the two families and understand the develop-

ment of the distinct morphologies, many more representa-

tives of the Xylariaceae (e.g. Nemania spp., Kretzschmaria 

spp., Rosellinia spp.), and also other related families (e.g. 

Graphostromataceae spp., Barrmaeliaceae spp., Lopadosto-

mataceae spp.) should be sequenced.

To evaluate the strengths of our amino acid-based phy-

logenomic reconstruction compared to previous standard 

phylogenies, we calculated a multigene tree for the same 

species set based on the complete gene sequences of alpha-

actin, beta-tubulin, RPB2 and TEF1-α (Fig. 2c). The con-

catenated dataset of the four genes had a final length of 

8566 nucleotides of original 10,614 positions (80.7% of the 

original alignment). Unique site patterns were constituted 

by 3007 positions, while 2713 were parsimony informa-

tive and 4925 invariant sites. The substructure of the clades 

is resolved identically to the phylogenomic trees, but the 

clades are arranged in a different order and with lower sup-

port values for the backbone. Thus, we conclude that the 

multigene phylogenetic family reconstruction does only 

correctly reflect the evolutionary origin of closely related 

genera, while the relationship of major lineages (here equal 

to the clades) remains unresolved. Thus, previously pub-

lished phylogenies of the Hypoxylaceae (Wendt et al. 2018; 

Lambert et al. 2019) can only provide a robust picture of 

infrageneric relationships. In addition, the position of cer-

tain family members such as H. trugodes and H. griseob-

runneum remains unresolved in these calculations and will 

most likely only stabilize in phylogenomic reconstructions. 

Our results of the phylogenomic analysis are promising in 

this regard and the inclusion of more high-quality genome 

sequences will help to understand the evolution and specia-

tion of Hypoxylaceae.
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For the phylogenomic reconstructions, we have deliber-

ately decided to use protein sequences rather than nucleotide 

sequences as these are directly correlated with structural and 

functional information, and thus better reflect evolutionary 

divergence (Chowdhury and Garai 2017). However, it is 

important to note that this approach has its limitation for 

very closely related organisms as synonymous changes of 

nucleotides do not alter the protein sequence and hence core 

proteins only provide restricted information (which is the 

case for the species pair Hypom. monticulosa and Hypom. 

spongiphila). In addition, protein level phylogenomic recon-

structions are susceptible to sequencing errors, which can 

strongly influence the predictions of genes and therefore 

should only be considered if high-quality genome sequences 

are available. On the other hand, the slow evolution of pro-

tein sequences allows for a more robust inference of rela-

tionships between fungal families and higher ranks, where 

the alteration of the respective gene sequences is usually 

too strong for reliable alignments. Thus, we are convinced 

that protein-based phylogenetic reconstructions will become 

more important in the future to reevaluate current taxonomic 

concepts.

Comparative genomics

POCP analysis

To better estimate the genomic differences between the fungi 

and to deduce the relative amount of individual genes, a 

percentage of conserved protein (POCP) analysis was con-

ducted (Fig. 3). In advance, it is important to state that the 

results of POCP analyses depend on the reliability of the 

applied gene prediction models. The more accurate such 

models can call genes and their respective coding sequences, 

the higher the significance of POCP becomes. To test the 

quality of the gene prediction in our genomes, the transcrip-

tome of Hypom. monticulosa under two different conditions 

was sequenced and reads were implemented into the Braker 

pipeline for improved gene prediction (Hoff et al. 2019). 

Braker called 12,744 genes, while GeneMark and Augustus 

predictions resulted in 12,477 and 11,204 genes, respec-

tively. Sizes and intron mapping of predicted genes displayed 

high similarity between the Braker and GeneMark output. 

In contrast, roughly 30% of the genes predicted by Augus-

tus deviated in these parameters. Thus, it can be concluded 

that GeneMark already delivers a good coverage of the gene 

Fig. 3  Pairwise Percentage of Conserved Proteins (POCP) analysis 
for members of the Hypoxylaceae and non-family members. Spe-
cies located within dashed line belong to the Hypoxylaceae and those 
located within solid line belong to the subclass Xylariomycetidae. AN 
– Aspergillus nidulans, AT – Annulohypoxylon truncatum, DC – Dal-

dinia concentrica, Dsp – Daldinia sp., HF – Hypoxylon fragiforme, 

HL – Hypoxylon lienhwacheense, HM – Hypomontagnella monticu-

losa, HP – Hypoxylon pulicicidum, HSM – Hypomontagnella sub-

monticulosa, HSP – Hypomontagnella spongiphila, HR – Hypoxylon 

rickii, HRUB – Hypoxylon rubiginosum, JM – Jackrogersella multi-

formis, PC – Penicillium chrysogenum, PF – Pestalotiopsis fici, PH 
– Pyrenopoylporus hunteri, XH – Xylaria hypoxylon 
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content, which is comparable to RNA-Seq-based prediction 

pipelines. Consequently, protein sequences derived from 

GeneMark predictions were chosen as the starting point for 

subsequent analysis. Nevertheless, protein translations can 

still differ from the actual protein sequences, which however 

has usually little influences on the recognition of ortholo-

gous proteins in other organisms. In addition, the number of 

unpredicted genes cannot be evaluated by the applied meth-

ods and therefore some of the conserved proteins might be 

missed for the POCP analysis. As a result, the data presented 

in the following have to be treated as an approximation to 

the real values.

To study how POCP numbers vary across families, P. 

fici (Sordariomycetes, Xylariomycetidae, Xylariales, Spo-

rocadaceae), Aspergillus niger and Penicillium chrysoge-

num (both Eurotiomycetes, Eurotiomycetidae, Eurotiales, 

Aspergillaceae) were included in the dataset. The values 

ranged from 72.5 to 95.8% within the Hypoxylaceae and 

were in general higher for phylogenetically related species, 

albeit with some exceptions. For example, H. rickii shares 

82.6% of its encoded proteins with P. hunteri, and Hypom. 

monticulosa shows a similar number compared to H. pulici-

cidum. Surprisingly, between the selected members of the 

genus Hypoxylon the POCP did not exceed values higher 

than 79.8%, but also did not fall below 72.5% confirming 

the already known heterogeneity of the genus (Wendt et al. 

2018). As these numbers strongly overlap with those of spe-

cies from different genera or are even sometimes smaller, 

there is no clear boundary between interspecific and interge-

neric POCPs. In comparison, the values between other mem-

bers of the Xylariales and Hypoxylaceae are located in the 

range of 62.5 to 66.8% for X. hypoxylon and 55.6 to 60.1% 

for P. fici. These values do not overlap with those calculated 

for species within the Hypoxylaceae in our taxon selection. 

The POCP values significantly drop when comparing unre-

lated species as demonstrated by A. niger and P. chrysoge-

num where the numbers were always below 50% (but not 

lower than 40.3%). The POCP analysis has been proposed 

as a measure to define genus boundaries in prokaryotes 

(Qin et al. 2014). The authors demonstrated that species of 

different genera share less than half of their proteins and 

consequently selected 50% as threshold for genus delimita-

tions. As shown herein this value is not applicable for fun-

gal taxonomy and overall proves that genes are much more 

conserved in fungi than in bacteria. However, POCP analysis 

might be helpful to delimit species or define family borders 

Fig. 4  Pairwise Average Nucleotide Identity (ANI) analysis between 
genome-sequenced fungi in this study. Species located within dashed 
line belong to the Hypoxylaceae. AT – Annulohypoxylon truncatum, 
DC – Daldinia concentrica, Dsp – Daldinia sp., HF – Hypoxylon 

fragiforme, HL – Hypoxylon lienhwacheense, HM – Hypomontag-

nella monticulosa, HP – Hypoxylon pulicicidum, HSM – Hypomon-

tagnella submonticulosa, HSP – Hypomontagnella spongiphila, HR 
– Hypoxylon rickii, HRUB – Hypoxylon rubiginosum, JM – Jackrog-

ersella multiformis, PF – Pestalotiopsis fici, PH – Pyrenopolyporus 

hunteri, XH – Xylaria hypoxylon 
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in fungi. Even very closely related species differed in at least 

4.2% of their encoded conserved protein content. In order to 

determine how valuable this number is, various additional 

isolates of individual fungi should be genome-sequenced 

to compile a proper comparison and support the data by 

statistical means. In our example, the POCP analysis always 

yielded values between non-family members below 70%, 

while the values between Hypoxylaceae species were in all 

cases above 70%. Whether this threshold can be generally 

applied for fungi or whether it is even valid for the Xylari-

ales cannot be answered yet as additional fungi of various 

families from this particular order need to be sequenced. 

Furthermore, sequences of a broad range of genera within 

other fungal families are scarce to conduct such a respective 

study on the class or even division level. Nevertheless, based 

on our data we propose that members of the Hypoxylaceae 

share on average at least 70% of their encoded proteins. To 

the best of our knowledge, this is the first study to apply 

POCP analysis to a larger taxon selection in fungi.

ANI analysis

Besides the POCP, we analyzed the Average Nucleotide 

Identity (ANI, Fig. 4) of the species which measures the 

nucleotide-level genomic similarity between two genomes 

(Arahal 2014). The ANI values between members of the 

Hypoxylaceae varied from 71.1 to 93.3%. The (by far) high-

est similarity was found between the genomes of Hypom. 

monticulosa and Hypom. spongiphila. All other genome 

comparisons showed maximum values of 80.4%. In contrast, 

the nucleotide difference between X. hypoxylon and Hypoxy-

laceae species remained relatively stable around 32% (ANI 

68.5–67.8%). Based on our calculations, family members 

of the Hypoxylaceae share at least 70% of their nucleotide 

content. This threshold is identical with the one estimated 

for the POCP analysis. ANI analyses have been widely 

applied to check genomic variations between prokaryotic 

genomes and even revealed clear species boundaries (Jain 

et al. 2018). However, in fungi this method has only been 

used for very small taxon selections. In the case of Rhizoc-

tonia solani, four isolates were studied which only showed 

approximately 80% sequence similarity (Wibberg et  al. 

2015). In a more recent study, ANI was used to compare 

four related dermatophytic fungal species (Arthrodermata-

ceae). The generated numbers (76.4–90.0%) are comparable 

to those obtained in our study (Alshahni et al. 2018). Due 

to the lack of representative genome sequences for many 

fungal genera, the overall value of ANI analyses in fungal 

taxonomy, in particular for species and family delimitation, 

cannot be assessed by now. However, our study provides the 

first evidence that this method has an important application 

potential for mycologists in the future.

POCP vs ANI

When comparing the ANI and POCP between species pairs 

in the Hypoxylaceae, it can be seen that the latter values are 

overall higher. This is an indicator that genomic variation 

within a family is more strongly influenced by the changes 

in nucleotide content of conserved genes (such as single 

nucleotide polymorphisms—SNP) than by changes in gene 

content (including gene loss, gene gain, gene duplication). 

Interestingly, this pattern changes completely when compar-

ing family members of the Hypoxylaceae with non-family 

members, where the POCP numbers are much lower than 

the respective ANI numbers. In the case of the species pair 

X. hypoxylon/P. fici, the results become even more striking 

with an ANI of 70.8% compared to a POCP of 58.9%. Con-

sequently, it can be assumed that, in these particular cases, 

gene gain and loss is much more impactful towards spe-

ciation (and in consequence the development of phenotypic 

characters). Whether this observation represents a general 

pattern in fungi cannot be deduced from our preliminary 

data as much more representative species from the differ-

ent families of the Xylariales and also different orders need 

to be included. However, it points towards a weak spot in 

phylogenetic analysis for inferring taxonomic relationships 

as these calculations only reflect nucleotide differences in 

sequences of conserved genes. Future studies likely need to 

take variations on genome scale, such as genome size, gene 

content and genome rearrangement, into consideration to 

understand the evolution of fungi.

AAI analysis

The average amino acid identity (AAI, Fig. 5) measures the 

differences between orthologous proteins of different organ-

isms and therefore well reflects their evolutionary distances. 

Within our selected Hypoxylaceae, the AAI ranged from 

76.1 to 98.5% and X. hypoxylon showed values between 68.3 

and 70.7% when compared to other species. For P. fici the 

numbers dropped slightly and were in the range of 65.3 to 

67.8%. It appears that for this restricted taxon selection there 

is a clear difference between intergeneric and interfamilial 

values with an estimated threshold value of 75%. The AAI 

between Hypom. monticulosa and Hypom. spongiphila was 

by far the highest with 98.5% showing that the conserved 

proteins are nearly identical for species that have recently 

diverged. Whether this value overlaps with intraspecific 

AAI levels cannot be answered yet. This topic needs to be 

addressed in the future when more genome sequences of the 

same species become available. As expected, for all pairs the 

AAIs were higher than the ANIs as changes in the nucleotide 

sequence do not necessarily result in amino acid changes due 

to the genetic code (Castro-Chavez 2010). However, with 

increased taxonomic distance the AAI values approximated 
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Fig. 5  Pairwise Average Amino Acid Identity (AAI) analysis between 
genome-sequenced fungi in this study. Species located within dashed 
line belong to the Hypoxylaceae. AT – Annulohypoxylon truncatum, 
DC – Daldinia concentrica, Dsp – Daldinia sp., HF – Hypoxylon 

fragiforme, HL – Hypoxylon lienhwacheense, HM – Hypomontag-

nella monticulosa, HP – Hypoxylon pulicicidum, HSM – Hypomon-

tagnella submonticulosa, HSP – Hypomontagnella spongiphila, HR 
– Hypoxylon rickii, HRUB – Hypoxylon rubiginosum, JM – Jackrog-

ersella multiformis, PF – Pestalotiopsis fici, PH – Pyrenopolyporus 

hunteri, XH – Xylaria hypoxylon 

Fig. 6  Venn diagrams display-
ing number of shared homolo-
gous genes between related 
species of the Hypoxylaceae. 
A: clade 1 (HF – H. fragiforme, 
HR – H. rickii, HRUB – H. 

rubiginosum), B: clade 2 (AT 
– A. truncatum, HP – H. pulici-

cidum, JM – J. multiformis), 
C: clade 3 (HM – Hypom. 

monticulosa, HSM – Hypom. 

submonticulosa, HSP – Hypom. 

spongiphila), D: clade 4 (DC 
– D. concentrica, EL – E. lique-

scens, HL – H. lienhwacheense, 
PH – P. hunteri)
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those of the ANI. This result can be explained by a stochastic 

effect, where the likelihood of silent mutations (i.e. those 

that do not change the encoded amino acid) decreases with 

increasing numbers of mutations. Our preliminary data sug-

gest a potential application for AAI as means of taxonomic 

discrimination on family level. However, in fungi, in contrast 

to the POCP, AAI is more prone to errors in gene predic-

tion and should only be considered for genomes with high 

quality intron mapping in an optimal way verified by RNA 

sequencing.

Gene-based genome comparison

As the final step in our genomic comparison, we analyzed 

the number of shared (core) and individual genes between 

most closely related species of the Hypoxylaceae (corre-

sponding to the phylogenomic clades) as depicted in Venn 

diagrams (Fig. 6). Similar to the POCP, the numbers strongly 

depend on the accuracy of gene prediction and hence are 

not exact measurements. Nevertheless, they give an insight 

into the general distribution of orthologous genes between 

related and unrelated species. It is also important to state that 

the identified core genes in this analysis are only partially 

identical with the identified conserved proteins of the POCP 

analysis (see Methods section for more details), therefore the 

values can significantly vary.

Within clade 1, where H. rubiginosum was included for 

this analysis, the species had 7911 protein encoding genes 

in common. Despite the phylogenetic position of H. rubigi-

nosum the individual pairs within the diagram contained 

approx. the same amount of shared genes ranging from 8405 

(between H. fragiforme and H. rickii) to 8569 (between H. 

rickii and H. rubiginosum). When looking at the individual 

genes, H. fragiforme showed the least amount (1632), fol-

lowed by H. rickii (2038) and H. rubiginosum (4187). It 

appears that the discrepancy between the unique genes of 

H. rubiginosum and the other species is not a consequence 

of a reduced amount of shared genes, but instead caused by 

heavy gene gain (or less likely gene loss in all other species). 

This is also reflected by the genome size of H. rubiginosum 

which is by far the largest (48 Mbp) among the sequenced 

Hypoxylaceae.

Species within clade 2 share 8656 core genes and con-

tain between 1619 (J. multiformis) to 2386 (H. pulicicidum) 

singletons. The amount of common genes between the indi-

vidual pairs in the clade varied only slightly in the range of 

9107 to 9243 genes.

The three genome sequenced members of the Hypom. 

monticulosa species complex (clade 3) contain a core set 

of 10,253 genes. The gene overlap of Hypom. spongiph-

ila with Hypom. submonticulosa (10,330) is smaller than 

with Hypom. monticulosa (11,916). The latter exhibits also 

the lowest number of unique genes (510) within the three 

species, while Hypom. spongiphila and Hypom. submon-

ticulosa contain higher numbers (640 and 1271, respec-

tively). This result clearly indicates that despite their close 

taxonomic (and evolutionary) relationship, these taxa have 

already diverged regarding the gene content.

The last gene-based comparison involves all four spe-

cies of clade 4. Within this data subset, 6631 genes were 

shared among all taxa. A pairwise comparison reveals the 

presence of 7623 to 8563 common genes between H. lien-

hwacheense and other clade members. Similar numbers of 

conserved genes can be found for P. hunteri in relation to D. 

concentrica and E. liquescens (8008 and 7116, respectively). 

The latter two share the highest amount of genes (8791). 

Despite the relative small genome size of H. lienhwacheense 

(35.8 Mbp) and its low number of total genes (9924), this 

taxon still contains 1097 genes (11.1% of total gene content), 

which lack in the other three related organisms. In compari-

son, 1257, 1373 and 1490 singletons were identified for D. 

concentrica, E. liquescens and P. hunteri, respectively.

Based on these results, two main conclusions can be 

drawn. First of all, there is no obvious correlation between 

the number of shared genes and the genetic distance of two 

species indicating that presumably very closely related spe-

cies can have less genes in common than distantly related 

species pairs. This is well reflected in Fig. 6a where H. 

rickii shares almost 200 fewer genes with its close relative 

H. fragiforme than with the more distantly related H. rubigi-

nosum. Secondly, the relatively high number of singletons 

(genes exclusively present in a single genome within a given 

data matrix), in particular between genetically close spe-

cies (e.g. Hypom. monticulosa vs. Hypom. spongiphila, H. 

fragiforme vs. H. rickii, D. concentrica vs. E. liquescens), 

suggests a high rate of gene turnover. Due to the small set 

of genome-sequenced species, it cannot be evaluated which 

are the major driving forces of this result, but we assume 

that gene loss and gene acquisition contribute equally to this 

outcome. In the latter event, lateral gene transfer has been 

shown to substantially contribute to this phenomenon espe-

cially in cases where fungal species (such as Trichoderma 

species or plant-pathogens in the Magnaporthales) can colo-

nize a broad range of habitats and are in frequent contact 

with other fungi (Qiu et al. 2016; Druzhinina et al. 2018). As 

endophytes and saprotrophs the Hypoxylaceae are also in a 

constant competitive environment with other fungi offering 

an ideal opportunity to acquire new genes.

Authenticity of E. liquescens ATCC 46302

As a representative of a rather unusual genus inside the 

Hypoxylaceae, we decided to include Entonaema liq-

uescens in our genome sequencing project. Members of 

Entonaema feature brightly colored stromata with usu-

ally orange KOH-extractable pigments and a liquid-filled 
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cavity as a unique character and can therefore be dis-

tinguished from other hypoxyloid genera (Stadler et al. 

2008). The type species of the genus is E. liquescens with 

a single existing culture which has been deposited at the 

ATCC (46302) more than 30 years ago. Different single 

loci of the strain were sequenced and included in various 

phylogenetic reconstructions of the family. In all of these 

studies, the fungus nested inside the genus Daldinia. As 

the massive stromata of Entonaema are reminiscent of 

those found in Daldinia and some species of the latter 

are known to possess gelatinous interiors (e.g. the Dal-

dinia vernicosa group, and in particular D. gelatinoides; 

Stadler et al. 2014a, b), the taxonomic position of Enton-

aema appeared plausible (Triebel et al. 2005; Wendt et al. 

2018). From a chemo-taxonomical point of view, E. liq-

uescens and a few other members of the genus (e.g. E. 

cinnabarinum, E. globosum) show striking differences to 

the phylogenetically related Daldinia species due to the 

presence of mitorubrin-type azaphilones (Stadler et al. 

2004). Within the Hypoxylaceae, this type of pigments 

can otherwise only be found in members of the genus 

Hypoxylon, thus offering a possibility to study conserva-

tion events and evolutionary aspects of the azaphilone 

biosynthesis on family level. In the context of a related 

study, we identified various sets of genes (i.e. biosynthetic 

gene clusters) putatively responsible for the assembly of 

mitorubrin-type compounds in H. fragiforme (Becker et al. 

in preparation) and found a high degree of gene conserva-

tion in other azaphilone-producing Hypoxylaceae (i.e. J. 

multiformis, H. pulicicidum, H. rickii, H. rubiginosum). 

In contrast, most of the species that are devoid of those 

pigments did not contain the respective genes with the 

exception of Hypom. monticulosa and Hypom. spongiphila 

(data not shown, but will be part of a subsequent study). 

When screening the genome of E. liquescens for the pres-

ence of homologous gene clusters, no hits could be found. 

As the genome sequence of this fungus provides one of 

the best resolutions (N50 of 3.5 Mbp, 31 contigs) within 

this study, it appears unlikely that the cluster has been 

missed due to sequencing gaps. This still leaves the pos-

sibility of convergent evolution of azaphilone biosynthetic 

genes in E. liquescens. However, as the genetic basis for 

azaphilone assembly seems to be conserved across various 

ascomycetes (see Monascus spp. and Aspergillus niger; 

Zabala et al. 2012; Chen et al. 2017), this is not a likely 

scenario. Consequently, the genomic investigation raised 

serious concerns about the authenticity of the E. liques-

cens strain ATCC 46302. To exclude the possibility that 

Fig. 7  Culture morphol-
ogy of various members of 
the Hypomontagnella mon-

ticulosa species complex after 
16 days of growth on differ-
ent media (YMG, PDA, OA). 
HM – Hypom. monticulosa 
MUCL 54604, HS – Hypom. 

spongiphila MUCL 57903, 
HSM – Hypom. submonticulosa 
DAOMC 242471
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the strain has been contaminated on our side, the extracted 

ITS and TUB2 sequences of the genome were compared to 

those previously reported (AY616686, KX271248; Triebel 

et al. 2005; Wendt et al. 2018), which were in agreement 

with each other. In addition, the sequences do not fit with 

any known ITS-sequenced Daldinia species (Stadler et al. 

2014b) (closest BLAST hits with 97.0% similarity is D. 

korfii, Sir et al. 2016) rendering identification to species 

rank impossible in case of a contaminant. In order to con-

firm whether the isolate it a true member of Entonaema 

or a contaminating Daldinia species, fresh specimens of 

the genus and in particular E. liquescens need to be recol-

lected and multiple isolates have to be obtained for com-

parison. As this has not been achieved yet due to the rare 

occurrence of E. liquescens, ATCC 46302 is retained in 

the analysis herein, especially since it still constitutes a 

member of the Hypoxylaceae.

Taxonomy

Based on the genomic and ecological differences between 

Hypomontagnella monticulosa MUCL 54604 and tenta-

tively identified Hypom. monticulosa CLL-205, a new 

species is proposed and described in the following for the 

latter fungus.

Hypomontagnella spongiphila Kuhnert, sp. nov.

MB 833748 (Figs. 7, 8)

Holotype: French Polynesia, Tahiti, coastal area, cave of Ti-

Pari, 20 m depth, 9°45.421′S, 139°08.275′W, isolated from 

a Sphaerocladina sponge, 17 Dec. 2015 (host material), leg. 

C. Debitus, UP-CLL-205 (ex-type culture MUCL 57903, 

GenBank Acc. No.: ITS—KY744359/ MK131719, LSU—

MK131717, RPB2—MK135890, β-tubulin—MK135892).

Etymology: Refers to the sponge host from which it was 

isolated.

Known distribution/host preference: Only known from the 

holotype.

It differs from Hypomontagnella monticulosa by its marine 

habitat, sterile cultures and slow growth on PDA as well as 

radially furrowed cultures on OA.

Sexual and asexual morph: not observed.

Culture: After 16 d at room temperature. Colonies on YMG 

white, sterile, velvety to felty and flat; zonate only in the 

center, with entire margins, reaching > 60 mm diam., reverse 

Fig. 8  Whole genome macro-
synteny plot between Hypom. 

monticulosa and Hypom. spon-

giphila. Dotted lines represent 
contig borders
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uncolored; on PDA white, sterile, azonate, velvety to slightly 

cottony, with slightly undulate margins, reaching > 40 mm 

diam., reverse uncolored; on OA reaching > 50 mm diam., 

white, sterile, velvety with slightly cottony at the center, 

radially furrowed surface and filiform margins formed by 

aerial mycelium tufts, reverse uncolored. Mycelial cords are 

sporadically formed on all media. No sporulation observed.

Secondary metabolites: Cultures produce sporothriolide and 

derivatives, sporochartines A-E, trienylfuranol A in PDB.

Notes: Hypomontagnella spongiphila appears identical to 

Hypom. monticulosa based on phylogenetic and chemo-

taxonomic data as sequences only slightly differ and the 

production of metabolites is very similar (Lambert et al. 

2019). Morphological characters for comparison are rare 

as the fungus remains sterile under different culture condi-

tions and stromata formation cannot be induced artificially. 

It also appears unlikely that sexual structures are formed in 

a marine environment. Therefore, Hypom. spongiphila was 

grown on different media (YMG, PDA, OA) in comparison 

with its close relatives Hypom. monticulosa and Hypom. 

submonticulosa (Fig. 7). In general, growth speed of the 

strain on PDA was much slower than those observed for 

the other fungi. Both relatives formed sporulating regions 

after 14 days, while Hypom. spongiphila remained sterile 

even after 5 weeks of incubation. On YMG media morphol-

ogy only slightly differed between Hypom. spongiphila and 

Hypom. monticulosa, whereas Hypom. submonticulosa dif-

fered substantially. The appearance of the strains on OA was 

strikingly different as Hypom. monticulosa only produced 

visual mycelia in the center, which started to grow subsurfi-

cially towards the edge of the plate. In contrast, Hypom. 

spongiphila formed radially furrowed surfaces with fili-

form margins, which appeared related to the morphology of 

Hypom. submonticulosa. The genomic comparison revealed 

obvious differences between the different Hypomontagnella 

isolates (see Fig. 6c) in terms of gene content. More than 

600 genes were predicted to be restricted to Hypom. spon-

giphila in the Hypomontagnella subset, whereas the direct 

comparison of H. spongiphila and H. monticulosa shows 

more than 700 singletons corresponding to roughly 5.5% of 

the total gene content (note that this value slightly differs 

from the respective POCP dataset as both analyses are based 

on different models for homology search). The function of 

the majority of these singletons could not be identified as the 

respective protein sequences showed no known homologs in 

the BLAST databases. These genes might be involved in the 

adaptation to marine environments, in particular in osmo-

tolerance and nutrient uptake. To study whether the genetic 

differences between Hypom. monticulosa and Hypom. spon-

giphila can be also seen in the organization of the chro-

mosomes, a macrosynteny analysis between both genomes 

was carried out. In Fig. 8 a high genomic synteny can be 

observed between both organisms with occasional inversions 

of larger chromosomal areas. This suggests that the separa-

tion of the two species is a rather recent event, which is also 

supported by the 93.3% average nucleotide identity (Fig. 4) 

and 98.5% average amino acid identity.

The erection of a new fungal species evidenced by 

genomic information is a novel approach in fungal taxon-

omy. Such approaches are only feasible if genome data of 

related organism are available or are generated in the context 

of respective studies. We are aware that such sophisticated 

techniques are currently still not feasible for the majority of 

researchers. That is why for the time being other diagnos-

tic features need to be included in the species description, 

which can be accessed by taxonomists. We see the ecologi-

cal niche of Hypom. spongiphila and the morphological dif-

ferences of the cultures as sufficient to fulfill such a criterion.

Conclusion and Outlook

Herein, we introduced the genomes of thirteen Hypoxy-

laceae species representing the major phylogenetic lineages 

of the family and the outgroup genome of Xylaria hypoxy-

lon. The usage of third generation sequencing methods ena-

bled the assembly of high-quality draft genome sequences 

with an average N50 of 3.0 Mbp, which served as the basis 

for phylogenomic reconstructions and thorough genomic 

comparisons. We created the first phylogenomic trees for 

the Hypoxylaceae, which for the first time in fungal tax-

onomy are based on a set of 4912 protein sequences per 

organism in place of nucleotide sequences. The tree topol-

ogy is identical to previous multigene-based calculations, 

but with superior node support values rendering it the most 

stable phylogenetic reconstruction for this family. The appli-

cation of POCP, ANI and AAI analyses on a larger set of 

related fungal species to investigate their relationships and to 

deduce taxonomic hierarchies is a novel approach in mycol-

ogy. Species within the Hypoxylacae have around 70% of 

their protein content conserved and share an overall genome-

wide nucleotide identity of at least 70%. The similarity of 

the conserved protein sequences shows slightly higher val-

ues with clear differences beyond family level. However, 

this analysis strongly depends on the accuracy of the gene 

prediction. These thresholds have application potential to 

define family level associations but need to be re-evaluated 

on a larger taxon selection and also different fungal families. 

The comparison of genome-sequences also enabled the dif-

ferentiation of fungi on the species level, especially in cases 

where the morphological characters are scarce (e.g. in sterile 

environmental isolates) and the identity of marker (barcode) 

sequences is high. This led to the erection of Hypomontag-

nella spongiphila, a marine endosymbiotic isolate without 
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sexual or asexual morph. Despite the high genomic synteny 

of the new species with Hypom. monticulosa, it possesses 

around 700 unique genes in comparison. This change of 

genome content is likely caused by selection and evolution-

ary pressure under different environmental conditions. The 

analysis of differences in gene content is in our opinion a 

comprehensible approach to set species apart as it reflects 

events of adaptation and thus evolution much better than 

changes in nucleotide sequences in genomic loci. Therefore, 

we suggest a threshold of at least 5% differences in total 

gene content to unambiguously recognize new fungal spe-

cies when comparing closely related organisms.

The application of third generation sequencing methods 

to create high quality genome sequences for taxonomic pur-

poses in mycology is a consequent step to keep taxonomy 

on the same level as other research areas. It might appear 

unrealistic that such technology will be available for a broad 

range of mycologists across most countries around the world 

and thus limiting the value of such approaches. However, 

the current development of sequencing technologies points 

towards the mainstream application of genome sequencing 

with the already available sequencers in the size of USB 

flash drives (see MinION sequencing from Oxford Nano-

pore Technologies). New generations of sequencers will 

allow fast sequencing of complete fungal genomes with 

low error rates in almost every lab environment and prices 

for sequencing kits (the main factor for increased sequenc-

ing costs) will strongly decrease driven by the increased 

demand. Prices of around $100 per genome sequence are 

close to being realistic (https ://www.labio tech.eu/featu res/

genom e-seque ncing -revie w-proje cts/), making genomic 

approaches affordable also for taxonomists.

The genome sequences generated in this work will enable 

a broad range of investigations including studies on fungal 

evolution, population dynamics, host-fungus interactions, 

biodegradation and also biosynthesis of secondary metabo-

lites. We would like to point out, that in particular the latter 

is among our main interests. We are currently working on 

an in-depth evaluation of the biosynthetic capabilities of the 

Hypoxylaceae to get insights into the underlying enzyme 

machineries and the evolution of the respective pathways 

within the family. More than 750 biosynthesis related gene 

clusters (BGC) were found across the genome-sequenced 

species averaging 54 clusters per species. This value is com-

parable to other well-known secondary metabolite producers 

such as Fusarium, Aspergillus and Penicillium (Nielsen et al. 

2017; Hoogendoorn et al. 2018; Theobald et al. 2018). The 

identified BGCs include various types of pathways, among 

others responsible for the formation of polyketides, terpenes, 

peptides, meroterpenoids and alkaloids. The effort of this 

investigation already resulted in the discovery and character-

ization of the cytochalasin and azaphilone gene cluster in H. 

fragiforme (Wang et al. 2019; Becker et al. in preparation). 

More publications are in preparation and will expand the 

knowledge about secondary metabolism in fungi.
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