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Fig. 1. Our novel hyperspectral reconstruction algorithm works with input from any existing compressive imaging architecture, and yields high-quality results,

both in terms of spectral accuracy and spatial resolution. As the comparisons show, our results improve significantly over previous state-of-art methods. For

instance, both TwIST and SpaRSA provide suboptimal spatial reconstruction in general, while sparse coding yields a noisy reconstruction of the color chart,

and fails to accurately reconstruct the green border in the co�ee mug. The charts on the right show how our reconstruction provides an excellent fit to the

ground-truth data. In addition, we provide in this work a new high-resolution hyperspectral image dataset.

We present a novel hyperspectral image reconstruction algorithm, which
overcomes the long-standing tradeo� between spectral accuracy and spatial
resolution in existing compressive imaging approaches. Our method consists
of two steps: First, we learn nonlinear spectral representations from real-
world hyperspectral datasets; for this, we build a convolutional autoencoder,
which allows reconstructing its own input through its encoder and decoder
networks. Second, we introduce a novel optimization method, which jointly
regularizes the �delity of the learned nonlinear spectral representations
and the sparsity of gradients in the spatial domain, by means of our new
�delity prior. Our technique can be applied to any existing compressive
imaging architecture, and has been thoroughly tested both in simulation,
and by building a prototype hyperspectral imaging system. It outperforms
the state-of-the-art methods from each architecture, both in terms of spec-
tral accuracy and spatial resolution, while its computational complexity is
reduced by two orders of magnitude with respect to sparse coding tech-
niques. Moreover, we present two additional applications of our method:
hyperspectral interpolation and demosaicing. Last, we have created a new
high-resolution hyperspectral dataset containing sharper images of more
spectral variety than existing ones, available through our project website.
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1 INTRODUCTION

Di�erent from conventional RGB cameras, hyperspectral images
contain information from a much denser spectral sampling. This
additional data can then be used in many applications, including
appearance capture, environmental monitoring, scienti�c imaging,
astronomy, etc [Attas et al. 2003; Gat 2000; Kim 2013; Kim et al.
2012a,b, 2014; Lin et al. 2014; Rapantzikos and Balas 2005] Earlier
solutions focus on designing novel hardware architectures, includ-
ing the use of liquid crystal bandpass �lters, pushbroom scanners,
micro-translation stages, or digital mirror devices, to name a few.
These techniques share several limiting factors, such as the cost of
engineering and building the hardware, or the need to capture static
scenes only. Moreover, a common characteristic of these approaches
is the tradeo� between spatial resolution and spectral accuracy in
the captured results.
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Several methods have been proposed to overcome this tradeo�.
Optimization approaches de�ne a data �delity term and assume
certain natural image priors, such as correlations in the spatial and
the spectral domains. However, these hand-crafted priors are in-
su�cient to represent the wide variety and nonlinear nature of
real-world spectral data. Another recent trend relies on compressive
imaging: the hyperspectral information is optically coded, either in
the spatial or in the spatial-spectral domains, and the �nal signal
is reconstructed from the captured coded information. This recon-
struction represents a severely ill-posed problem (inferring dense
spectral power distributions from amonochromatic, encoded image),
for which many dictionary-based approaches exist. While sparse
coding has provided good results in general, the reconstruction
step imposes an extremely high computational cost. For instance,
reconstruction of one hyperspectral image at VGA resolution in the
recent spatial-spectral compressive technique by Lin et al. [2014]
takes approximately 25 hours.
In this paper, we present a novel technique to address the re-

construction problem of hyperspectral images, consisting of two
steps. First, we learn nonlinear spectral representations from real-
world hyperspectral datasets, leveraging the encoding-decoding
capabilities of a convolutional autoencoder. Second, we formulate a
novel optimization problem that jointly regularizes the �delity of
nonlinear representations and the sparsity in spatial gradients. An
important aspect in this step is our novel �delity prior, relating the
autoencoder with our optimization problem. The nonlinearity of our
method provides a key advantage over previous sparse coding tech-
niques, since it allows to reconstruct �ne details with high spatial
and spectral accuracy, outperforming state-of-the-art methods from
the three existing compressive imaging architectures: SD-CASSI,
SS-CASSI, and DD-CASSI. Moreover, our method can be applied to
input from any of such architectures, and is two orders of magnitude
faster than the state-of-the-art sparse coding approach.

We provide an in-depth analysis of all the factors and parameters
of our reconstruction algorithm. We have additionally captured a
new high-resolution hyperspectral image dataset, which �xes some
limiting aspects of other existing datasets, where images su�er from
low spatial resolution and are slightly out of focus, or present a
limited spectral range. Wemake this new database publicly available
at our project website1. together with our model and code. Moreover,
we show results on a prototype hyperspectral camera, and present
two additional applications of hyperspectral imaging.

2 RELATED WORK

There are many works that focus on developing hardware archi-
tectures to capture hyperspectral information. The most straight-
forward approach is temporal-spectral scanning, which isolates
wavelength measurements using di�erent bandpass or liquid crystal
tunable �lters (LCTF), while sequentially scanning the visible spec-
trum [Attas et al. 2003; Gat 2000; Lee and Kim 2014; Rapantzikos
and Balas 2005]. The spectral resolution of this approach is limited
by the number of �lters used. Temporal multiple-sampling has been
introduced using a micro-translation stage [Kim et al. 2012a; Kittle
et al. 2010], or a digital micro-mirror device (DMD) [Wu et al. 2011].

1Project website: http://vclab.kaist.ac.kr/siggraphasia2017p1/

Alternatively, spatial-spectral scanning approaches capture image
columns for each wavelength through a slit, using for instance
whiskbroom or pushbroom scanners [Brusco et al. 2006; Hoye and
Fridman 2013; Porter and Enmark 1987]. Other recent approaches
include kaleidoscope-based multiple sampling [Jeon et al. 2016], a
recon�gurable camera [Manakov et al. 2013], or designs aimed to
reduce hardware costs (e.g., [Alvarez et al. 2016; Baek et al. 2017;
Cao et al. 2011; Habel et al. 2012]). In the rest of this section, we
focus on reconstruction approaches from the captured data, which
is the main goal of our paper.

Optimization Approaches. Optimization techniques aim to over-
come the spatial-spectral tradeo� during reconstruction, usually
de�ning a data �delity term, and a total variation (TV) l1-norm regu-
larization term to emphasize sparsity of gradients. They rely on two
main assumptions: First, hyperspectral components present a very
high correlation in both the spatial and the spectral domains [Gol-
babaee et al. 2013; Zhang et al. 2011]. Second, hyperspectral vectors
belong to a low-dimensional subspace [Li et al. 2012; Martin et al.
2015]. Zhang et al. [2011], and Golbabaee et al. [2013] assume that
spectrally homogeneous segments exist in the spatial dimension,
while Li et al. [2012] assume that spectral gradients are approxi-
mately piecewise smooth. Similarly, Martin et al. [2015] introduce a
constrained optimization approach that infers spatial correlation.
However, these approaches still exhibit artifacts in the reconstructed
image structure and details. In our work, we replace hand-crafted
priors with data-driven priors trained as neural networks. This re-
duces the ill-posedness of the problem, and allows us to introduce
nonlinear representations of natural hyperspectral images.

Compressive Hyperspectral Imaging. Coded aperture snapshot
spectral imaging (CASSI) is one of the most popular hyperspec-
tral imaging approaches, allowing to capture dynamic scenes. The
de�ning aspect of these compressive techniques is that the cap-
tured coded information needs to be reconstructed to yield the �nal
image. CASSI can be divided into two classes, depending on how
spectral signatures are encoded: (1) spatially-encoded CASSI, using
a single disperser (SD-CASSI) [Kim et al. 2012a; Wagadarikar et al.
2008]; and (2) spatial-spectral CASSI, which codes information in
both domains (SS-CASSI [Lin et al. 2014], or dual-disperser DD-
CASSI [Gehm et al. 2007]). All these techniques share an intrinsic
tradeo� between spatial resolution and spectral accuracy, so the
reconstruction step de�nes the quality of the �nal image. Our novel
spectral reconstruction algorithm can be applied to captured input
from any compressive imaging technique, e.g., SD-CASSI, SS-CASSI,
and DD-CASSI, providing better results with a signi�cant speed-up
factor over other existing data-driven approaches.

Dictionary-based Approaches. A few recent data-driven methods
learn linear representations of natural spectral images as sparse
coded dictionaries, using public hyperspectral image datasets (e.g.,
[Chakrabarti and Zickler 2011; Yasuma et al. 2010]). In this context,
Peng et al. [2014] propose a denoising method during reconstruction.
Wang et al. [2015] introduce a dual-camera system, combining in-
formation from panchromatic video at a high frame rate with hyper-
spectral information at a low frame rate; panchromatic information
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Fig. 2. Schematic diagram showing the spectral reconstruction process in

(a) spatially-encoded CASSI, and (b) spatial-spectral CASSI. In spatially-

encoded CASSI (SD-CASSI), a coded projection is created first, then disper-

sion creates a shear. In spatial-spectral CASSI (SS-CASSI andDD-CASSI),

dispersion occurs first, then the sheared information is first coded, then

unsheared with additional optics. A reconstruction step (c) yields the final

spectral image in both cases.

is used to learn an overcomplete dictionary. Lin et al. [2014] intro-
duce a spatial-spectral encoding hyperspectral imager, equipped
with a di�raction grating. Dictionary-based techniques yield good re-
sults in general, although the required sparse reconstruction imposes
a high computational cost (for instance, reconstructing hyperspec-
tral images at less than VGA resolution takes about 25 hours [Lin
et al. 2014]). Moreover, while sparse coding yields overcomplete
dictionaries as linear representations of the scene, we make use of
a convolutional autoencoder, which produces nonlinear representa-
tions. Coupled with our novel global optimization technique that
jointly regularizes the �delity of these nonlinear presentations, our
reconstruction becomes more precise and e�cient.

3 COMPRESSIVE HYPERSPECTRAL IMAGING

Background. The spectral signatures imprinted by a coded aper-
ture are the fundamental building blocks in compressive hyperspec-
tral imaging; from these, the image is reconstructed by means of
optimization. There are two main ways to encode this spectral infor-
mation: spatial encoding, and spatial-spectral encoding. Figure 2(a)
depicts the former, used in SD-CASSI systems [Kim et al. 2012a;
Kittle et al. 2010; Wagadarikar et al. 2008]; a coded projection of the
spectrum is created �rst, then subsequently sheared by dispersion.
The reconstruction step for SD-CASSI therefore reconstructs the
image from sheared and coded information. On the other hand,
Figure 2(b) shows spatial-spectral CASSI, used in SS-CASSI [Lin
et al. 2014] and dual-disperser DD-CASSI [Gehm et al. 2007]. This
approach disperses incident rays �rst, then the mask creates a coded
projection; additional optics then unshear this information. As a
result, the spectral reconstruction for SS-CASSI and DD-CASSI re-
quires a simpler optimization than SD-CASSI, resulting in superior
results, at the cost of a more complex optical setup.
In this work, we focus on hyperspectral image reconstruction

from compressive input; as such, our method is agnostic to the
particular encoding of the input spectral data. Considering the com-
putational advantages, we use spatial-spectral encoding as our �rst
choice to test our reconstruction algorithm (implementation details
are given in Sections 4 and 5).

Image Formation. Let h (x ,y, λ) indicate the spectral intensity of
light with wavelength λ at location (x ,y). A mask creates coded

patterns given by its transmission functionT (x ,y), while dispersion
creates a shear along the horizontal axis, according to a dispersion
function ϕ (λ). In spatial encoding, e.g., SD-CASSI, the projected
light intensity on the sensor i (x ,y) can be represented as an integral
over all visible wavelengths Λ as:

i (x ,y) =

∫

Λ

T (x + ϕ (λ) ,y) h (x + ϕ (λ) ,y, λ) dλ. (1)

In contrast, in spatial-spectral encoding, e.g., DD-CASSI, the sheared
spectrum h(x + ϕ (λ),y, λ) is modulated by the coded mask T (x ,y),
and the result unsheared by ϕ (λ) in the opposite direction, resulting
in:

i (x ,y) =

∫

Λ

T (x − ϕ (λ) ,y) h (x ,y, λ) dλ. (2)

Note that the sign of the horizontal dispersion function ϕ (λ)

is reversed. In matrix-vector form, a hyperspectral image with C

channels can be expressed as h∈Rn , where n=H×W×C , and H and
W are the spatial dimensions of the image. Transmissivity can be
expressed by means of a sparse modulation matrixΦ ∈Rm×n , where
m=H×W is the number of pixels in the sensor. This matrix is made
up of ΦC ∈R

m×m submatrices for each wavelength. The product of
Φ and h yields the captured image i ∈Rm :

i = Φh. (3)

This equation describes a highly under-determined system, since
m≪n. In the next section, we describe our novel reconstruction
algorithm to restore the hyperspectral image h. A key aspect is
using a nonlinear operator learned through a convolutional autoen-
coder, instead of the common sparse coding approach of using linear
combinations of overcomplete dictionaries.

General Compressive Sensing vs. Compressive Hyperspectral Imag-

ing. Compressive hyperspectral imaging (HSI) could be considered
within a general compressive sensing (CS) approach. However, com-
pressive HSI has some particular characteristics that require a more
specialized solution to obtain high-quality results like ours: CS re-
constructs spatial image structures in 2D patches; color information
is reconstructed implicitly by combining reconstructions from the
three color channels, computed separately. On the contrary, HSI
reconstructs spectral images as 3D tensors, with stronger compres-
sion along the spectral dimension, resulting in higher complexity;
color cannot be reconstructed as in general CS, since it appears over-
lapped due to dispersion. In our HSI approach, a monochromatic
sensor captures 31 spectral channels (measurement rate of just 3% of
the spectral information, again with the additional problem of blur
due to dispersion). It is dispersion that combines the spectral and the
spatial domains (clearly visible in the captured coded information,
top-left of Figure 1), leading to the common tradeo� between spatial
and spectral resolution in HSI.

4 HYPERSPECTRAL IMAGE RECONSTRUCTION

Figure 3 shows an overview of our two-step process to reconstruct
hyperspectral images from encoded sensor signals. First, we train
a convolutional autoencoder to learn nonlinear representations of
real hyperspectral image tensors. This nonlinearity is a key aspect
of our reconstruction, since it will allow us to cover a wider range of
real-world spectral features. Second, we reconstruct hyperspectral
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Fig. 3. Overview of our hyperspectral image reconstruction. Our convo-

lutional autoencoder is first trained to learn nonlinear representations of

hyperspectral image tensors. The final hyperspectral images are then re-

constructed from the encoded sensor input by minimizing our objective

function, which includes a novel prior to regularize the fidelity of nonlinear

representations (refer to the text for details).

images from the encoded input by globally solving a nonlinear opti-
mization problem. As an important aspect in our formulation, we
introduce a novel prior term that enforces the data-driven autoen-
coder representations of the real world spectrum into reconstructed
signals. Our objective function jointly regularizes this term and the
sparsity of gradients to yield the �nal hyperspectral image.

4.1 Convolutional Autoencoder

Convolutional neural networks have been recently used in many
tasks, such as spectral image classi�cation [Li et al. 2017; Maggiori
et al. 2016], or to extract features from images [Long et al. 2015;
Taigman et al. 2014]. However, they are not intended to reconstruct
the original signals from extracted features, which is precisely our
goal. Autoencoders, on the other hand, are unsupervised neural
networks where the output and input layers share the same number
of nodes, and which can reconstruct its own inputs through encoder
and decoder functions [Hinton and Salakhutdinov 2006]. They have
been used for spectral image classi�cation [Chen et al. 2014; Lin
et al. 2013; Ma et al. 2016; Xing et al. 2016; Zabalza et al. 2016] or de-
noising [Vincent et al. 2010]. Masci et al. [2011] proposed the convo-
lutional autoencoder, where both convolution operations and activa-
tion functions operate on each layer. It has been successfully applied
for object retrieval [Leng et al. 2015], image classi�cation [Zhang
et al. 2016], denoising [Du et al. 2016], or real-time correction of mul-
tipath interference in time-of-�ight imaging [Marco et al. 2017]. In
this work, we leverage a convolutional autoencoder to �rst train an
encoder network to learn a representation of hyperspectral images
in a nonlinear space, then use the decoder network to reconstruct
the �nal image from coded sensor data.
Similar to previous works [Li et al. 2012; Martin et al. 2015], we

assume that hyperspectral vectors belong to a subspace of hidden
representations. However, instead of using predetermined bases
(such as discrete cosine transforms or wavelets) or dictionary-based
sparse coding [Lin et al. 2014; Peng et al. 2014; Wang et al. 2015],
we rely on the convolutional autoencoder to decompose input sig-
nals into a set of basis vectors and coe�cients. Moreover, while
common sparse coding approaches usually reconstruct signals by
linear combination of the basis functions, the autoencoder allows
for nonlinear reconstruction of hyperspectral information, which
�ts better the nonlinear nature of the problem, and thus leads to
better results (see Section 5).

Our convolutional autoencoder consists of two subnetworks: an
encoder network that transforms input training datasets into their
nonlinear representation (green block in Figure 4), and a decoder net-
work that generates the original datasets from these representations
(red block). Formally, the convolutional autoencoder A() is thus a
composition of two nonlinear functions: the encoder function E (),
and the decoder function D (). After training the network, we can
convert a hyperspectral image h into a nonlinear representation α

by using the encoder functionα=E (h). We can then reconstruct the
hyperspectral image h from α using the decoder function h≈D (α ),
which therefore acts as a hyperspectral image prior. This can be
described as:

A (h) = D (E (h)) ≈ h. (4)

Later, our signal reconstruction process searches for the nonlinear
hyperspectral representation that satis�es our image formation
model.

Network Architecture. As shown in Figure 4, our autoencoder
consists of (2×d+1) layers, excluding the input and the output layers,
where d is the number of hidden layers of each subnetwork. The
encoder network E (h) is placed at the beginning of the autoencoder.
Suppose an input ofH×W×C is fed into the encoder network. Then,
the encoder outputs a nonlinear representation of the hyperspectral
image, de�ned as:

E (h) =W
d+1
E ∗ FdE + b

d+1
E , (5)

F
l
E = σ (Wl

E ∗ F
l−1
E + b

l
E ) for l ∈ {1 . . .d } , (6)

where Wl
E
, Fl

E
, and b

l
E
are the kernel weight, the intermediate fea-

ture representation, and the bias in layer l of the encoder network,
respectively. The weights and the biases form an autoencoder. The
subscript E refers to the encoder. We set F0

E
as the input hyperspec-

tral image h. In Equation (6), σ is a nonlinear activation function,
so-called a recti�ed linear unit (ReLU), which is σ (·)=max (0, ·).
Note that in order not to impose any constraints on α in the later
reconstruction step, this activation function is not applied to the
output layer in Equation (5). Refer to Section 4.3 for more details.
Similar to the architecture of the encoder network, the decoder

network with d hidden layers is de�ned as:

D (α ) = σ (Wd+1
D ∗ FdD + b

d+1
D ), (7)

F
l
D = σ (Wl

D ∗ F
l−1
D + b

l
D ) for l ∈ {1 . . .d } , (8)

where F0
D
is the nonlinear representation α of the hyperspectral

image. For the �rst convolutional layer of the encoder network,
F
1
E
, we use 3×3×C , but the other layers are convolved with kernels

of 3×3×R. The spatial resolution of the image and hidden layers
remains the same. Note that our goal is to reconstruct the original
signals, rather than to extract feature vectors like most existing
applications of convolutional autoencoders. In that sense, our fea-
ture vectors can be seen as low-dimensional subspaces de�ning
hyperspectral vectors, analogous to overcomplete dictionaries in
sparse coding. We found that the number of feature vectors R has
a signi�cant impact on the accuracy of the reconstructed signal,
with more feature vectors yielding better results, as Figure 5(a)
shows. However, there is a practical tradeo� between performance
and memory; in practice, we �x the number of feature vectors in
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ber of feature vectors R when reconstructing the original signals. The origi-

nal signal has C=31 channels: When R ≪C , (R=7 and R=10 in the figure),

the reconstruction quality is poor, improving significantly when R ≈C . For

R ≫C , accuracy increases only slightly. In our paper, we choose R= 64.

(b) Comparison between the input ground truth and the reconstructed im-

age. The average PSNR and SSIM values of the 31 channels from 400 nm to

700 nm are 44.24 dB and 0.98, respectively. (c) Spectral comparison between

the ground truth and the reconstruction.

each layer to R=64 (larger than the original C=31). Figures 5(b) and
(c) show an example of a hyperspectral reconstruction with R=64
feature vectors and 11 hidden layers. The reconstructed spectral
information is virtually identical to the original.

Training Procedure. Our de�nition of the autoencoder includes a
set of parameters θ={(Wl

E
, bl

E
), (Wl

D
, bl

D
)}d+1
l=1

. To learn nonlinear
representations of hyperspectral images, we train the autoencoder
network and �nd the particular set θ that minimizes a loss function.
Given a set of k hyperspectral imagesH={h(i ) }ki=1, our loss function
J (H,θ ) including a decay term to avoid over�tting is:

1

2k

k∑

i=1

A(h
(i ) ) − h(i )


2
+

τw

2

d+1∑

l=1

(

∥W l
E ∥

2
+ ∥W l

D ∥
2
)

, (9)

where A(h(i ) ) can be alternatively expressed as D (E (h(i ) )), and τw
balances the relative importance between data �delity and the regu-
larization to avoid over�tting. Following Glorot and Bengio [2010],
we initialize both W

l
E
and W

l
D
using the normalized initialization

in order to maintain variances of back-propagated gradients and
activation.

Implementation Details. We created augmented training datasets
using 109 hyperspectral images obtained from the publicly available
Harvard [Chakrabarti and Zickler 2011] and Columbia [Yasuma et al.
2010] datasets (77 images from the former, and 32 from the latter).
Each hyperspectral image includes approximately 31 wavelength
channels. We additionally augmented this initial image dataset fol-
lowing existing network training approaches [Simonyan and Zis-
serman 2015]. In order to achieve scale invariance for input images,
we scaled the input dataset to two additional resolutions (half and
double); this results in 327 hyperspectral images. We sampled 21,760
tensor patches of size 96×96×31 from this augmented dataset. We
employ TensorFlow [Abadi et al. 2016] to implement our autoen-
coder, minimize the loss function in Equation (9) using the ADAM
gradient descent method [Kingma and Ba 2014], and train it up to
60 epochs. The batch size is set to 64 with a learning rate of 10−4

for gradient descent; the weight τw for the decay term is set to 10−8.
With R = 64 feature channels and 11 hidden layers, it took approxi-
mately 30 hours to training the network, using a machine equipped
with an i7-6770k CPU with 64GB of memory and an NVIDIA Titan
X Pascal GPU with 12GB of memory.

4.2 Reconstruction via Optimization

As we have seen, we represent a hyperspectral image as h≈D (α ),
with α∈Rq , and q=H×W×R. Thus, the compressive image forma-
tion de�ned in Equation (3) can be re-written as:

i = Φh ≈ ΦD (α ) . (10)

Note that although this equation is similar to the linear combination
of overcomplete dictionaries in sparse coding [Lin et al. 2014], our
decoder D () is now a nonlinear operator.

Sincem≪n inΦ ∈Rm×n , Equation (10) de�nes an under-determined
system. This makes the inverse problem of reconstructing a hyper-
spectral image h from an observation i severely ill-posed. We for-
mulate our hyperspectral reconstruction by means of an objective
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function as:

min
α
∥i − ΦD (α )∥22
︸           ︷︷           ︸

data terms

+τ1∥α − E (D (α ))∥22 + τ2∥∇xyD (α )∥1
︸                                           ︷︷                                           ︸

prior terms

, (11)

where E:Rn→Rq is the encoder introduced in Section 4.1, ∇xy de-
notes the spatial gradient operator, and τ1 and τ2 weigh the relative
importance between the data �delity and the prior terms. Our �rst
prior term regularizes the �delity of nonlinear representations using
the encoder-decoder pair, while the second prior is a total variation
(TV) l1-norm regularizer, favoring sparsity of gradients in the spatial
domain. The �rst prior term of α -�delity is the key contribution
in our objective function, since it allows us to relate autoencoder
representations with our optimization problem. This has a large
impact on the spectral accuracy of the reconstructed images, as
Figure 9 shows.

Optimization. Since the gradient sparsity term of TV is not di�er-
entiable, we �rst split our objective function in Equation (11) into
two problems:

f (α ) = ∥i − ΦD (α )∥22 + τ1 ∥α − E (D (α ))∥22 , (12)

д (z) = τ2 ∥z∥1 , (13)

so that our optimization problem can be re-formulated as:

min
α

f (α ) + д (z) subject to ∇xyD (α ) − z = 0, (14)

where z represents the spatial gradients of the reconstructed hy-
perspectral images. We iteratively solve this problem using the
alternating direction method of multipliers (ADMM), as shown in
Algorithm 1. We summarize here the key aspects of this solution,
and refer the interested reader to other recent works for a more
detailed explanation of this technique (e.g., [Afonso et al. 2011]).
First, the l2 terms are updated in Line 3, minimized by the ADAM
optimizer [Kingma and Ba 2014]. We then minimize the l1 term with
an auxiliary variable z in Line 4, using proximal gradient descent; we
update this term using an element-wise soft-thresholding function
Sτ2/ρ , shown in Line 5. Parameters τ2 and ρ in Algorithm 1 control
the strength of the sparsity of gradients ∇xyD (α ) constraint as:

Sτ2/ρ (vi ) =





vi − τ2/ρ, if vi > τ2/ρ,

0, if |vi | ≤ τ2/ρ,

vi + τ2/ρ, if vi < −τ2/ρ.

(15)

The Lagrangian multipliers u are then updated in Line 6, via gradi-
ent ascent, to satisfy the constraint in Equation (14). This process
is repeated until we reach the stopping criterium. Once we have
obtained the solution representations α opt, we recover the �nal
hyperspectral image using the decoder as D (α opt).

4.3 Discussion

Parameters. In Equation (11), we set τ1 for the nonlinear represen-
tational �delity to 0.1, while τ2 and ρ in Algorithm 1 are set to 10−3

and 10−1 , respectively. Our optimizer performs approximately 20

ADMM iterations. The ADAM optimizer for f (α ) in Equation (14)
iterates 200 steps with a learning rate of 5× 10−2.

ALGORITHM 1: ADMM solution of Equation (14)

1: initialization

2: repeat

3: α (k+1)
= argmin

α

(

f (α ) +
ρ
2

∇xyD (α ) − z(k ) + u(k )

2

2

)

4: z
(k+1)

= argmin
z

(

д (z) +
ρ
2

∇xyD (α (k+1) ) − z + u(k )

2

2

)

5: = Sτ2/ρ
(

∇xyD (α (k+1) ) + u(k )
)

6: u
(k+1)

= u
(k )
+ ∇xyD (α (k+1) ) − z(k+1)

7: until the stopping criterion is satis�ed.

Time Complexity. The time complexity of our hyperspectral im-
age reconstruction is proportional to the number of multiplications
performed in our convolutional autoencoder. When performing
one-stride convolutions, the number of multiplications for a con-
volutional layer is (H×W )×(w×w×Ri )×Ro , where w is the kernel
size, and Ri and Ro are the number of feature maps for the input
and output of the convolution. In our convolutional autoencoder
(64 features with eleven hidden layers) with 3×3 kernels, the total
number of multiplications is approximately 4.4×H×W×105. Com-
pared to the current state-of-the-art data-driven approach [Lin et al.
2014], the sparse coding method can be considered as a shallow
convolutional neural network without hidden layers nor activation
functions. Using a dictionary with 6200 atoms of 10×10×31 hyper-
spectral image patches, the estimated number of multiplications is
(H×W )×(10×10×31)×6200≈ 1.9×H×W×107, which is two orders of
magnitude more.

Activation in the Encoder. As described in Section 4.1 and in Fig-
ure 4, a ReLU activation function is absent in the output layer of
the encoder. This indicates that our nonlinear representation α of
hyperspectral images is not constrained to be sparse. Although we
do not explicitly impose sparsity, the autoencoder makes the repre-
sentation sparse while α passes through other layers with a ReLU
activation function. Another advantage of this absence is that it
simpli�es our nonlinear optimization. Adding a ReLU activation
function in the output layer of the encoder would require an extra
non-negative constraint satisfaction term in Equation (11); more-
over, two more variables, an auxiliary variable and a Lagrangian
variable, would have to be introduced in our ADMM formulation in
Equation (14). As a result, convergence would be slower.

Global vs. Local Optimization. Global optimization approaches,
such as TwIST and SpaRSA, are more e�ective in reconstructing
spectral information, while local optimization techniques such as
sparse coding operate on each patch independently, preserving
image structures well. However, the amount of dispersion is limited
by the patch size, which strongly a�ects computational costs. Our
approach combines the bene�ts of both local and global optimization
via the convolutional autoencoder and the total variation terms.

5 RESULTS

To evaluate the performance of our reconstruction algorithm, we
have �rst created a test set of encoded input images from the existing
Harvard [Chakrabarti and Zickler 2011] and Columbia [Yasuma et al.
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Fig. 6. Comparison of spectral reflectance accuracy (le�), spatial reflectance accuracy (middle), and computational times (right) of four di�erent methods:

TwIST, SpaRSA, sparse coding, and ours (average of 32 spectral images from the Columbia spectral image dataset).
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Fig. 7. Comparison of the spectral accuracy of our reconstruction against three state-of-the-art methods: (a) TwIST, (b) SpaRSA, (c) sparse coding (SC), and

(d) our method. The numbers in the parenthesis on top of the pictures show pixel-wise spectral di�erences between the result and the ground-truth (PSNR and
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spectra for the 24 patches. Our algorithm outperforms all the other methods on average, and on most of the individual color patches. Moreover, our spatial

reconstruction is free from spatial artifacts visible in the other methods. The spatial accuracy of the reconstruction is further analyzed in Figure 8.
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2010] spectral image datasets2. In addition, we have created a new
dataset (see Figure 12 and supplementals) by simulating the imaging
process with the three main types of encoding architectures: SD-
CASSI, DD-CASSI and SS-CASSI, as described in Section 3 (note
that the modulation matrix Φ in Equation (11) changes depending
on the image formation model3).

We compare our results against three other state-of-the-art meth-
ods, representing the three di�erent encoding architectures: TwIST
[Bioucas-Dias and Figueiredo 2007], SpaRSA [Wright et al. 2009],
and sparse coding [Lin et al. 2014]. We choose the best imaging
architecture for each method to produce these results: DD-CASSI
for TwIST and SpaRSA, and SS-CASSI for sparse coding and ours.
As we show in this section, our reconstructions show a signi�cant
improvement in both spectral and spatial accuracy. Moreover, our
method is the fastest of the three. Figure 6 shows average results over
the Columbia image dataset. Additionally, we provide an analysis
of the parameter space, compare our method against ground truth
and a straightforward learning-based reconstruction [Kulkarni et al.
2016], introduce our new hyperspectral dataset, and present results
with a real hyperspectral imaging system. Last, we propose two
applications of our method, without any hardware modi�cations:
from multi- to hyperspectral interpolation, and hyperspectral demo-
saicing. Refer to supplemental materials and our project website for
more results and materials not included in the rest of the section.

5.1 Spectral Accuracy vs. Spatial Resolution

Existing reconstruction techniques share an intrinsic tradeo� be-
tween spectral accuracy and spatial resolution, which de�nes the
quality of the �nal image. As shown in Figure 1, traditional opti-
mization approaches such as TwIST and SpaRSA yield good results
in spectral accuracy, but at the cost of suboptimal spatial resolution.
On the other hand, the data-driven approach based on sparse coding
o�ers good spatial resolution, but sacri�cing spectral accuracy. In
contrast, our method yields high-quality results in both domains.
We compare here the performance of our reconstruction algorithm
in terms of spectral accuracy and spatial resolution, respectively.

Spectral Accuracy. We evaluate the spectral accuracy of our recon-
structed spectral images by calculating peak signal-to-noise ratios
(PSNR), and structural similarity (SSIM). Figure 7 shows side-by-side
comparisons for the ColorChecker hyperspectral image from the
Columbia dataset. We converted the results of spectral images to
sRGB via the revised 2-degree CIE color matching functions [Vos
1978] for visualization. The averaged PSNR and SSIM of our result
(38.87dB/0.98) across the 31 wavelength channels outperforms all
the reconstructions of TwIST (31.57dB/0.94), SpaRSA (30.59dB/0.94)
and sparse coding (28.85db/0.92). In addition, we evaluate the re-
constructed spectral re�ectances of �ve primary colors in the chart:
blue, green, red, yellow, and pink; our results are consistently closer
to the ground truth than the rest of the methods. The table at the
bottom shows root-mean-squared errors (RMSEs) for each color
patch, as well as the average.

2We use visible spectral wavelengths between 420 nm and 720 nm to avoid the in-
accuracy between 400 nm and 410 nm in common LCTF measurements [Imai et al.
2002].
3For SD-CASSI and DD-CASSI, the amount of dispersion is set to one pixel per 10 nm.
For SS-CASSI, we set the spectrum shift ratio to 0.1 following [Lin et al. 2014].
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Spatial Resolution. We evaluate the spatial resolution of our re-
constructed spectral images by calculating spatial frequency re-
sponses as modulation transfer functions (MTFs). We reconstruct
the standard spatial frequencymeasurement chart (ISO 12233), again
using TwIST, SpaRSA, sparse coding, and our method. Figure 8
shows the results. Like other existing optimization methods, TwIST
and SpaRSA show suboptimal reconstruction of spatial frequencies.
While the recent data-driven approach based on sparse coding [Lin
et al. 2014] improves this spatial resolution, our method clearly
yields the best results.

5.2 Analysis of Parameters

Impact of the Fidelity Prior. One of the key novelties of our opti-
mization formulation is ourα -�delity prior in Equation (11), relating
the nonlinear representations from the trained autoencoder with
the reconstruction problem. In Figure 9, this novel prior has a large
impact on the accuracy of the reconstruction. PSNR increases sig-
ni�cantly from 30.84dB to 34.33dB, while SSIM also increases from
0.93 to 0.96. Moreover, in the second row we show how the prior
in�uences the PSNR with the number of iterations, as well as the
re�ectance accuracy for the yellow and the red feathers.
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Fig. 11. Reconstruction results: TwIST, SparRSA, sparse coding, and our method, on three datasets: Columbia, Harvard, and our new dataset. The overlaid

numbers in parenthesis show the average PSNRs and SSIMs of reflectance. The numbers in the plot legends indicate the spectral RMSEs of the reconstructed

spectra. Our reconstruction method outperforms all three methods in terms of spatial resolution and spectral accuracy. Refer to supplemental materials for

more results, including images for each reconstructed wavelength.

Fig. 12. Representative thumbnails of our new high-resolution, hyperspec-

tral dataset (h�p://vclab.kaist.ac.kr/siggraphasia2017p1/).

Impact of Hidden Layers. Figure 10 shows the impact of the num-
ber of hidden layers on the spatial resolution of the reconstruction.
We found that after eleven layers there is no signi�cant increase
of spatial resolution. Given the tradeo� between performance and
memory, we set the number of hidden layers to eleven.

5.3 Additional Comparisons

We conducted an additional experiment to provide further compar-
isons with the beta process factor analysis (BPFA) [Rajwade et al.
2013] and a low-rank reconstruction method [Fu et al. 2016]. Our
quantitative evaluations in this subsection are computed for re-
�ectance, rather than radiance, to ensure color �delity; this typically
lowers PSNR values by 2.0 to 3.0 dB, compared to radiance. In BPFA,
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construction (27.58 dB and 0.86).

hyperspectral images are reconstructed from coded inputs, adopting
the reconstruction method used in blind compressive sensing. The
latter method re�nes initial estimations of hyperspectral images
exploiting the spectral-spatial correlation that exists in similar, non-
local hyperspectral image patches. For the 32 hyperspectral images
from the Columbia dataset, the average PSNR and SSIM measure-
ments were 21.71 dB and 0.69 for BPFA, and 24.48 dB and 0.85 for
the low-rank reconstruction, while for our method we obtained
32.46 dB and 0.95, respectively (see Figure 13). Note that BPFA is
designed for multi-frame CASSI, but we only used a single input for
fairness of comparison. As mentioned, the quality of the low-rank
reconstruction depends on initial estimations, which is a TwIST
reconstruction in this case. Therefore, the PSNR and SSIM values of
the low-rank reconstruction are higher or equal to those of TwIST
(23.74 dB/0.85) shown in Figure 6.

A straightforward learning-based reconstruction would train an
end-to-end regression network taking compressive measurements
as input, and outputting the corresponding original images; the
modulation matrix Φ would be implicitly encoded in the regression
model. We compare our reconstruction to a recent regression-based
network [Kulkarni et al. 2016]. Since it had not been originally de-
signed for hyperspectral imaging, we modi�ed it to train a deep

convolutional regression network that directly estimates a hyper-
spectral image from a compressive input. The revised deep regres-
sion network consists of eleven hidden convolutional layers with
64 feature maps. The convolutions are performed with 3×3 kernels,
using ReLU activation functions. For training, we used the Columbia
dataset, where the size of the images is 512×512. Note that this deep
regression network is restricted to 512×512 images, since the model
implicitly encodes the �xed modulation matrix Φ in the network.
We trained the network using the ADAM optimizer. Packing eight
images as a batch, training was carried out for 3000 epochs.

For comparisons, we used 32 spectral images from the Columbia
dataset. Since the regression-based reconstruction does not need an
optimization step, it is very fast (average of 0.14 sec.); however, it
yields signi�cantly less accurate reconstructions both in the spec-
tral and spatial domains. Figure 13 (two rightmost close-ups) shows
representative results, while Figure 14 shows PSNR and SSIM val-
ues averaged across the whole dataset. Besides the lower quality of
the regression-based reconstruction, learning an end-to-end regres-
sion requires training a di�erent model each time the image setup
changes (image size, mask patterns, lens, or the pixel pitch of the
sensor), which is highly impractical.

5.4 A New Hyperspectral Image Dataset

During our experiments, we found that the Columbia dataset o�ers
images with a wide range of spectral information, but at low spatial
resolution and slightly out-of-focus. Similarly, the Harvard dataset
provides high spatial resolution, but limited spectral range. To im-
prove this, we have additionally captured a new high-resolution
dataset, consisting of 30 hyperspectral images covering a wide spec-
tral range. A detailed description of the system appears in the sup-
plemental material. Figures 11 and 12 show some examples; the
complete dataset can be downloaded from our project website.
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Fig. 15. (a) Our prototype DD-CASSI imaging system (b) and (c) Comparison

between TwIST and our reconstruction. TwIST su�ers from spatial artifacts

(see arrows) and less accurate spectral reconstruction. (d) and (e) Additional

result of our reconstruction.

5.5 Results on a Real Hyperspectral Camera

To further validate our reconstruction algorithm, we built a pro-
totype of a spatial-spectral encoded DD-CASSI imaging system,
shown in Figure 15(a). The system is made up of an apochromatic
objective lens, relay lenses, two prisms (made of NBK-7, 2-degree
angles, producing 13-pixel dispersion), a coded aperture, and a CCD
imaging sensor. All the relay lenses (Sigma A, f/1.4) have the same
focal length (50 mm) for one-to-one imaging. The camera is a Point-
Grey Grasshopper (GS3 9.1MP Mono) with pixel pitch 3.69 µm. The
coded aperture mask includes random binary patterns made through
lithographic chrome etching on a quartz plate, where the pixel pitch
of the binary patterns is 7.40µm. A pixel in the mask corresponds
to two-by-two pixels in the CCD sensor of the imager. Scenes are
captured under a solid-state plasma light source. We calibrated the
optical properties of the system, such as the binary mask pattern
T (x ,y) and the wavelength-dependent pixel shift function ϕ (λ) in
Equation (2).

ground truth 52 %: (40.12 dB/SSIM: 0.97)

26 %: (38.09 dB/SSIM: 0.95) 10 %: (29.68 dB/SSIM: 0.86)
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Fig. 16. (a) Hyperspectral reconstructions from subsampled wavelength

information, using only 52%, 26% and 10% of the samples (16, 8 and 3

spectral channels, respectively). Our interpolated reconstructions are very

accurate, although performance predictably decays in the most extreme

case. (b) Hyperspectral demosaicing from spatially-spectrally subsampled

input in the Bayer-pa�ern. We use only four spectral wavelengths of 450 nm,

520 nm, 580 nm, and 650 nm, as shown in the inset of the second image.

Our demosaiced hyperspectral image shows a good agreement with ground

truth. The values in the legends of the plots indicate the spectral RMSEs.

Learning Illumination Invariance. To handle real-world input from
our prototype, we retrain our model with additional datasets under
various illuminations of di�erent color temperatures. We created
an additional training dataset of 192 hyperspectral images, using 32
hyperspectral re�ectance images from the Columbia [Yasuma et al.
2010] dataset under �ve di�erent color temperatures of 2000◦K (CIE
A, tungsten), 4000◦K (�uorescent light), 5000◦K (CIE D50), 6500◦K
(CIE D65), and 13,000◦K (plasma), in addition to original re�ectance
images. This dataset is further augmented for scale invariance [Si-
monyan and Zisserman 2015], resulting in 384 new hyperspectral
images in total. We sampled 19,200 tensor patches of size 96×96×31
from this augmented dataset.

Results on Real Data. Figure 15(b) compares reconstructions using
TwIST4 and our method. Plots in (c) compare spectral accuracy on
the selected patches, for both methods and ground truth measured
with a spectroradiometer. Our spectral reconstruction outperforms
the conventional approach: TwIST reconstruction su�ers from spa-
tial artifacts (see arrows), and is less accurate in the spectral domain.
(d) and (e) show another result of our reconstruction.

5.6 Applications

Hyperspectral Interpolation. Taking advantage of our spectral
prior, our method allows to interpolate a multispectral image into a

4Since TwIST without any spectral prior requires a wider dispersion than our prior-
based approach, we use 15-degree prisms to disperse light for TwIST in 89 pixels to
provide a fair comparison.
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hyperspectral image of higher spectral resolution, without any hard-
ware modi�cation. We simply substitute the measurement matrix Φ
in Equation (11) with a wavelength subsampling matrix.

Figure 16(a) shows interpolated results by subsampling 52%, 26%
and 10% of the original spectral wavelengths, which translates into
16, 8 and 3 channels, respectively. We compare our interpolated
reconstructions for 31 wavelengths with ground truth. The accuracy
of the reconstructions remains high, although it predictably decays
when using only 10% of the information.

Hyperspectral Demosaicing. We further extend our interpolated re-
construction to enable hyperspectral demosicing, assuming that our
input corresponds only to wavelengths of 450 nm, 520 nm, 580 nm,
and 650 nm, according to conventional Bayer-patterns. We replace
the Φ matrix with the spatially and spectrally subsampling matrix
in Equation (11) We account for di�raction blur as a Gaussian blur
for the Φ matrix, and set τ2 to a very small value (10−8) to avoid
reconstruction blur. Figure 16(b) shows how our spectral recon-
struction is remarkably accurate. This technique enables single-shot
hyperspectral imaging using a Bayer-patterned multispectral input,
analogous to demosaicing in a digital camera.

6 LIMITATIONS

Our reconstruction algorithm includes a total variation term to favor
sparsity of gradients in the spatial domain, which relates spectral
information to neighboring pixels. This can lead to suboptimal
reconstruction of very �ne image structures if the input is not of
su�cient quality. This can be seen in Figure 17, where the input
image is slightly out of focus: although our method still produces
better results than other approaches, the reconstruction of the small
details in the printed words is not perfect.

ground truth TwIST sparse coding ours

Fig. 17. Limitation example: out-of-focus blur in the input images leads to

suboptimal reconstruction of fine details. Nevertheless, our result produces

be�er results than existing approaches.

7 CONCLUSION AND FUTURE WORK

We have presented a novel hyperspectral image reconstruction
method, which outperforms current state-of-the art methods for
both spatial resolution and spectral accuracy. The twomain steps are:
(1) we train a natural spectrum prior as nonlinear representations
using a convolutional autoencoder, and (2) we formulate a novel
nonlinear optimization by using the autoencoder representations
as spectral priors. Our reconstruction method can be applied to
any compressive imaging architecture. Moreover, compared to the
best performing method based on sparse coding, computational
complexity is reduced by two orders of magnitude.
We have also built a prototype camera, and showed how our

method outperforms other state-of-the-art reconstruction methods
with real input. Last, we have presented two novel, high-accuracy
spectral interpolation applications, which can be bene�cial for many

bandpass-�lter based multispectral imaging systems. Further ex-
ploitation of the possibilities of these interpolation schemes remains
an interesting avenue of future work. Automatically adjusting the
total variation prior for better reconstruction of �ne details is also
an attractive problem. To foster further research on compressive
imaging, we make our trained model, source code, and our new
hyperspectral image dataset available through our project website.
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