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ABSTRACT 

This paper introduces a new interpolation technique for demo-
saicing of color images produced by single-CCD digital cameras. 
We show that the proposed simple linear filter can lead to an 
improvement in PSNR of over 5.5 dB when compared to bilinear 
demosaicing, and about 0.7 dB improvement in R and B interpo-
lation when compared to a recently introduced linear interpola-
tor. The proposed filter also outperforms most nonlinear demo-
saicing algorithms, without the artifacts due to nonlinear process-
ing, and a much reduced computational complexity. 

1. INTRODUCTION 

Digital cameras are quite popular today; many users are switch-
ing away from regular film photography. For cost reduction, 
most digital cameras use a single charge-coupled device (CCD) 
sensor, with the CCD pixels preceded in the optical path by a 
color filter array (CFA) in a Bayer mosaic pattern, as shown in 
Fig. 1. For each 2×2 set of pixels, two diagonally opposed pixels 
have green filters, and the other two have red and blue filters. 
Since G carries most of the luminance information for humans, 
its sampling rate is twice that of R and B. 

We call demosaicing the problem of interpolating back the 
image captured with a CFA, so that for every CCD pixel we can 
associate a full RGB value. The simplest approach to demo-
saicing is bilinear interpolation [1]–0, in which the three color 
planes are independently interpolated using symmetric bilinear 
interpolation from the nearest neighbors of the same color. As 
expected, bilinear interpolation generates significant artifacts, 
especially across edges and other high-frequency content, since it 
doesn’t take into account the correlation among the RGB values. 
Practical demosaicing algorithms take such correlation into ac-

count, either with better linear filters [4], or with nonlinear filters 
that adapt interpolation smoothness to a measure of image activ-
ity or edginess [1]–0. 

In this paper we present a simple linear demosaicing filter, 
with better performance and lower complexity than that in [4]. 
Our filter also outperforms many nonlinear algorithms. In Sec-
tion 2 we quickly review some of the techniques proposed for 
improved demosaicing performance, and in Section 3 we present 
our new linear filter. Performance comparisons and conclusions 
are presented in Sections 4 and 5, respectively. 

2. BEYOND BILINEAR DEMOSAICING 

Referring to Fig. 1, in bilinear demosaicing the green value g(i,j) 
at a pixel position (i,j) that falls in a red or blue pixel, is com-
puted by the average of the neighboring green values in a cross 
pattern: 
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which corresponds to estimating the green value at the pixel 
marked ‘+’ in Fig. 1 as the average of the observed green values 
marked ‘·’. At image boundaries, only pixels that fall within the 
image are included, and the scaling adjusted. For the R and B 
colors the same equation applies (with a diagonal cross pattern), 
except that for pixel positions (i,j) that fall in a green pixel only 
two red neighboring values are averaged to produce an interpo-
lated red value; the same holds for blue. Besides the computa-
tional simplicity of (1), its output value is guaranteed to have the 
same dynamic range of the input value, so no overflow logic is 
needed on the output value. 

Exploiting the correlation among the RGB channels is the 
main idea for improving demosaicing performance. Specifically, 
we can assume that in a luminance/chrominance decomposition, 
the chrominance components don’t vary much across pixels. In 
the constant-hue approach of Freeman [2],[5], the green channel 
is bilinearly interpolated, and then the R and B channels are in-
terpolated such as to maintain a constant hue, defined as the R/G 
and B/G ratios. Even at the expense of computing those divi-
sions, it still produces visible artifacts [2]. Better results can be 
obtained by starting with bilinearly interpolated G pixels, and 
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Figure 1. Typical Bayer mosaic for color image cap-
ture in single-CCD digital cameras; the G subimage 
has twice as many pixels as the R and B subimages. 



applying median filters to the interpolated values of the color 
differences R – G and B – G [2]. 

Improved performance can be obtained with gradient-based 
methods [2],[6], which typically estimate edge directions and 
adjust the interpolation formulas so that filtering is performed 
preferentially along edge directions, and not across them.  For 
example, for interpolating the green channel in Laroche and 
Prescott’s method, the R and B channels are used to determine 
edge directions, which determine unequal weights to the terms in 
(1) for the green channel; the color differences R–G and B–G are 
then interpolated [2],[6]. Hamilton and Adams’ method improves 
on Laroche and Prescott’s by considering both first- and second-
order pixel differences [6],[7]. Chang, Cheung, and Pang im-
proved on that by considering a variable number of gradients [8]. 
A simpler but efficient algorithm that uses soft decision rules to 
combine interpolation results from horizontal and vertical direc-
tions is presented in [9]. 

Iterative methods can lead to further improvement by using 
results from B and R interpolation to correct the G interpolation, 
and vice-versa. That is the basis of Kimmel’s approach 0, where 
the interpolation steps are based on a combination of the con-
stant-hue and gradient-based methods. A technique based on 
iterative projections is presented in [6]. It has the best perform-
ance to date on a popular set of standard test images, but it has a 
very high complexity (as many as 480 operations per input 
pixel). So, the method in [6] can be seen as setting performance 
bounds to what can be achieved with more practical algorithms. 

3. IMPROVED LINEAR INTERPOLATION 

It is interesting to note that most of the algorithms discussed in 
the previous section use nonlinear filters whose region of support 
go beyond immediately adjacent pixels. That raises a simple 
question, which was not addressed in [1]–0,[5]–[9]: what is the 
best performance we can get from a linear filter whose region of 
supports extends to, say, a 5×5 pixel region? 

Pei and Tam proposed a good solution along those lines [4], 
by first estimating R and G via bilinear interpolation, then esti-
mating the color differences B – G and R – G form those, 
smoothing the color differences via 4-point averages (under the 
assumption that the color differences are slowly-varying), and 
finally using those to interpolate the G values and then to do a 
final estimate of the R and B values. Their unrolled interpolation 
equations are equivalent to linear filters operating on a 5x5 pixel 
window around the current pixel [4]. 

3.1 The Proposed Interpolation Method 

Instead of using a constant or near-constant hue approach like the 
methods described above, we propose the use of the following 
criterion: edges have much stronger luminance than chrominance 
components. Thus, when we look at interpolation of a green 
value at a red pixel location, for example, we don’t discard the 
red value at that location – it is valuable information! Rather, we 
compare that red value to its estimate for a bilinear interpolation 
for the nearest red samples. If it is different from that estimate, it 
probably means there’s a sharp luminance change at that pixel, 

and thus we correct a bilinearly interpolated green value by add-
ing a portion of this estimated luminance change. 

Specifically, to interpolate G values at an R location, for 
example (the ‘+’ pixel in Fig. 1), we use the formula 

 ˆ ˆ( , ) ( , ) ( , )B Rg i j g i j i jα= + ∆  (2) 

where ∆R(i,j) is the gradient of R at that location, computed by 

 
                                            ( , ) {(0, 2), (0,2), ( 2,0), (2,0)}

1( , ) ( , ) ( , )
4R

m n

i j r i j r i m j n

= − −

∆ − + +∑  (3) 

The subscript B in (2) means bilinearly interpolated, as in (1). So, 
we correct the bilinear interpolation estimate by a measure of the 
gradient ∆R for the known color at the pixel location, which is 
estimated by the simple formula in (3). The gain factor α con-
trols the intensity of such correction. 

Thus, our method is in fact a gradient-corrected bilinear in-
terpolated approach, with a gain parameter to control how much 
correction is applied. For interpolating G at blue pixels, the same 
formula is used, but corrected by ∆B(i,j). For interpolating R at 
green pixels, we use the formula 

 ˆ ˆ( , ) ( , ) ( , )B Gr i j r i j i jβ= + ∆  (4) 

with ∆G(i,j) determined by a 9-point region, as shown in Fig. 2. 
For interpolating R at blue pixels, we use the formula 

 ˆ ˆ( , ) ( , ) ( , )B Br i j r i j i jγ= + ∆  (5) 

with ∆B(i,j) computed on a 5-point region, also shown in Fig. 2. 
The formulas for interpolating B are similar, by symmetry. 

3.2 Gradient-Correction Gains 

To determine appropriate values for the gain parameters {α,β,γ}, 
we used a Wiener approach; that is, we computed the values that 
led to minimum mean-square error interpolation, given second-
order statistics computed from a good data set (the Kodak image 
set used in [6]). We then approximated the optimal Wiener coef-
ficients by integer multiples of small powers of 1/2, with the 
final result α = 1/2, β = 5/8, and γ = 3/4. From the values of 
{α,β,γ} we can compute the equivalent linear FIR filter coeffi-
cients for each interpolation case. The resulting coefficient val-
ues, shown in Fig.2, make the filters quite close (within 5% in 
terms of mean-square error) to the optimal Wiener filters for a 
5×5 region of support. 

Thus, we believe that the only way to design a practical lin-
ear filter with a lower mean-square interpolation error would be 
to use larger regions of support. That would not only increase 
computational complexity and memory footprint, but it would 
also lead to ringing artifacts around edges. 

One way to evaluate computational complexity is to count 
the number of nonzero filter coefficients within the 5×5 regions 
of support. For Pei-Tam’s method [4], there are 9 nonzero coef-
ficients for the G channel, and an average of 13 each for the R 
and B channels. Our method has a slightly lower complexity: 9 
coefficients for the G channel and 11 each for R and B. 



4. PERFORMANCE 

We compared our proposed method to several others, using the 
Kodak image set [6], by simulating a Bayer sampling array (sim-
ply by keeping only one of each of the RGB values for each 
pixel, as in Fig. 1) and then applying the various interpolation 
algorithms. This subsampling approach is not really representa-
tive of digital cameras, which usually employ careful lens design 
to effectively perform a small amount of lowpass filtering to 
reduce the aliasing due to the Bayer pattern subsampling. How-
ever, since all papers in the references perform just subsampling, 
with no lowpass filtering, we did the same so we could compare 
results. We has also tested all interpolation methods with small 
amounts of Gaussian lowpass filtering before Bayer subsam-
pling, and found that the relative performances of the methods 
are roughly the same, with or without filtering. The improvement 
in peak-signal-to-noise ratio (PSNR) over bilinear interpolation 
is shown in Table 1. Except for Freeman’s method, most ap-
proaches lead to more than 5 dB improvement, and our proposed 
method on average outperforms all others. 

Besides PSNR measurements, we need to verify visual qual-
ity. Fig. 3 shows the interpolated results for one of the images in 
the Kodak set. From those we see that our proposed method 
leads to a quality similar to a good nonlinear method such as 
Kimmel’s 0, but with a much lower complexity. Compared to 
Pei-Tam linear filters, our method produces slightly less visible 
color fringing distortion, as well as a lower PSNR, at a slightly 
reduced computational complexity. 
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Figure 2. Filter coefficients for our proposed linear 

# ch A B C D E F 
 R 3.44 5.58 4.17 8.17 4.74 5.56 

1 G 0.00 5.26 6.62 5.55 6.09 6.09 
 B 3.74 5.82 3.94 8.05 5.28 5.87 
 R 2.46 3.99 3.68 -1.52 4.05 4.34 

2 G 0.00 4.60 5.10 2.20 4.76 4.76 
 B 3.34 5.04 4.66 4.75 4.67 4.48 
 R 3.80 6.05 6.56 4.67 5.68 6.84 

3 G 0.00 6.66 6.27 0.12 7.52 7.52 
 B 3.76 5.98 6.14 7.17 5.34 6.50 
 R 3.48 5.80 4.47 8.22 5.16 5.81 

4 G 0.00 5.20 6.19 5.02 5.92 5.92 
 B 3.38 5.50 4.42 6.63 4.18 4.97 
 R 3.89 5.67 5.99 4.61 4.82 6.20 

5 G 0.00 5.79 5.67 -3.01 5.71 5.71 
 B 3.65 5.44 6.05 5.04 4.67 5.81 
 R 3.49 6.29 3.42 9.50 5.22 5.68 

6 G 0.00 6.16 6.63 6.41 5.72 5.72 
 B 3.50 6.27 3.33 9.12 4.99 5.52 
 R 3.70 6.00 5.09 7.97 4.75 5.75 

7 G 0.00 5.95 6.14 3.75 5.90 5.90 
 B 3.48 5.86 4.71 7.75 4.29 5.38 
 R 3.68 5.92 5.71 7.41 5.19 6.29 

8 G 0.00 6.19 6.83 6.23 6.86 6.86 
 B 3.46 5.65 5.56 8.08 4.87 5.92 
 R 3.40 5.30 5.01 6.22 5.04 5.68 

9 G 0.00 5.00 5.83 2.30 5.84 5.84 
 B 3.64 5.45 5.15 6.54 4.83 5.47 
 R 3.33 5.75 4.48 7.57 4.07 4.91 

10 G 0.00 6.10 6.44 5.91 5.64 5.64 
 B 3.46 5.98 4.53 7.82 4.61 5.31 
 R 3.58 4.68 5.97 7.56 5.43 5.88 

11 G 0.00 4.25 5.65 1.62 6.15 6.15 
 B 3.43 4.49 5.65 5.49 4.93 5.47 
 R 2.45 4.03 3.89 0.94 3.25 3.98 

12 G 0.00 4.80 5.99 4.58 5.60 5.60 
 B 3.62 5.35 4.45 8.40 5.64 5.76 
 R 3.40 5.62 4.16 8.01 4.66 5.33 

13 G 0.00 5.05 5.85 4.26 5.47 5.47 
 B 3.40 5.62 4.29 6.60 4.52 5.20 
 R 3.74 5.23 6.08 6.59 4.98 5.77 

14 G 0.00 4.98 5.55 1.20 6.02 6.02 
 B 3.70 4.97 5.88 5.78 5.08 5.76 
 R 3.41 4.84 6.01 6.00 5.42 6.00 

15 G 0.00 4.58 5.66 0.73 5.92 5.92 
 B 3.21 4.39 5.32 5.25 4.60 5.17 

mean 2.31 5.40 5.32 5.36 5.20 5.68 
 

Table 1. PSNR improvement in dB over bilinear inter-
polation for various interpolation methods, for the first 
15 images in the Kodak set [6] A) Freeman [2],[5]; B) 
Hamilton-Adams [6],[7]; C) Chang et. al. [8]; D) 
Kimmel 0; E) Pei-Tam [4]; F) proposed method. Data 
in columns B–D are from Table III in [6]. 



5. CONCLUSION 

We presented a new demosaicing method for color interpolation 
of images captured from a single CCD using a Bayer color filter 
array. The proposed linear filters are nearly optimal in a Wiener 
sense, and in fact outperform many more complex nonlinear 
filters. Compared to a recently introduced linear demosaicing 
approach [4], our filters produce a 0.5 dB improvement in inter-
polated image quality (a 12% reduction in mean-square error), 
which comes from the same quality for the green channel and 
about 0.7 dB improvement for the R and B channels. Compared 
to [4], our method also leads to a small reduction (roughly 12%) 
in computational complexity. 
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Figure 3. Demosaicing results for various interpolation algorithms. From left to right; top row: original, bilinear, Freeman 
[2],[5]; middle row: Laroche-Prescott [2],[6], Hamilton-Adams [6],[7], Chang et. al. [8]; bottom row: Pei-Tam [4], Kimmel [3], 
and our proposed method. 


