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Figure 1 High quality single image motion-deblurring. The left sub-figure shows one captured image using a hand-held camera under dim light. It is

severely blurred by an unknown kernel. The right sub-figure shows our deblurred image result computed by estimating both the blur kernel and the

unblurred latent image. We show several close-ups of blurred/unblurred image regions for comparison.

Abstract

We present a new algorithm for removing motion blur from a sin-
gle image. Our method computes a deblurred image using a unified
probabilistic model of both blur kernel estimation and unblurred
image restoration. We present an analysis of the causes of common
artifacts found in current deblurring methods, and then introduce
several novel terms within this probabilistic model that are inspired
by our analysis. These terms include a model of the spatial random-
ness of noise in the blurred image, as well a new local smoothness
prior that reduces ringing artifacts by constraining contrast in the
unblurred image wherever the blurred image exhibits low contrast.
Finally, we describe an efficient optimization scheme that alternates
between blur kernel estimation and unblurred image restoration un-
til convergence. As a result of these steps, we are able to produce
high quality deblurred results in low computation time. We are even
able to produce results of comparable quality to techniques that re-
quire additional input images beyond a single blurry photograph,
and to methods that require additional hardware.

Keywords: motion deblurring, ringing artifacts, image enhance-
ment, filtering

1 Introduction

One of the most common artifacts in digital photography is motion
blur caused by camera shake. In many situations there simply is not

∗http://www.cse.cuhk.edu.hk/%7eleojia/projects/motion%5fdeblurring/

enough light to avoid using a long shutter speed, and the inevitable
result is that many of our snapshots come out blurry and disappoint-
ing. Recovering an un-blurred image from a single, motion-blurred
photograph has long been a fundamental research problem in digital
imaging. If one assumes that the blur kernel – or point spread func-
tion (PSF) – is shift-invariant, the problem reduces to that of image
deconvolution. Image deconvolution can be further separated into
the blind and non-blind cases. In non-blind deconvolution, the mo-
tion blur kernel is assumed to be known or computed elsewhere;
the only task remaining is to estimate the unblurred latent image.
Traditional methods such as Weiner filtering [Wiener 1964] and
Richardson-Lucy (RL) deconvolution [Lucy 1974] were proposed
decades ago, but are still widely used in many image restoration
tasks nowadays because they are simple and efficient. However,
these methods tend to suffer from unpleasant ringing artifacts that
appear near strong edges. In the case of blind deconvolution [Fer-
gus et al. 2006; Jia 2007], the problem is even more ill-posed, since
both the blur kernel and latent image are assumed unknown. The
complexity of natural image structures and diversity of blur kernel
shapes make it easy to over- or under-fit probabilistic priors [Fergus
et al. 2006].

In this paper, we begin our investigation of the blind deconvolution
problem by exploring the major causes of visual artifacts such as
ringing. Our study shows that current deconvolution methods can
perform sufficiently well if both the blurry image contains no noise
and the blur kernel contains no error. We therefore observe that a
better model of inherent image noise and a more explicit handling
of visual artifacts caused by blur kernel estimate errors should sub-
stantially improve results. Based on these ideas, we propose a uni-
fied probabilistic model of both blind and non-blind deconvolution
and solve the corresponding Maximum a Posteriori (MAP) prob-
lem by an advanced iterative optimization that alternates between
blur kernel refinement and image restoration until convergence. Our
algorithm can be initialized with a rough kernel estimate (e.g., a
straight line), and our optimization is able to converge to a result
that preserves complex image structures and fine edge details, while
avoiding ringing artifacts, as shown in Figure 1.

To accomplish these results, our technique benefits from three main
contributions. The first is a new model of the spatially random dis-
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tribution of image noise. This model helps us to separate the errors
that arise during image noise estimation and blur kernel estimation,
the mixing of which is a key source of artifacts in previous meth-
ods. Our second contribution is a new smoothness constraint that
we impose on the latent image in areas where the observed im-
age has low contrast. This constraint is very effective in suppress-
ing ringing artifacts not only in smooth areas but also in nearby
textured ones. The effects of this constraint propagate to the ker-
nel refinement stage, as well. Our final contribution is an efficient
optimization algorithm employing advanced optimization schemes
and techniques, such as variable substitutions and Plancherel’s the-
orem, that allow computationally intensive optimization steps to be
performed in the frequency domain.

We demonstrate our method by presenting its results and compar-
isons to the output of several state-of-the-art single image deblur-
ring methods. We also compare our results to those produced by al-
gorithms that require additional input beyond a single image (e.g.,
multiple images) and an algorithm that utilizes specialized hard-
ware; surprisingly, most of our results are comparable even though
only a single image is used as input.

2 Related Work

We first review techniques for non-blind deconvolution, where the
blur kernel is known and only a latent image must be recovered
from the observed, blurry image. The most common technique is
Richardson-Lucy (RL) deconvolution [1974], which computes the
latent image with the assumption that its pixel intensities conform
to a Poisson distribution. Donatelli et al. [2006] use a PDE-based
model to recover a latent image with reduced ringing by incorpo-
rating an anti-reflective boundary condition and a re-blurring step.
Several approaches proposed in the signal processing community
solve the deconvolution problem in the wavelet domain or the fre-
quency domain [Neelamani et al. 2004]; many of these papers lack
experiments in de-blurring real photographs, and few of them at-
tempt to model error in the estimated kernel. Levin et al. [2007]
use a sparse derivative prior to avoid ringing artifacts in deconvo-
lution. Most non-blind deconvolution methods assume that the blur
kernel contains no errors, however, and as we show later with a
comparison, even small kernel errors or image noise can lead to
significant artifacts. Finally, many of these deconvolution methods
require complex parameter settings and long computation times.

Blind deconvolution is a significantly more challenging and ill-
posed problem, since the blur kernel is also unknown. Some tech-
niques make the problem more tractable by leveraging additional
input, such as multiple images. Rav-Acha et al. [2005] leverage the
information in two motion blurred images, while Yuan et al. [2007]
use a pair of images, one blurry and one noisy, to facilitate cap-
ture in low light conditions. Other motion deblurring systems take
advantage of additional, specialized hardware. Ben-Ezra and Na-
yar [2004] attach a low-resolution video camera to a high-resolution
still camera to help in recording the blur kernel. Raskar et al. [2006]
flutter the opening and closing of the camera shutter during ex-
posure to minimize the loss of high spatial frequencies. In their
method, the object motion path must be specified by the user. In
contrast to all these methods, our technique operates on a single
image and requires no additional hardware.

The most ill-posed problem is single-image blind deconvolution,
which must both estimate the PSF and latent image. Early ap-
proaches usually assume simple parametric models for the PSF
such as a low-pass filter in the frequency domain [Kim and
Paik 1998] or a sum of normal distributions [Likas and Galat-
sanos 2004]. Fergus et al. [2006] showed that blur kernels are of-
ten complex and sharp; they use ensemble learning [Miskin and
MacKay 2000] to recover a blur kernel while assuming a certain

(a) (b)

Figure 2 Ringing artifacts in image deconvolution. (a) A blind decon-

volution result. (b) A magnified patch from (a). Ringing artifacts are

visible around strong edges.
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Figure 3 A step signal constructed by finite Fourier basis functions. (a)

The ground truth step signal. (b) The magnitude of the coefficients of the

Fourier basis functions. (c) The phase of the Fourier basis coefficients.

(d) The reconstructed signal from the 512 Fourier basis functions, with

PSNR of 319.40. The loss is far below what humans can perceive.

statistical distribution for natural image gradients. A variational
method is used to approximate the posterior distribution, and then
Richardson-Lucy is used for deconvolution. Jia [2007] recovered a
PSF from the perspective of transparency by assuming the trans-
parency map of a clear foreground object should be two-tone. This
method is limited by a need to find regions that produce high-
quality matting results. A significant difference between our ap-
proach and previous work is that we create a unified probabilistic
framework for both blur kernel estimation and latent image recov-
ery; by allowing these two estimation problems to interact we can
better avoid local minima and ringing artifacts.

3 Analysis of Ringing Artifacts

We begin with an analysis of sources of error in blind and non-blind
deconvolution. Shift-invariant motion blur is commonly modeled as
a convolution process

I = L ⊗ f + n (1)

where I, L, and n represent the degraded image, latent unblurred
image, and additive noise, respectively. ⊗ denotes the convolu-
tion operator, and f is a linear shift-invariant point spread function
(PSF).

One of the major problems in latent image restoration is the pres-
ence of ringing artifacts, such as those shown in Figure 2. Ringing
artifacts are dark and light ripples that appear near strong edges af-
ter deconvolution. It is commonly believed [Yuan et al. 2007] that
ringing artifacts are Gibbs phenomena from an inability of finite
Fourier basis functions to model the kind of step signals that are
commonly found in natural images. However, we have found that a
reasonable number of finite Fourier basis functions can reconstruct
natural image structures with an imperceivable amount of loss. To
illustrate, in Figure 3 we show that a 1D step signal can be recon-
structed by 512 finite Fourier basis functions; we have found simi-
lar accuracy in discrete image space, and using hundreds of Fourier
basis functions is not computationally expensive at all.

If deconvolution artifacts are not caused by Gibbs phenomenon,
what are they caused by? In our experiments, we find that both in-
accurately modeled image noise n and errors in the estimated PSF
f are the main cause of ringing artifacts. To illustrate, we show sev-
eral examples in Figure 4. In the first two rows we show two 1D
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Figure 4 Noise in deconvolution. The first two rows show 1D signal

examples corrupted with signal noise and kernel noise, respectively. The

last row shows an image example in the presence of both image noise

and kernel noise. For all rows, (a) shows the observed signals. (b) The

kernel. (c) The ground truth signal. (d) The reconstructed signal using

RL method. (e) The reconstructed signal by Wiener filtering. Artifact

can be seen in the deconvolution results.

signals where the observed signal and blur kernel are contaminated
by a small amount of noise, respectively, causing the RL method
and Wiener filtering to produce unsatisfactory results. In the third
row we show a 2D image where both the blurred image and the
blur kernel are corrupted with noise. Although the results from the
RL method and Winer filtering preserve strong edges, perceivable
artifacts are also introduced.

To analyze the problems cause by image noise and kernel error, let
us model the kernel and latent image as the sum of their current
estimates f

′ and L
′ and the errors ∆f and ∆L:

I = (L′ + ∆L) ⊗ (f ′ + ∆f) + n

= L
′ ⊗ f

′ + ∆L ⊗ f
′ + L

′ ⊗ ∆f + ∆L ⊗ ∆f + n.

In the above equation, we can see that if observed noise n is not
modeled well, it is easy for an estimation algorithm to mistake er-
rors ∆f and ∆L as part of the noise n, making the estimation
process unstable and challenging to solve. Previous techniques typ-
ically model image noise n or its gradient ∂n as following zero-
mean Gaussian distributions. This model is weak and subject to the
risk outlined above because it does not capture an important prop-
erty of image noise, which is that image noise exhibits spatial ran-
domness. To illustrate, in Figure 6(d) we show that replacing our
stronger model of noise (described in the next section) with a sim-
ple zero-mean Gaussian yields a noise estimate (L ⊗ f − I) that is
clearly structured and not spatially random.

To summarize this section, we conclude that deconvolution ringing
artifacts are not caused by Gibbs phenomenon, but rather primarily
by observed image noise and kernel estimate errors that mix dur-
ing estimation, resulting in estimated image noise that exhibits spa-
tial structure. In the next section, we propose a unified probabilistic
model to address this issue and suppress visual artifacts.

4 Our model

Our probabilistic model unifies blind and non-blind deconvolutions
into a single MAP formulation. Our algorithm for motion deblur-
ring then iterates between updating the blur kernel and estimating
the latent image, as shown in Figure 5. By Bayes’ theorem,

p(L, f |I) ∝ p(I|L, f)p(L)p(f), (2)

where p(I|L, f) represents the likelihood and p(L) and p(f) denote
the priors on the latent image and the blur kernel. We now define

Latent image

restoration

Kernel

estimation

Blurred image

and initial kernel

Restored image

and kernel

No

Yes

Error < Threshold?

Figure 5 Overview of our algorithm. Given an observed blurred image

and an initial kernel, our proposed method iteratively estimates the latent

image and refines the blur kernel until convergence.

(a) (c) (d)

(b) (e) (f)

Figure 6 Effect of our likelihood model. (a) The ground truth latent

image. (b) The blurred image I. (c) The latent image L
a computed by

our algorithm using the simple likelihood definition
∏

i
N(ni|0, ζ0).

(d) The computed image noise map n from (c) by n = L
a⊗ f

a−I. (e)

The latent image result Lb recovered by using the complete likelihood

definition (3). (f) The computed noise map from (e) by n = L
b ⊗ f

b −
I. f

a and f
b are estimated kernels, and (d) and (f) are normalized for

visualization.

these terms, and describe our optimization in the next section.

4.1 Definition of the probability terms

Likelihood p(I|L, f). The likelihood of an observed image given
the latent image and blur kernel is based on the convolution model
n = L⊗f−I. Image noise n is modeled as a set of independent and
identically distributed (i.i.d.) noise random variables for all pixels,
each of which follows a Gaussian distribution.

In previous work, the likelihood term is simply written as
∏

i
N(ni|0, ζ0) [Jia 2007] or

∏

i
N(∇ni|0, ζ1) [Fergus et al.

2006], which considers the noise for all pixel i’s, where ζ0 and ζ1
are the standard deviations (SDs). However, as we discussed in the
previous section, these models do not capture at all the spatial ran-
domness that we would expect in noise.

In our formulation, we model the spatial randomness of noise by
constraining several orders of its derivatives. In the rest of this pa-
per, the image coordinate (x, y) and pixel i are alternatively used.
Similarly, we sometimes represent ni by n(x, y) to facilitate the
representation of partial derivatives.

We denote the partial derivatives of n in the two directions as
∂xn and ∂yn respectively. They can be computed by the for-
ward difference between variables representing neighboring pix-
els, i.e., ∂xn(x, y) = n(x + 1, y) − n(x, y) and ∂yn(x, y) =
n(x, y + 1) − n(x, y). Since each n is a i.i.d. random variable
following an independent Gaussian distribution with standard devi-
ation ζ0, it is proven in [Simon 2002] that ∂xn and ∂yn also follow
i.i.d. Gaussian distributionsN(∂xni|0, ζ1) andN(∂yni|0, ζ1) with

standard deviation (SD) ζ1 =
√

2ζ0.

In regard to higher-order partial derivatives of image noise, it can be
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easily shown that the i.i.d. property also makes them follow Gaus-
sian distributions with different standard deviations. We recursively
define the high-order partial derivatives of image noise using for-
ward differences. For example, ∂xx is calculated by

∂xxn(x, y) = ∂xn(x + 1, y) − ∂xn(x, y)

= (n(x + 2, y) − n(x + 1, y)) − (n(x + 1, y) − n(x, y)) .

Since ∂xn(x, y+1) and ∂xn(x, y) are both i.i.d. random variables,
the value of ∂xxn(x, y) can also be proven [Simon 2002] to follow

a Gaussian distribution with SD ζ2 =
√

2 · ζ1 =
√

22ζ0.

For simplicity’s sake, in the following formulation, we use ∂∗ to
represent the operator of any partial derivative and κ(∂∗) to rep-
resent its order. For example, ∂∗ = ∂xy and κ(∂∗) = 2. For any
∂∗ with κ(∂∗) = q, where q > 1, ∂∗ni follows an independent

Gaussian distribution with SD ζq =
√

2 · ζq−1 =
√

2qζ0.

To model the image noise as spatially i.i.d., we combine the con-
straints signifying that ∂∗

n with different orders all follow Gaus-
sian distributions, and define the likelihood as

p(I|L, f) =
∏

∂∗∈Θ

∏

i

N(∂∗ni|0, ζκ(∂∗))

=
∏

∂∗∈Θ

∏

i

N(∂∗Ii|∂∗Ici , ζκ(∂∗)), (3)

where Ii ∈ I, denotes the pixel value, Ici is the pixel with coordi-
nate i in the reconvolved image I

c = L⊗ f , and Θ represents a set
consisting of all the partial derivative operators that we use (we set
Θ = {∂0, ∂x, ∂y, ∂xx, ∂xy, ∂yy} and define ∂0ni = ni). We com-
pute derivatives with a maximum order of two because our experi-
ments show that these derivatives are sufficient to produce good re-
sults. Note that using the likelihood defined in (3) does not increase
computational difficulty compared to only using

∏

i
N(ni|0, ζ0) in

our optimization.

Figure 6(e) shows that our likelihood model (3) can significantly
improve the quality of the image restoration result. The computed
noise map in (f) by n = L ⊗ f − I contains less image structure
compare to map (d), which was computed without modeling the
noise derivatives in different orders.

Prior p(f). In the kernel estimation stage, it is commonly observed
that since a motion kernel identifies the path of the camera it tends
to be sparse, with most values close to zero. We therefore model the
values in a blur kernel as exponentially distributed

p(f) =
∏

j

e−τfj , fj ≥ 0,

where τ is the rate parameter and j indexes over elements in the
blur kernel.

Prior p(L). We design the latent image prior p(L) to satisfy two
objectives. One one hand, the prior should serve as a regularization
term that reduces the ill-posedness of the deconvolution problem.
On the other hand, the prior should help to reduce ringing artifacts
during latent image restoration. We thus introduce two components
for p(L): the global prior pg(L) and the local prior pl(L), i.e.,

p(L) = pg(L)pl(L).

Global prior pg(L). Recent research in natural image statistics
shows that natural image gradients follow a heavy-tailed distribu-
tion [Roth and Black 2005; Weiss and Freeman 2007] which can be
learnt from sample images. Such a distribution provides a natural
prior for the statistics of the latent image.
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Logarithmic desity of

image gradients

-200 -150 -100 -50 0 50 100 150 200 250

Original
density

-k|x|

-(ax
2
+b)

l t

(a) (b)

Figure 7 (a) The curve of the logarithmic density of image gradients.

It is computed using information collected from 10 natural images. (b)

We construct function Φ(x) to approximate the logarithmic density, as

shown in green and blue.

(a) (b) (c) (d) (e)

Figure 8 Local prior demonstration. (a) A blurred image patch ex-

tracted from Figure 9(b). The yellow curve encloses a smooth region. (b)

The corresponding unblurred image patch. (c) The restoration result by

our method without incorporating pl. The ringing artifact is propagated

even to the originally smooth region. (d) We compute Ω containing all

pixels shown in white to suppress ringing. (e) Our restoration result in-

corporating pl, the ringing artifact is suppressed not only in smooth re-

gion but also in textured one.

To illustrate, in Figure 7 we show the logarithmic image gra-
dient distribution histogram from 10 natural images. In [Fergus
et al. 2006], a mixture of K Gaussian distributions are used to

approximate the gradient distribution:
∏

i

∑K

k=1
ωkN(∂Li|0, ςk),

where i indexes over image pixels, ωk and ςk denote the weight
and the standard deviation of the k’th Gaussian distribution. How-
ever, we found the above approximation challenging to opti-
mize. Specifically, to solve the MAP problem, we need to take
the logarithm of all probability terms; as a result, the log-prior

log
∏

i

∑k

j=1
ωjN(∂Li|0, ςj) takes the form of a logarithm of a

sum of exponential parts. Gradient-based optimization is the most
feasible way to optimize such a log-prior [Wainwright 2006], and
gradient-descent is known to be neither efficient nor stable for a
complex energy function containing thousands or millions of un-
knowns.

In this paper, we introduce a new representation by concatenating
two piece-wise continuous functions to fit the logarithmic gradient
distribution:

Φ(x) =

{

−k|x| x ≤ lt
−(ax2 + b) x > lt

, (4)

where x denotes the image gradient level and lt indexes the position
where the two functions are concatenated. As shown in Figure 7(b),
−k|x|, shown in green, represents the sharp peak in the distribution
at the center, while −(ax2 + b) models the heavy tails of the dis-
tribution. Φ(x) is central-symmetric, and k, a, and b are the curve
fitting parameters, which are set as k = 2.7, a = 6.1 × 10−4, and
b = 5.0.

Since we have modeled the logarithmic gradient density, the final
definition of the global prior pg(L) is written as

pg(L) ∝
∏

i

eΦ(∂Li)
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Local prior pl(L). In this novel prior we use the blurred image
to constrain the gradients of the latent image in a fashion that is
very effective in suppressing ringing artifacts. This prior is moti-
vated by the fact that motion blur can generally be considered a
smooth filtering process. In a locally smooth region of the blurred
image, with pixels of almost constant color (as outlined in yellow in
Figure 8(a)), the corresponding unblurred image region should also
be smooth (as outlined in yellow in Figure 8(b)); that is, its pixels
should exhibit no salient edges. Notice that the ringing artifact, as
shown in Figure 8(c), usually corresponds to patterned structures
and violates this constraint.

To formulate the local prior, for each pixel i in blurred image I , we
form a local window with the same size as the blur kernel and cen-
tered at it. One example is shown in Figure 8(a) where the window
is represented by the green rectangle centered at pixel i highlighted
by the red dot. Then, we compute the standard deviation of pixel
colors in each local window. If its value is smaller than a threshold
t, which is set to 5 in our experiments, we regard the center pixel i
as in region Ω, i.e., i ∈ Ω. In Figure 8(d), Ω is shown as the set of
all white pixels, each of which is at the center of a locally smooth
window.

For all pixels in Ω, we constrain the blurred image gradient to be
similar to the unblurred image gradient. The errors are defined to
follow a Gaussian distribution with zero mean and standard devia-
tion σ1:

pl(L) =
∏

i∈Ω

N(∂xLi − ∂xIi|0, σ1)N(∂yLi − ∂yIi|0, σ1),

where σ1 is the standard deviation. The value of σ1 is gradually in-
creased over the course of optimization, as described more fully in
Section 5, since this prior becomes less important as the blur kernel
estimate becomes more accurate. It should be noted that although
pl is only defined in Ω, the wide footprint of the blur kernel can
propagate its effects and globally suppress ringing patterns, includ-
ing pixels in textured regions. In Figure 9, we show the impact of
this prior. In this example, the local prior clearly helps to suppress
ringing caused by errors in the blur kernel estimate.

5 Optimization

Our MAP problem is transformed to an energy minimization prob-
lem that minimizes the negative logarithm of the probability we
have defined, i.e., the energy E(L, f) = −log(p(L, f |I)). By tak-
ing all likelihood and prior definitions into (2), we get

E(L, f)∝

(

∑

∂∗∈Θ

wκ(∂∗)‖∂
∗
L ⊗ f − ∂∗

I‖2
2

)

+

λ1‖Φ(∂xL) + Φ(∂yL)‖1 +

λ2

(

‖∂xL − ∂xI‖
2
2 ◦ M + ‖∂yL − ∂yI‖

2
2 ◦ M

)

+ ‖f‖1, (5)

where ‖ · ‖p denotes the p-norm operator and ◦ represents the
element-wise multiplication operator. The four terms in (5) corre-
spond to the terms in (2) in the same order. M is a 2-D binary mask
that encodes the smooth local prior p(L) (Figure 9(e)). For any el-
ement mi ∈ M, mi = 1 if the corresponding pixel Ii ∈ Ω, and
mi = 0 otherwise. Here, we have parameters wκ(∂∗), λ1, and λ2

derived from the probability terms:

wκ(∂∗) =
1

ζ2
κ(∂∗)τ

, λ1 =
1

τ
, λ2 =

1

σ2
1τ
. (6)

Among these parameters, the value of wκ(∂∗) is set in the fol-
lowing manner. According to the likelihood definition, for any
κ(∂∗) = q > 0, we must have wκ(∂∗) = 1/(ζ2

0 · τ · 2q). We

(a) (b) (c)

(d) (e) (f)

Figure 9 Effect of prior pl(L). (a) The ground truth latent image. (b)

The blurred image. The ground truth blur kernel is shown in the green

rectangle. We use the inaccurate kernel in the red frame to restore the

blurred image to simulate one image restoration step in our algorithm.

(c) The result generated from the image restoration step without using

pl(L); ringing artifacts result. For comparison, we also show our im-

age restoration results in (d) by incorporating pl(L). The computed Ω
region is shown in white in (e). The ringing map is visualized in (f) by

computing the color difference between (c) and (d); the map shows that

pl is effective in supressing ringing.

usually set 1/(ζ2
0 · τ) = 50 in experiments. Then the value of any

wκ(∂∗), where κ(∂∗) = q > 0, can be determined as 50/(2q). Our
configuration of λ1 and λ2 will be described in Section 5.3.

Directly optimizing (5) using gradient descent is slow and exhibits
poor convergence since there are a large number of unknowns. In
our algorithm, we optimize E by iteratively estimating L and f .
We employ a set of advanced optimization techniques so that our
algorithm can effectively handle challenging natural images.

5.1 Optimizing L

In this step, we fix f and optimize L. The energy E can be simpli-
fied to EL by removing constant-value terms:

EL =

(

∑

∂∗∈Θ

wκ(∂∗)‖∂
∗
L ⊗ f − ∂∗

I‖2
2

)

+ λ1‖Φ(∂xL) + Φ(∂yL)‖1

+λ2

(

‖∂xL − ∂xI‖
2
2 ◦ M + ‖∂yL − ∂yI‖

2
2 ◦ M

)

. (7)

While simplified, EL is still a highly non-convex function in-
volving thousands to millions of unknowns. To optimize it ef-
ficiently, we propose a variable substitution scheme as well as
an iterative parameter re-weighting technique. The basic idea is
to separate the complex convolutions from other terms in (7) so
that they can be rapidly computed using Fourier transforms. Our
method substitutes a set of auxiliary variables Ψ = (Ψx,Ψy)
for ∂L = (∂xL, ∂yL), and adds extra constraints Ψ ≈ ∂L.
Therefore, for each (∂xLi, ∂yLi) ∈ ∂L, there is a corresponding
(ψi,x, ψi,y) ∈ Ψ. Equation (7) is therefore transformed to mini-
mizing

EL =

(

∑

∂∗∈Θ

wκ(∂∗)‖∂∗
L ⊗ f − ∂∗

I‖2
2

)

+λ1‖Φ(Ψx) + Φ(Ψy)‖1

+λ2

(

‖Ψx − ∂xI‖2
2 ◦ M + ‖Ψy − ∂yI‖2

2 ◦ M
)

+γ
(

‖Ψx − ∂xL‖2
2 + ‖Ψy − ∂yL‖2

2

)

, (8)

where γ is a weight whose value is iteratively increased until it is
sufficiently large in the final iterations of our optimization. As a
result, the desired condition Ψ = ∂L is eventually satisfied so that
minimizing EL is equivalent to minimizing E. Given this variable
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(a) Blurred image (b) Iteration 1 (c) Iteration 6 (d) Iteration 10

Figure 10 Illustration of our optimization in iterations. (a) The blurred images. The ground truth blur kernels are shown in the green rectangles. Our

simple initialized kernels are shown in the red rectangles. (b)-(d) The restored images and kernels in iteration 1, 6, and 10.

substitution, we can now iterate between optimizing Ψ and L while
the other is held fixed. Our experiments show that this process is
efficient and is able to converge to an optimal point, since the global
optimum of Ψ can be reached using a simple branching approach,
while fast Fourier transforms can be used to update L.

Updating Ψ. By fixing the values of L and ∂∗
L, (8) is simplified

to

E′

Ψ =λ1‖Φ(Ψx) + Φ(Ψy)‖1 + λ2‖(Ψx − ∂xI)‖2
2 ◦ M +

λ2‖(Ψy − ∂yI)‖2
2 ◦ M + γ‖Ψx − ∂xL‖2

2 + γ‖Ψy − ∂yL‖2
2. (9)

By simple algebraic operations to decompose Ψ to all elementsψi,x
and ψi,y , E′

ψ can be further decomposed into a sum of sub-energy
terms

E′

Ψ =
∑

i

(

E′

ψi,x
+ E′

ψi,y

)

,

where each E′
ψi,ν

, ν ∈ {x, y}, only contains a single variable

ψi,ν ∈ Ψν . E′
ψi,ν

is expressed as

E′

ψi,ν
=λ1|Φ(ψi,ν)| + λ2mi(ψi,ν − ∂νIi)

2 + γ(ψi,ν − ∂νLi)
2.

Each E′
ψi,ν

contains only one variable ψi,ν , so they can be op-

timized independently. Since Φ consists of four convex, differen-
tiable pieces, each piece is minimized separately and the minimum
among them is chosen. This optimization step can be completed
quickly, resulting in a global minimum for Ψ.

Updating L. With Ψ fixed, we update L by minimizing

E′

L =

(

∑

∂∗∈Θ

wκ(∂∗)‖∂∗
L ⊗ f − ∂∗

I‖2
2

)

+

γ‖Ψx − ∂yL‖2
2 + γ‖Ψy − ∂yL‖2

2.

Since the major terms inE′
L involve convolution, we operate in the

frequency domain using Fourier transforms to make the computa-
tion efficient.

Denote the Fourier transform operator and its inverse as F and F−1

respectively. We apply the Fourier transform to all functions within
the square terms in E′

L and get

E′

F(L) =

(

∑

∂∗∈Θ

wκ(∂∗)‖F(L) ◦ F(f) ◦ F(∂∗) −F(I) ◦ F(∂∗)‖2
2

)

+ γ‖F(Ψx) −F(L) ◦ F(∂x)‖
2
2 + γ‖F(Ψy) −F(L) ◦ F(∂y)‖

2
2,

where F(∂∗) is the filter in frequency domain transformed from
the filter ∂∗ in image spatial domain. It can be computed by the
Matlab function “psf2otf”.

According to Plancherel’s theorem [Bracewell 1999], which states
that the sum of the square of a function equals the sum of the square
of its Fourier transform, the energy equivalence E ′

L = E′

F(L)

can be built for all possible values of L. It further follows that
the optimal values of variable L

∗ that minimize E′
L correspond to

their counterparts F(L∗) in the frequency domain that minimize
E′

F(L):

E′

L|L∗ = E′

F(L)|F(L∗).

Accordingly, we compute the optimal L∗ by

L
∗ = F−1(arg min

F(L)
E′

F(L)). (10)

Since E′

F(L) is a sum of quadratic energies of unknown F(L), it

is a convex function and can be solved by simply setting the partial
derivative ∂E′

F(L)/∂F(L) to zero [Gamelin 2003]. The solution of

L
∗ can be expressed as

L
∗=F−1

(

F(f) ◦ F(I) ◦ ∆ + γF(∂x) ◦ F(Ψx) + γF(∂y) ◦ F(Ψy)

F(f) ◦ F(f) ◦ ∆ + γF(∂x) ◦ F(∂x) + γF(∂y) ◦ F(∂y)

)

,

where ∆ =
∑

∂∗∈Θ
wκ(∂∗)F(∂∗) ◦ F(∂∗) and (·) represents the

conjugate operator. The division is performed element-wise.

Using the above two steps we alternatively update Ψ and L until
convergence. Note that γ in (8) controls how strongly Ψ is con-
strained to be similar to ∂L, and its value is set with the following
consideration. If γ is set too large, the convergence will be quite
slow. On the other hand, if we fix γ too small, the optimal solution
of (8) is not the same one of (5). So we adaptively adjust the value
of γ in the optimization to keep the number of iterations small with-
out sacrificing accuracy. In early iterations, γ is set small (2 in our
experiments), to stimulate significant gains for each step. Then, we
double its value in each iteration so that Ψ gradually approaches
∂L. The value of γ becomes sufficiently large at convergence. This
scheme works well in our experiments, and typically uses less than
15 iterations to converge.

5.2 Optimizing f

In this step, we fix L and compute the optimal f . Equation (5) is
simplified to
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Algorithm 1 Image Deblurring

Require: The blurred image I and the initial kernel estimate.

Compute the smooth region Ω by threshold t = 5.

L ⇐ I { Initialize L with the observed image I}.

repeat {Optimizing L and f}
repeat {Optimizing L}

Update Ψ by minimizing the energy defined in (9).

Compute L according to (11).

until ‖∆L‖2 < 1 × 10−5 and ‖∆Ψ‖2 < 1 × 10−5.

Update f by minimizing (12).

until ‖∆f‖2 < 1 × 10−5 or the max. iterations have been performed.

Output: L, f

E(f) =

(

∑

∂∗∈Θ

wκ(∂∗)‖∂∗
L ⊗ f − ∂∗

I‖2
2

)

+ ‖f‖1. (11)

The convolution term is quadratic with respect to f . By writing the
convolution into a matrix multiplication form, similar to that in [Jia
2007; Levin et al. 2007], we get

E(f) = ‖Af − B‖2
2 + ‖f‖1, (12)

where A is a matrix computed from the convolution operator whose
elements depend on the estimated latent image L. B is a matrix de-
termined by I. Equation (12) is of a standard format of the problem
defined in [Kim et al. 2007], and can be solved by their method
which transforms the optimization to the dual problem of Equa-
tion (12) and computes the optimal solution with an interior point
method. The optimization result has been shown to be very close to
the global minimum.

5.3 Optimization Details and Parameters

We show in Algorithm 1 the skeleton of our algorithm, where the
iterative optimization steps and the termination criteria are given.
Our algorithm requires a rough initial kernel estimate, which can
be in a form of several sparse points or simply a user-drawn line as
illustrated in Figure 10.

Two parameters in our algorithm, i.e., λ1 and λ2 given in Equa-
tion (6), are adjustable. λ1 and λ2 correspond to the probability
parameters in Equation (5) for the global and local priors, and their
values are adapted from their initial values over iterations of the op-
timization. At the beginning of our blind image deconvolution the
input kernel is assumed to be quite inaccurate; the two weights are
therefore set to the user-given numbers (which range from 0.002-
0.5 and 10-25, respectively), encouraging our method to produce
an initial latent image with strong edges and few ringing artifacts,
as shown in Figure 10(a). Here, the fitted curve of the density of
image gradients (Figure 7) contains a heavy tail, implying there ex-
ist a considerable number of large-gradient pixels in the deblurred
image. This also help guide our kernel estimate in the following
steps to turn aside from the trivial delta-like structure. The strongest
edges are enhanced while reducing ringing artifacts. Then, after
each iteration of optimization, the values of λ1 and λ2 are divided
by κ1 and κ2, respectively, where we usually set κ1 ∈ [1.1, 1.4]
and κ2 = 1.5 to reduce the influence of the image prior and in-
crease that of the image likelihood. We show in Figure 10 the inter-
mediate results produced by our optimization. Over the iterations,
the kernels are recovered and image details are enhanced.

Finally, we mention one last detail. Any algorithm that performs
deconvolution in the Fourier domain must do something to avoid
ringing artifacts at the image boundaries; for example, Fergus et
al. [2006] process the image near the boundaries using the Mat-
lab “edgetaper” command. We instead use the approach of Liu and
Jia [2008].

(a) (b) (c)

Figure 11 (a) The motion blurred image published in [Rav-Acha and

Peleg 2005]. (b) Their result using information from two blurred images.

(c) Our blind deconvolution result only using the blurred image shown

in (a). Our estimated kernel is shown in the blue rectangle.

6 Experimental Results

Our algorithm contains novel approaches to both blur kernel esti-
mation and image restoration (non-blind deconvolution). To show
the effectiveness of our algorithm in both of these steps as well as
a whole, we begin with a non-blind deconvolution example in Fig-
ure 12. The captured blurred image (a) contains CCD camera noise.
The blur PSF is recorded as the blur of a highlight, which is further
refined by our kernel estimation, as shown in (e). This kernel is
used as the input of various image restoration methods to decon-
volve the blurred image. We compare our result against those of
the Richardson-Lucy method and the method of Levin et al. [2007]
(we use code from the authors and select the result that looks best to
us after tuning the parameters). Our results exhibits sharper image
detail (e.g., the text in the close-ups) and fewer artifacts (e.g., the
ringing around book edges) than the alternatives.

We next show a blind deconvolution example in Figure 13, consist-
ing of two image examples captured with a hand-held camera; the
blur is from camera shake, and the ground truth PSF is unknown. In
particular, the image example shown in the second row is blurred by
a large-size kernel, which is challenging for kernel estimation. We
compare our restored image results to those produced by two other
state-of-the-art algorithms. For the result of Fergus et al. [2006], we
used code from the authors and hand-tuned parameters to produce
the best possible results. For the result of Jia [2007] we selected
patches to minimize alpha matte estimating error. In comparison,
our results exhibit richer and clearer structure.

To demonstrate the effectiveness of our technique, we also compare
against the results of other methods that utilize additional input.
Rav-Acha and Peleg et al. [2005] use two blurred images with dif-
ferent camera motions to create the result in Figure 11. Surprisingly,
our output computed from only one blurred image is comparable.
Yuan et al. [2007] use information from two images, one blurry one
noisy, to create the result in Figure 14. In comparison, our result
from just the single blurry image does not contain the same amount
of image details, but is still of high quality due to our accurate ker-
nel reconstruction. Finally, Ben-Ezra and Nayar [2004] acquire a
blur kernel using a video camera that is attached to a still camera,
and then use the kernel to deconvolve the blurred photo produced by
the still camera. Their result is shown in Figure 15. Our algorithm
produces a deblurred result with a similar level of sharpness.

Finally, three more challenging real examples are shown in Fig-
ure 16, all containing complex structures and blur from a variety
of camera motions. The ringings, even round strong edges and tex-
tures, are significantly reduced. The remaining artifact is caused
mainly by the fact that the motion blur is not absolutely spatially-
invariant. Using a hand-held camera, slight camera rotation and mo-
tion parallax are easily introduced [Shan et al. 2007].
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(a) Blurred image (c) Richardson-Lucy (d) [Levin et al. 2007] (e) Our result

(b)

Methods Running
time (s)

RL 54.90
Levin et al. 477.56
Ours 38.48

(f) (g) (h)

Figure 12 Non-blind deconvolution. (a) The captured blurry photograph contains a SIGGRAPH proceeding and a sphere for recording the blur PSF.

The recovered kernel is shown in (b). Using this kernel, the image restoration methods deconvolve the blurred image and we show in (c) the result of

RL algorithm and (d) the result of the sparse prior method [Levin et al. 2007]. Our non-deconvolution result is shown in (e) also using the kernel (b).

(f)-(h) Close-ups extracted from (b)-(d), respectively. The running times of different algorithms are also shown.

(a) Blurred images (b) Our results (c) [Fergus et al. 2006] (d) [Jia 2007]

Figure 13 Blind deconvolution. (a) Our captured blur images. (b) Our results (by estimating both kernels and latent images). The deblurring results

of (c) Fergus et al. [2006] and (d) Jia [2007]. The yellow rectangles indicate the selected patches for estimating kernels in (c) and the windows for

computing alpha mattes and estimating kernels in (d) respectively. Both Fergus et al. [2006] and Jia [2007] use RL deconvolution to restore the blurred

image. The estimated kernels are shown in the blue rectangles.
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(a) Blurred images (b) [Yuan et al. 2007] (c) Our results (d)

Figure 14 Statuary example. (a) The input blurred images published in [Yuan et al. 2007]. (b) Their results using a pair of images, one blurry and one

noisy. (c) Our blind deconvolution results from the blurred images only. (d) Some close-ups of our results.

(a) Blurred image (b) [Ben-Ezra and Nayar 2004] (c) Our result

Figure 15 (a) A motion blurred image of a building from the paper of Ben-Ezra and Nayar [2004]. (b) Their result using information from an attached

video camera to estimate camera motion. (c) Our blind deconvolution result from the single blurred image only.

7 Conclusion and Discussion

In this paper, we have proposed a novel image deconvolution
method to remove camera motion blur from a single image by min-
imizing errors caused by inaccurate blur kernel estimation and im-
age noise. We introduced a unified framework to solve both non-
blind and blind deconvolution problems. Our main contributions
are an effective model for image noise that accounts for its spatial
distribution, and a local prior to suppress ringing artifacts. These
two models interact with each other to improve unblurred image
estimation even with a very simple and inaccurate initial kernel af-
ter our advanced optimization process is applied.

Previous techniques et al. [Fergus et al. 2006] have avoided comput-
ing an MAP solution because trivial solutions, such a delta kernel
(which provides no deblurring), can represent strong local minima.
The success of our MAP approach is principally due to our opti-
mization scheme that re-weights the relative strength of priors and
likelihoods over the course of the optimization. At the beginning of
our optimization the kernel is likely erroneous, so we do not em-
phasize the likelihood (data-fitting) term. Instead, the global prior
is emphasized to encourage the reconstruction of strong edges ac-
cording to the gradient magnitude distribution. We also emphasize

the local prior in order to suppress ringing artifacts which might in-
duce incorrect image structures and confuse the kernel estimation.
Then, once strong edges are reconstructed, we gradually increase
the likelihood term in later iterations in order to fine-tune the ker-
nel and recover details in the latent image. We have found that this
re-weighting approach can avoid the delta kernel solution even if it
is used as the initialization of the kernel.

We have found that our technique can successfully deblur most mo-
tion blurred images. However, one failure mode occurs when the
blurred image is affected by blur that is not shift-invariant, e.g.,
from slight camera rotation or non-uniform object motion. An in-
teresting direction of future work is to explore the removal of non-
shift-invariant blur using a general kernel assumption.

Another interesting observation that arises from our work is that
blurred images contain more information than we usually expect.
Our results show that for moderately blurred images, edge, color
and texture information can be satisfactorily recovered. A success-
ful motion deblurring method, thus, makes it possible to take ad-
vantage of information that is currently buried in blurred images,
which may find applications in many imaging-related tasks, such as
image understanding, 3D reconstruction, and video editing.
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(a) (b)

(c) (d) (e) (f)

Figure 16 More results. (a) The captured blur images. (b) Our results.

(c)-(f) Close-ups of blurred/unblurred image regions extracted from the

last example.
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