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High-Quality Plane Wave Compounding
using Convolutional Neural Networks

Maxime Gasse, Fabien Millioz, Emmanuel Roux,
Damien Garcia, Hervé Liebgott and Denis Friboulet

Abstract—Single plane wave (PW) imaging produces ultra-
sound (US) images of poor quality at high frame rates (ultra-
fast). High-quality PW imaging usually relies on the coherent
compounding of several successive steered emissions (typically
more than ten), which in turn results in a decreased frame rate.
We propose a new strategy to reduce the number of emitted
PWs by learning a compounding operation from data, i.e. by
training a convolutional neural network (CNN) to reconstruct
high quality images using a small number of transmissions. We
present experimental evidence that this approach is promising, as
we were able to produce high-quality images from only 3 PWs,
competing in terms of contrast ratio and lateral resolution with
the standard compounding of 31 PWs (10x speed-up factor).

I. INTRODUCTION

Ultrasound images obtained from single PW transmissions
exhibit lower quality (in terms of resolution and contrast)
than those obtained from classical focused transmissions. To
overcome this limitation, a standard approach consists in per-
forming spatial coherent compounding of multiple RF images
resulting from successive transmissions [1]. The cost of such
an approach is a substantially decreased frame rate, since many
PW transmissions are involved in this process. In this work, we
formulate PW compounding as a supervised learning problem.
In particular, we demonstrate experimentally the ability for
a convolutional neural network (CNN) to reconstruct high-
quality US images from a small number of PW acquisitions.

IT. METHODOLOGY

We consider m PW acquisitions from a linear US probe,
each yielding g RF signals of length p. The compounding oper-
ation then takes m beamformed RF images as an input, that is,
x € R™*P*4 and produces one compounded RF image as an
output, that is, h(x) € RP?*%. We adopt a supervised learning
setting, and seek for the optimal compounding operation h*
with respect to a target image y € RP*9. Finding h* then
amounts to solving the following risk-minimization problem:

h* = argmin E [L(h(x),y)]. (N
h x.y

with x € X’ a point in the input space, y € ) a point in the
output space, h a X — ) mapping, and L a loss function.
A common approach to solve this problem is to consider a
limited set of mappings h € H (i.e., a model), and a limited
set of input / output pairs (x,y) € D (i.e., a dataset) sampled
from the joint distribution p(x, y), and then perform empirical
loss minimization:

D
h* = argmin Z L(h(x),y). 2)
he# (x.y)

Solving (2) is equivalent to solving (1) under two assumptions:
1) the dataset D is representative of the joint distribution

p(x,¥); and 2) the model H contains the optimal mapping
h*. Since none of these assumptions can be measured in
practice, a compromise must be made on the model complexity
with respect to the number of available training samples in
order to avoid the under/over-fitting problem. In this work,
our mapping space H consisted in a fixed CNN structure with
parameter space O, therefore the search for h* boils down to
a search for the optimal parameters #*. In order to reconstruct
high-quality images, we chose the reference y as the image
obtained from the standard compounding of n > m PW
acquisitions. The main justification for this approach is that
there may be useful information from x for reconstructing
a high-quality image y which is not exploited by standard
compounding, but may be learned from data with an adequate
model.

III. EXPERIMENTAL SETUP
A. Dataset acquisition

A linear-array probe of 128 elements with size 7x0.283mm
and kerf 0.025mm (ATL L7-4 38mm, bandwidth 4-7 MHz,
transmitted frequency 5.2 MHz) was interfaced with a Vera-
sonics system research scanner (Vantage 256™) to perform
the acquisitions. For each PW transmission, the acquired raw
RF signals were sampled at 20 MHz and beamformed using
the method from Lu [2], resulting in RF beamformed images
with resolution p x ¢ = 1332 x 128 and a corresponding
spatial span of size of about 5 x 4 cm. Each acquisition was
performed using 31 steered PW spanning £=15° in one degree
steps. Reference images y were obtained from the standard
compounding of all n = 31 PWs while the input x was made
up of only a small subset of m = 3 PWs, corresponding
to steering angles (—15°,0°, +15°). The dataset used in the
experiments corresponds to a total of 7000 (x,y) samples
representative of US images. Specifically, 5000 acquisitions
were performed of in-vivo tissues from three healthy subjects
(carotid, thyroid and liver regions) and 2000 images of a
Gammex phantom (410 SCG). The samples were obtained
in batches of 250 images by continuously moving the probe
around the target area while acquiring images at a rate of 50
fps. From the 7000 samples, 6000 were used for training the
CNN, i.e. for solving (2). The remaining 1000 samples were
used for testing, i.e. to evaluate the quality of the CNN-based
compounding.

B. CNN architecture and training

The model we employed was a 2D fully-convolutional
neural network (no spatial pooling) with 4 hidden layers and
4-pieces maxout activation units [3], whose architecture is
described in Table I. Maxout units are piecewise-linear convex
functions which can approximate many popular activation
functions and most often outperform these, yet at a higher
computational cost [4]. The absence of spatial pooling ensures
that spatial information is preserved at the same resolution
throughout the network, which may be desirable for preserving
phase in RF signals. Also, with such a model we assumed
the compounding operation to be spatially invariant, with a
resulting receptive field (input patch size for each output
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Fig. 1. B-mode images obtained using our CNN model and standard compounding. Imaged media are respectively, from top to bottom: i
the thyroid region; in-vivo tissues from the carotid region; and in-vitro tissues from the Gammex phantom. All images were normalized within [0, 1] and
gamma-compressed using - 0.3, with no dynamic range clipping.




TABLE I
CNN ARCHITECTURE.

layer size kernel size nb. of o
(depth x height x width)  (height x width)  kernels activation
mxpxgq
64 xpxq 9x 3 256 maxout 4
32 xpxg 17x 5 128 maxout 4
16 xpxgq 33x 9 64 maxout 4
B8xpxgqg 65 x 17 32 maxout 4
lxpxg 1x 1 4 maxout 4

pixel) of 121 x 31 (about 0.5 x 1 cm). The model was
implemented using the Theano library [5] and trained via
stochastic gradient descent with the Adam optimizer [6] on a
Nvidia GPU (Geforce GTX 1080 Ti) to minimize the expected
L loss, resulting in training times of about two days.

IV. RESULTS

On representative test samples, the images produced by
the CNN (Fig. 1, middle column) are visually very close
to the target images (Fig. 1, right column). In particular, it
can be observed how the CNN improved the contrast and
enhanced anatomical structures as compared to the images
obtained from the standard compounding of the same 3 PWs
(Fig. 1, left column). We report two quantitative evaluation
measures to assess this improvement: the contrast ratio (CR)
as defined in [7], and the lateral resolution (LR), i.e. the full
width at -6dB of the point spread function, taken from test
samples acquired on the Gammex phantom. As a reference,
the CNN is compared in terms of CR and LR to the standard
coherent compounding of an increasing number of PWs, i.e.
1 to 31 PWs spread uniformly within a +15° sector (Fig. 2).
The evolution of CR and LR is consistent with the behavior
observed for uniform sector spanning by Zhang et al. [8]: LR
quickly improves with 2 and 3 PWs while CR degrades, and
then both indicators tend to stabilize to an optimal value as
the number of PWs increases. Interestingly, while exploiting
only 3 PWs the CNN resulted in a CR equivalent to that
of the standard compounding of about 20 PWs, and a LR
corresponding to the standard compounding of 31 PWs.

V. CONCLUSION

A methodology for learning a PW compounding operation
from data with supervised learning was presented, and ex-
perimental evidence was provided that a CNN model is able
to exploit information from separate PW acquisitions more
efficiently than standard compounding, resulting in a better
trade-off between image quality and frame rate. Note that
the proposed network architecture was not optimized in any
principled way, and therefore should only be seen as a proof-
of-concept rather than a definitive solution to the compounding
problem. In our experiments the most critical part of the model
seemed to be its resulting receptive field, the larger the better,
which explains the increased kernel size in the last layers.

CNN-based US image reconstruction thus appears as a
promising approach for improving ultrafast acquisition, and
many future research directions can be developed to further
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Fig. 2. Contrast ratio and lateral resolution reached by our CNN model
with 3 PWs (—15°,0°,4+15°), compared to the standard compounding of
m PWs spanning uniformly a +15° sector (uniform scheme). Contrast ratio
is measured on a B-mode image (gamma-compression, v = 0.3) using an
anechoic region, while lateral resolution is measured on the envelope image
of 0.1mm nylon fibers. Both measures were obtained from data acquired from
the Gammex phantom.

investigate this approach, such as the compounding of diverg-
ing waves, the integration of the beamforming in the learning
process or the exploitation of temporal information to further
accelerate the image formation.
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