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The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for 

its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome se-

quence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding 

genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution 

of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera 

may help identify genes related to M. oleifera’s high protein content, fast-growth, heat and stress tolerance. This reference ge-

nome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and 

improvement of M. oleifera. 
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Despite doubling of per-acre yields of major grain crops 

since 1950, nearly one in seven people suffer from malnu-

trition worldwide, predominately in developing countries. 

While there are myriad reasons for widespread lack of 

foodstuffs, part of the problem is that the human food sys-

tem is dominated by annual crops that are sown each year, 

such as corn, wheat, rice, and most of leaf vegetables. These  
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crops can be quite labor and resource intensive, and are not 

all suited to certain ecosystems found in many developing 

countries. Conversely, certain perennials—plants that are 

sown once and live for years—that are highly water-use and 

nutrient cycling efficient, adaptable to a wide array of envi-

ronments, have high-nutrition value, may be viable alterna-

tives to traditional annuals. Unfortunately, to date few of 

these perennial plants are widely planted or consumed, with 

the banana, coco and pigeon pea being notable exceptions. 

Recently, a small to medium-sized, evergreen or decidu-

ous tree native to northern India, Pakistan and Nepal known 

as the drumstick tree (Moringa oleifera Lam.)—or alterna-

tively as the horseradish tree or ben oil tree—has received 

increased agricultural and industrial attention. Not only can 

every part of the tree be used as food, medicines or for in-

dustrial purposes [14], but its high protein, vitamin and 

mineral content have made it an attractive target for 

wide-spread planting in some developing countries [1,3,5,6]. 

Moreover, M. oleifera grows well at altitudes from 0 to 

1,800 m and in areas with rainfall between 500 and 1,500 

mm per year, making it suitable for both semi-arid and arid 

ecosystem, which covers 37.0% of the earth’s geographical 

area, and even larger swaths of the developing world. De-

spite these benefits and efforts to cultivate the tree, little 

basic research on M. oleifera has been conducted, which 

greatly limits its further traditional and novel applications. 

Here, for the first time we have sequenced the genome of M. 

oleifera and provided well-assembled and annotated ge-

nome that should prove invaluable in furthering the uses 

and investigations of this important perennial.  

1  Materials and methods 

1.1  DNA materials 

DNA used for sequencing was extracted from the leaves of 

a one-year-old drumstick tree (Moringa oleifera Lam.) 

planted in Pu’er, Yunnan province, China. In total, over  

50 μg DNA was used to construct the sequencing libraries. 

1.2  Sequencing data production and processing 

Whole genome shotgun sequencing was deployed to pro-

duce reads on an Illumina Hiseq2500TM. Raw sequencing 

data of Illumina Hiseq2500TM were obtained through three 

steps, image analysis, base calling and sequence analysis, 

yielded a total of 202 Gb raw data. 

Reads with more than 10 low-quality bases (low-quality 

being defined as value less than 60 bases or with “N”s were 

filtered). Duplicated reads and reads with adaptor are also 

removed. Both ends of each read were trimmed by 2 bp. 

Totally, we obtained seven libraries of different lengths: 

177, 222, 390, 503, 3,500, 11,500, and 15,000 bp. Adaptor 

ligation and DNA cluster preparation were performed prior 

to sequencing. K-mer frequency and correction to reduce 

low frequency reads (primarily caused by sequencing errors) 

was done in SOAPec 2.01 [7], leaving clean data suitable 

for de novo assembly. 

1.3  Genome assembly 

To deal with genomes with the potential high heterozygosi-

ty of the genomes, Platanus 1.2.1 [8] was used to assemble 

DNA fragments (reads) into contigs. The initial K-mer size 

was set 41, step size was 10, maximum difference for 

branch cutting was 0.3, maximum difference for bubble 

crush was 0.15, and K-mer coverage cutoff was 5. No pa-

rameter needs to be set during scaffolding using SSPACE 

v2.0 [9]. The final assembly was generated after gap filling 

with Gapcloser v1.12 in SOAPdenovo package [7]. The 

assembly was evaluated by mapping the reads back to the 

genome using SOAPaligner 2.18. 

1.4  Repetitive sequence annotation 

Tandem Repeats Finder (TRF) 4.04 [10] was used to iden-

tify tandem repeats in the M. oleifera genome, and then 

Repeatmasker 3.3.0 and RepeatProteinMask were used to 

search repeats against Repbase [11] at the DNA and protein 

levels, respectively. These results were combined with the 

de novo prediction via LTR_FINDER 1.05 [12] and Re-

peatScout [13].  

1.5  Protein-coding gene annotation 

A combination of homology-based and ab initio methods 

yielded 19,465 annotated protein-coding genes. Protein se-

quences of six plant species (Arabidopsis thaliana [14], 

Glycine max [15], Oryza sativa [16], Populus trichocarpa 

[17], Sorghum bicolor [18], Selaginella moellendorffii [19]) 

were used in the homology-based method. These six species 

were selected because they all have well assembled and 

annotated genomes sequences, and include angiosperm to 

gymnosperm species that are related to M. oleifera, making 

them excellent reference points to explore the evolutionary 

processes related to M. oleifera. In the homology-based 

method, we first performed tblastn setting e-value cutoff 

10
5. Blast hits with e-value lower than 105 in the genome 

were discarded, and then predicted regions were extended 

by 2,000 bp both upstream and downstream, and aligned 

against protein sequence using GeneWise [20] to identify 

gene structure. With the AUGUSTUS 2.5.5 [21], Genscan, 

and GlimmerHMM 3.0.1 [22] software packages used for 

gene prediction. In the ab initio method, the genes predicted 

by software were aligned to Arabidopsis thaliana protein 

sequences, with alignment rate set at 0.5. The two sets of 

genes were then merged using GLEAN, a software that can 

create consensus gene sets by integrating disparate sources 

of gene structure evidence. 
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1.6  Gene function annotation 

Potential functions of the annotated genes were assigned  

by choosing the best alignment of genes against the 

TrEMBL [23], KEGG [24] and InterProscan [25] databases. 

1.7  Non-coding gene annotation 

tRNAscan-SE v1.23 [26] was used for M. oleifera tRNA 

annotation. We used homology method to identify rRNA. 

rRNA sequence data was downloaded from the Rfam [27] 

database to serve as a reference. INFERNAL v0.81 [28] 

was used to identify snRNA and miRNA. 

1.8  miRNA target analysis 

Mature miRNA sequences were downloaded from mi-   

Rbase [29] and aligned to annotated miRNA genes via blastn. 

Hits longer than 16 bp were selected as potential mature mi- 

RNA sequences. Then we predicted target genes of these ma-

ture miRNA sequences using online tool psRNATarget [30]. 

1.9  Gene families 

Four other species including Vitis vinifera, Cajanus cajan, 

Carica papaya, Malus pumila and software OrthoMCL  

1.4 [31] were used to identify gene clusters. First, we con-

ducted pairwise alignment using blastp with e-value cutoff 

of 10
5. Then OrthoMCL was used with all parameters de-

fault.  

1.10  Phylogenetic relationship and divergent time 

Single copy gene family genes of the five woody plants 

(Moringa oleifera, Vitis vinifera, Cajanus cajan, Carica 

papaya, Malus pumila) obtained from gene family analysis 

were used for phylogenetic analysis. Multiple sequence 

alignments were performed using MUSCLE 3.8.31 [32]. 

Four-fold degenerate sites were extracted from each gene 

and concatenated into one linear sequence for each species, 

in order to construct a neighbor joining tree using PhyML 

3.0. To estimate the divergence time of each species, we 

used known divergence time information between plant 

species from the public resource, TIMETREE (http://www. 

timetree.org/). Using data generated from the phylogenic 

tree, we estimated divergence times with MCMCTREE in 

paml 4.4 [33].  

1.11  Gene family contraction and expanding 

CAFE 2.1 [34] was used to screening gene family expan-

sion and contraction history.  

1.12  Positive selection analysis 

Blast was performed to align the coding sequence data of M. 

oleifera and Carica papaya in order to find the gene pairs 

with the best alignments. The resulting 5,601 orthologous 

gene pairs were aligned again using lastz as a preparation 

for KaKs_ Calculator 1.2 [35], which finally yielded a da-

taset of each gene pair’s Ka/Ks ratio. Alignment in Figure 3 

and Figure S10 was produced by multiple alignment tool 

MUSCLE [32] and picture was generated by ClustalX [36].  

2  Results 

2.1  Genome assembly of M. oleifera 

We obtained 457× coverage DNA sequencing data for the 

M. oleifera sample (summary of sequencing data used for 

the assembly is presented in Table S1, and 17-mer frequen-

cy distribution is shown in Figure S1). Based on the 17-mer 

frequency distribution, the estimated genome size was esti-

mated at 315 Mb (Table S2), and further flow cytometry 

indicated that the nuclear genome size (c-value) of M. oleif-

era was comparable and/or smaller than that of Oryza sativa. 

The final contig and scaffold N50 were 123 kb and 1.14 Mb, 

respectively (Table 1), with over 80% (231 Mb) of the total 

sequence represented in 262 scaffolds. The final quality of 

genome assembly was comparable to recently published 

high-quality reference plant genomes [19]. In total, 95.67% 

reads could be re-mapped to the assembly, further con-

firmed the quality of our genome assembly (Table S3). 

The genome size of woody plant ranges from 280 Mb, 

such as Prunus mume [37], to 221.8 Gb for Pinus taeda [38]. 

Table 1  Summary statistics of M. oleifera genome assembly 

 

Contig Scaffold 

Size (bp) Number Size (bp) Number 

N90 4,165 4,362 5,792 1,382 

N80 30,989 1,914 150,929 262 

N70 60,562 1,261 396,940 147 

N60 91,660 880 736,902 93 

N50 123,008 611 1,140,476 61 

Longest 1,070,888 6,788,971 

Average size 6,911 8,677 

Total number (>1,000bp) 13512 10,494 

Total 287,419,725 41,586 33,332 
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Here, the genomes of M. oleifera proved to be among the 

smallest, being even smaller than rice. Paired with M. oleif-

era’s fast-growth, high seed production, and adaptation to 

arid and semi-arid environments, the small size of the M. 

oleifera genome makes it not just an attractive perennial, 

but a viable model for functional genomic studies aimed at 

better characterizing the woody plant biology. 

2.2  Annotation of M. oleifera Genome 

A combination of homology and ab initio methods allowed 

us to annotate 19,465 high-confidence protein-coding loci in 

the M. oleifera genome with a mean coding length of 

3,354.22 bp and an average of 5.42 exons per gene (Table 

S4). Further gene structure-based evaluation to confirm the 

annotation of protein-coding genes (distribution of mRNA 

structure statistics are in Figures S2 and S3) showed that 

93.74% of M. oleifera genes have homologs in the TrEMBL 

protein database, and 72.67% could be classified by 

Swiss-Prot [23]. In total, 94.01% of the genes have either 

known homologs or can be functionally classified with In-

terPro, GO, KEGG, Swiss-Prot or TrEMBL databases [39] 

(Table S5).  

Structure- and homology-based analyses identified   

148,820,058 bp repetitive elements, covering most types of 

plant transposable elements. Most of the repeats were de  

novo predicted. Curiously, only 10.1% of the repeats de-

tected by homologous method, perhaps reflecting phyloge-

netic distance of M. oleifera from other plants with pub-

lished genomes. Together with numerous truncated repeti-

tive elements, these elements make up 51.45% of the M. 

oleifera genome (Table S6), while 136 Mb of the repeats 

were transposable elements (TE) that make up 47.10% of 

the M. oleifera genome (Table S7; distribution of TE diver-

gence rate is shown in Figures S4 and S5). An overview of 

annotated non-coding RNA (ncRNA) genes is shown in 

Table S8. In total, we predicted 87 mature miRNAs and 369 

potential target genes of these miRNAs (Table S9). GO 

(gene ontology) [40] enrichment analysis of these genes 

using Ontologizer [41] (Figure S6) showed that 25 of 26 

enriched terms were concentrated in cellular biological 

process regulation.  

Previous studies found that intracellular tRNA level may 

be correlated with tRNA gene copy number [42]. Here, 

1,777 tRNA genes reside in M. oleifera genome, but only 

388 in Carica papaya and 600 in Vitis vinifera, which may 

related to M. oleifera’s markedly high protein synthesis 

ability. 

2.3  Phylogenetic and whole genome duplication  

analysis 

M. oleifera was originally classified into Rhoeadales in 

Flora of China based on its morphology, but mounting mo-

lecular evidences suggest it belongs to Brassicales [43]. 

Here, four woody plants with published genomes from the 

Dicotyledons clade—Vitis vinifera [44], Cajanus cajan [45], 

Carica papaya [46], and Malus domestica [47]—were used 

to construct a phylogenetic tree of M. oleifera (Figure 1A 

shows the divergence time of each branch). The tree showed 

that Carica papaya is the most closely related species to M. 

oleifera, suggesting placement of this species in Brassicales. 

And we analyzed the phylogeny of four Brassicales (Ara-

bidopsis thaliana, Brassica rapa, carica papaya, and 

Moringa oleifera; shown in Figure S7). Further whole ge-

nome duplication analysis of these four Brassicales indi-

cated that whole genome duplication (WGD) events took 

place several times in Brassicales (Figure 1C). Such WGD 

events help clarify some of the history of Brassicales; for 

example, Carica papaya was previously known to have not 

experienced the At-β WGD [46], and our data suggests that 

neither M. oleifera nor Carica papaya have experienced any 

recent WGD events (Figure 1C). Instead, our analyses indi-

cate that the last WGD events of these two species took 

place before they diverged from A. thaliana, that is the At-γ 
WGD; a finding further supported by calculating the Ks 

between the paralogous genes of M. oleifera (Figure 1D) 

which showed only one obvious peak where Ks≈1.8. 

2.4  M. oleifera-specific gene families and genes 

Gene family is often an assemblage of genes with approxi-

mately the same function. Species-specific gene families 

add raw materials to the generation of discrepancy against 

other species [48,49]. Here, we carried out gene family 

clustering analysis on all protein-coding genes of M. oleif-

era. Comparative analysis of M. oleifera with Vitis vinifera, 

Cajanus cajan, Carica papaya and Malus domestica 

showed that these five different plant species possess simi-

lar numbers of gene families, with a core set of 10,215 

shared genes (Figure 1b). Compared to other species, how-

ever, M. oleifera has markedly fewer single-copy families 

and unclustered genes (distribution of gene clusters in M. 

oleifera genome was shown in Table S10 and Figure S8). 

Of 12,298 gene families in M. oleifera, 198 gene families 

were M. oleifera-specific, including a total of 812 genes 

(GO enrichment analysis of these genes is in Figure S9). 

Calculating gene family contraction and expansion on each 

branch in the phylogenetic tree showed that that M. oleifera 

has 560 expanded gene families—the smallest of the five 

wood plant species with published genomes—and 2,611 

contracted gene families (Figure 1A), making it compara-

tively smaller with a compact genome.  
Curiously, four SKP1 genes and 18 F-box domain con-

taining genes were identified as members of M. oleif-

era-specific families. Gene SKP1 is a protein crucial to the 

cell cycle controlling [50] that helps coordinated the ubiqui-

tination and degradation of phase specific proteins to main-

tain the cell cycle, with the F-box motif maintaining the 

association between these proteins [51]. Rather confusingly, 
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Figure 1  Comparative genomic analysis. A, Phylogenetic tree of five woody plants, M. oleifera, Vitis vinifera, Cajanus cajan, Carica papaya and Malus 

domestica. Estimated divergence time ranges from 47 million years ago (mya) to 110 mya. Numbers of gene family contractions and expansions are shown 

in the pie chart. B, Gene family analysis of M. oleifera against Vitis vinifera, Cajanus cajan, Carica papaya and Malus domestica. Vitis vinifera and Malus 

domestica were merged into one dataset. C, 4DTv (fourfold degenerate third-codon transversion) analysis of M. oleifera using Arabidopsis thaliana, Brassi-

ca rapa and Carica papaya. D，Distribution of Ks between paralogou gene pairs. 

four SKP1 and 18 F-box containing genes M. oleifera were 

in the M. oleifera-specific gene families while another sev-

en SKP1 genes and 104 F-box containing genes were not. In 

theory, there may be two potential explanations: First, these 

represented genes may be newly derived and may play a 

role in M. oleifera’s fast-growth and heat tolerance, while 

second these genes may simply be redundant and accumu-

lated many mutations. We also found three BET V 1 genes 

in the M. oleifera-specific gene families. BET V 1 was first 

found in birch tree pollen as an allergen [52], but more 

functions of this gene have been discovered later, including 

its role as a steroid carrier [53]. BET V 1 genes are potential 

factors for the M. oleifera’s fast growth as this gene family 

is related to the binding of many ligands, including ABA, 

lipids and steroids. These M. oleifera-specific genes may be 

functionally important to M. oleifera and warrant further 

investigation. 

2.5  Positively selected genes in M. oleifera genome 

Positively selected genes often have functions that favor the 

organism’s adaptation and establishment in an area. To in-

vestigate which genes may be associated with certain traits 

that have made M. oleifera’s successful, we conducted posi-

tive selection analysis. Blast and KaKs_Calculator [54] 

compared orthologs between M. oleifera and each one of 

Carica papaya, Vitis vinifera and Malus domstica, and re-

spectively found 566, 399, 112 genes of M. oleifera with 

Ka/Ks ratio>1 (significance, P<0.05; see Table S11, Table 

S12, Table S13). We further found four genes that overlap 

among the three gene sets (Figure 2). We also found two 

genes (annotated gene: lamu_GLEAN_10016878, lamu_  
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Figure 2  Positively selected genes identified from pairwise comparisons 

between M. oleifera and Carica papaya, Vitis vinifera and Malus domestica.  

GLEAN_10011614) with alignment length longer than half 

the gene size, indicating they may be specifically and 

strongly selected in M. oleifera. Gene lamu_GLEAN_ 

10016878 is functionally annotated as a Myb/SANT-like 

DNA binding domains. The SANT domain is ubiquitous in 

chromatin regulatory proteins and it is often involved in 

histone acetylation, deacetylation and ATP-dependent 

chromtin remodeling process [55]. More importantly, many 

proteins containing the Myb/SANT domain have DNA 

binding activity and are related to gene regulation; these 

regulators of different functions often do not resemble each 

other. However, both ends of this gene and some segments 

of the central region is highly conserved. However some 

parts of central regions vary (see screening of the alignment 

of orthologous genes in Figure S10) [56,57].  

Gene lamu_GLEAN_10011614 is supposed to be a ribo-

somal protein S6e, which is highly conserved in vertebrates, 

invertebrates, and fungi [58]. In eukaryotes, ribosomal pro-

teins synthesized in cytoplasm are imported into nucleo-

plasm before associating with newly transcribed pre-rRNA 

to form a 90S complex, which is processed into a 60S and a 

40S ribosomal subunit and subsequently exported into cyto- 

plasm [59]. Ribosomal proteins assist the maturation and 

functioning of pre-18S RNA and ribosome [60]. The S6e 

amino acid sequence has twonucleolar binding sequence 

(Nobis) and severalnuclear localization signal (NLS) se-

quence according to Kundu-Michalik’s study [58]. We 

identified Nobis1’s N-terminus by recognizing (G)RVRL 

pattern and inferred the C-terminus according to the length 

of Nobis1 revealed in previous study [58]. Based on the 

Kundu-Michalik’s study, we also proposed a rough border 

of the Nobis2 frame. And some other elements such as NLS 

and phosphorylation sites on this sequence were tentatively 

presented in Figure 3. Phosphorylation states of S6 often act 

as a switch and regulate cell processes through phosphory-

lation cascade [61]. Positive selection of the lamu_GLEAN_ 

10011614 gene elegantly serves as further molecular evi-

dence that the protein synthesis machinery of M. oleifera 

has likely experienced strong evolutionary rewiring to pro-

duce more proteins. 

2.6  Analysis of transcription factor families 

Transcription factors regulate gene expression, making 

them crucial and diverse in organisms ranging from mi-

crobes to high plants and animals [62,63]. Analysis of pre-

viously identified transcription factors has yielded a large 

amount of information on gene expression patterns. Taking 

the Arabidopsis thaliana transcription factor families in the 

TAIR database (http://arabidopsis.org/browse/genefamily/ 

index.jsp) [64] as reference, we identified a total of 939 

transcription factors (Table S14) in the M. oleifera genome 

using the blastp with P-value<10
20. Interestingly, our posi-

tive selection analysis of M. oleifera against each of Vitis 

vinifera, Carica papaya, and Malus domestica uncovered 

43 transcription factors were under positive selection in 

various classes including ABI3VP1, AP2-EREBP, Alfin- 

like, C2C2-Dof, C2C2-Gata, C2H2, C3H, CPP, E2F-DP,  

 

 

Figure 3  Alignment of M. oleifera gene lamu_GLEAN_10011614 and its orthologous in Vitis vinifera, Cajanus cajan, Carica papaya, Malus domestica. 

Postulated elements like Nobis, NLS, and phosphorylation sites have been marked in colored rectangles. 
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G2-like, GRAS, Homeobox, MADS, MYB, NAC, PHD, 

Trihelix, WRKY, bHLH transcription factors. Among these, 

the WRKY transcription factors are particularly interesting, 

since they were previously suggested to play important roles 

in response to various abiotic stress, including cold, heat, 

water deficiency, excessive salt, nutrient starvation, and 

variable light condition. Here, we found five copies under 

positive selection. Similarly, the C2H2 transcription fac-

tors—a superfamily that plays important roles in defense 

responses and various other physiological processes in 

plants—have four copies under positive selection. Mean-

while, the AP2-EREBP transcription factors that were pre-

viously implicated in hormone, sugar and redox signaling in 

context of abiotic stresses such as cold and drought, had two 

copies under positive selection, while the C3H transcription 

factors with some copies being reported to response to 

drought stress have two copies under positive selection (Ta-

ble S15). The fact that all of these transcription factors in-

volved in stress response were found to be under positive 

selection may account for M. oleifera’s adaptation to both 

heat and drought stress present in arid environments. 

2.7  HSP genes 

Heat stress is a serious threat to crop production, which may 

be exacerbated by changes in global climates. Accordingly, 

the high temperature tolerance of M. oleifera [1] may prove 

quite useful. In many species of plants, Heat shock proteins 

(HSPs) or stress-induced proteins participate in many pri-

mary stress response such as drought, salinity, cold and hot 

temperatures and chemicals [6567]. Using the heat shock 

proteins sequences of Arabidopsis thaliana we downloaded 

from HSPIR (http://pdslab.biochem.iisc.ernet.in/hspir/ 

chaperone.php) [68] as reference, we identified a total of 

133 heat shock proteins. Based on their nature of functions 

and molecular mass, HSPs are classified broadly into six 

major families, namely Hsp70 (25 copies in M. oleifera 

genome), Hsp40 (J-proteins, 52 copies in M. oleifera ge-

nome), Hsp60 (chaperonins, 17 copies in M. oleifera ge-

nome), Hsp90 (three copies in M. oleifera genome), Hsp100 

(Clp proteins, nine copies in M. oleifera genome) and small 

heat shock proteins (27 sHsps copies in M. oleifera genome) 

(Table S16). 

We further checked the HSP genes’ Ka/Ks ratio between 

M. oleifera and Carica papaya, and found that the average 

Ka/Ks ratio of HSP genes was higher than that of the back-

ground (Table S17). HSP genes that have positive selection 

features against any of Carica papaya, Vitis vinifera and 

Malus domstica were collected and shown in Table S18. 

These genes may potentially be related to the heat tolerance 

that is one characteristic of M. oleifera. 

2.8  Brassinosteroid signal transduction pathway 

Brassinosteroid is a kind of plant hormone with a regulatory 

function in cell elongation and cell division, which can sig-

nificantly promote plant growth. Previous reports suggest 

that that brassinosteroids help plants get through environ-

mental stresses such as cold, drought and heat. Here, we 

analyzed the brassinosteroid signal transduction pathway in 

M. oleifera and found that the BAK1 (BRI1 associated re-

ceptor kinase 1) gene expanded in M. oleifera with 29 cop-

ies, as compared to five copies in A. thaliana genome (Fig-

ure S11). Furthermore, we also noticed one copy of the 

BAK1 gene was also under positive selection when com-

pared against Vitis vinifera. BAK1 plays a major role in 

transducing the BR signal, and loss-of-function mutation of 

BAK1 caused a weak dwarf phenotype [69]. 

2.9  -aminobutyrate (GABA) bio-synthesis and sitos-

terol bio-synthesis pathways in M. oleifera 

We analyzed GABA bio-synthesis and sitosterol bio-  

synthesis pathways in M. oleifera—both of which are im-

portant hormone pathways in plants—and annotated all 

genes in the pathways. 4-Aminobutyrate or GABA is a 

ubiquitous, four carbon, non-protein amino acid found in 

higher plants, animals, fungi and bacteria. In plants, the 

concentration of GABA is markedly stimulated by a variety 

of stress conditions, e.g. hypoxia, temperature shock, me-

chanical manipulation and damage, water stress and phyto-

hormones [70,71]. Here, we found that GABA is synthe-

sized almost exclusively by the irreversible α-decarboxyla- 

tion of L-glutamate by glutamate decarboxylase (GAD; 

annotated gene: lamu_GLEAN_10006873, lamu_GLEAN_  

10006874, lamu_GLEAN_10004957, lamu_GLEAN_  

10007711, lamu_GLEAN_10007712, lamu_GLEAN_  

10007713) [72,73]. Subsequently, GABA is catabolized by 

GABA transaminase (GABA-T; annotated gene: lamu_ 

GLEAN_10002543) and succinate semialdehyde dehydro-

genase (SSADH; annotated gene: lamu_GLEAN_10008793, 

lamu_GLEAN_10008794) to succinate, an important Kerbs 

cycle metabolite [73]. The only other enzyme of glutamate 

metabolism known to be stimulated by Ca2+ in plants is glu-

tamate dehydrogenase (GDH; annotated gene: lamu_ 

GLEAN_10005665), a mitochondrial enzyme (Figure S12). 

To understand the sterol biosynthesis genes in M. oleif-

era, we tried to draw the major sterol biosynthetic pathway 

operating in most higher plants [74]. Sitosterol is a typical 

plant membrane reinforcement, at the expanse of campes-

terol [75]. Campesterol can be used to produce brassino-

steroids, which were reported to have observable growth- 

promoting effects in many plants. The gene STM2, of which 

two copies were found in M. oleifera, plays a critical role in 

balancing the ratio of campesterol to sitosterol to satisfy 

both growth requirements and membrane integrity (Figure 

S13).  
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3  Discussion 

At the time of this study, no genomes of species in the fam-

ily Moringaceae were available, making the present M. 

oleifera genome data a valuable reference for further studies 

on both M. oleifera and other species in this important plant 

family. Due to a dearth of related research, this present 

study is far from conclusive on many fronts, and is instead 

suggestive of many further lines of inquiry into the unique 

characteristics of M. oleifera that remain to be explored. In 

particular, the gene cluster analysis reveals that M. oleifera 

possesses a remarkably small amount of single copy genes, 

and small amount of M. oleifera specific gene families. 

Taken alongside the fact that the annotated M. oleifera 

genes were fewer than any other resolved higher plants in-

dicate that M. oleifera has a compact genome, which may, 

in part, be responsible or underlie its comparatively fast 

growth and rapid cell proliferation.  

In the present study, we concentrated on the indistinct 

relationship between the genome content characters and the 

phenotypic traits, identified a number of genes or gene fam-

ilies that might account for the high protein content, heat 

tolerance, drought resistance, and fast growth of M. oleifera. 

The gene list provided by our analyisis is important not only 

for the future functional studies of M. oleifera, but also for 

future efforts in breeding and improvement of M. oleifera, 

both of which may help promote M. oleifera as a viable 

perennial crop in regions of the world where food shortages 

are endemic or the local environment cannot support more 

traditional annual crops. 
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Supporting Information 

Figure S1  17-mer frequency distribution of reads data. A minor peak is at about half the depth of the main peak, indicating the heterozygosity of M. oleif-

era.  
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Figure S2  Distribution of exon numbers in annotated mRNA sequences. Annotation data of Vitis vinifera, Populus trichocarpa, Selaginella moellendorffii 

were used in parallel with Moringa oleifera’s annotation data. 

Figure S3  Distribution of mRNA length, CDS length, exon length and intron length. Alongside the genome annotation of Moringa oleifera, we used Vitis 

vinifera, Populus trichocarpa, Selaginella moellendorffii genome annotation as references. 

Figure S4  Distribution of Divergence Rate of each Type of Moringa oleifera’s TE. Divergence rate was calculated between the identified TE elements in 

the genome by homology-based method and the consensus sequence in the Repbase. 

Figure S5  Distribution of Divergence Rate of each Type of Moringa oleifera’s TE. Divergence rate was calculated between the identified TE elements in 

the genome by de novo method and the consensus sequence in the predicted TE library. 

Figure S6  GO analysis of the miRNA targeted gene. Note: P-value cutoff was set at 0.0005 to optimize the image. 

Figure S7  Phylogenetic tree of four Brassicales (Arabidopsis thaliana, Brassica rapa, Carica papaya, and Moringa oleifera). 

Figure S8  Orthologous gene distribution among five woody plants. Vitis vinifera, Cajanus cajan, Carica papaya, Malus pumila serve as the out group 

species to search the orthologous genes. 

Figure S9  GO enrichment analysis of the M. oleifera specific gene family. These genes belong to the family that only exists in M. oleifera but not in Vitis 

vinifera, Cajanus cajan, Carica papaya, Malus pumila. P-value cutoff is set 0.01.  

Figure S10  Alignment of M. oleifera gene lamu_GLEAN_10011614 and its orthologous in Vitis vinifera, Cajanus cajan, Carica papaya, Malus domestica. 

The central region has more variations and N terminal is highly conserved.  

Figure S11  Brassinosteroid signal transduction pathway in M. oleifera and Arabidopsis thaliana. The number near the left square brackets indicates the 

copies of this gene in the Arabidopsis thaliana genome, while the other indicates the copy number in the M. oleifera genome. 

Figure S12  Simplified metabolic diagram the GABA shunt in relation to the Krebs cycle. GAD, glutamate decarboxylase; GABA-T, GABA transaminase; 

GDH, glutamate dehydrogenase; SSADH, succinic semialdehyde dehydrogenase. 

Figure S13  Biosynthesis of (24ξ)-24-methyl cholesterol (campesterol) and (24R)-24-ethyl cholesterol (sitosterol) in Arabidopsis thaliana and M. oleifera 

genome. CPI, cyclopropyl sterol isomerase; SMT, sterol methyltransferase; OBT14DM, obtusifoliol-14-demethylase; SMO, sterol 4-methyl oxidase; DWF1, 

gene encoding the ∆5-sterol-∆24-reductase. (isomerase); FACKEL, gene encoding the ∆8,14-sterol-∆14-reductase; HYDRA1, gene encoding the 

∆8-∆7-sterol isomerase; DWF5, gene encoding the ∆5,7-sterol-∆7-reductase; DWF7, ∆7-sterol-C5(6)-desaturase. 
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Table S8  Annotated ncRNA in the genome 

Table S9  Predicted miRNA target genes 

Table S10  Overview of gene family clustering among M. oleifera and V. vinifera, C. cajan, C. papaya, M. pumila 
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Table S12  Positively selected genes of M. oleifera against Vitis vinifera 

Table S13  Positively selected genes of M. oleifera against Malus pumila 

Table S14  Identified transcription factors  
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Table S16  Heat Shock Proteins (HSPs) in the M. oleifera genome 

Table S17  HSP genes’ Ka/Ks ratio and a comparison with the background 

Table S18  Positively selected HSP genes in M. oleifera 
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