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Abstract

Time-of-flight (TOF) cameras robustly provide depth

data of real world scenes at video frame rates. Unfortu-

nately, currently available camera models provide rather

low X-Y resolution. Also, their depth measurements are

starkly influenced by random and systematic errors which

renders them inappropriate for high-quality 3D scanning.

In this paper we show that ideas from traditional color im-

age superresolution can be applied to TOF cameras in or-

der to obtain 3D data of higher X-Y resolution and less

noise. We will also show that our approach, which works

using depth images only, bears many advantages over al-

ternative depth upsampling methods that combine informa-

tion from separate high-resolution color and low-resolution

depth data.

1. Introduction

Depth sensing is a core component of many machine vi-

sion systems. Among the technologies available, time-of-

flight (TOF) based systems are attractive since they are real-

time, robust, and rapidly becoming inexpensive. However

their resolution is still limited. In this work, we address one

of the main limitations of TOF sensors by showing that su-

perresolution methods can be used to increase their effective

resolution.

Time of flight cameras sense depth by emitting a pulse

or modulated light signal and then measuring the time dif-

ferential in the returning wavefront. This process is largely

independent of the scene texture and full frame real-time

depth estimates are possible. Unfortunately, the data is

noticeably contaminated with random and systematic mea-

surement errors. In addition the X-Y resolution of the sen-

sors is often limited to 320x240 pixels or fewer, far below

the resolution of modern cameras.

Prior researchers using TOF cameras have combined a

high resolution RGB camera with a low resolution depth

camera [2, 16]. Resolution is increased by assuming align-

ment of depth and intensity discontinuities in both views

while smoothing elsewhere. These techniques work well

when image features such as edges are collocated, but break

down when this assumption of common scene statistics is

violated. In this work we show that superresolution meth-

ods which rely only on the depth data perform better for

these scenes.

Superresolution for traditional cameras has been well ex-

plored. Rather than reinvent these methods, we draw from

the existing literature and show that it is applicable to depth

cameras as well. Low resolution depth images are under-

stood as degraded samples of a single high-resolution scene.

A sequence of low resolution depth images is aligned and

then merged to produce a single high quality result.

The primary contribution of this work is showing that

high quality depth maps can be obtained from TOF cameras

using multi-frame superresolution methods. In addition, we

provide a comparison with color-fusion based superresolu-

tion, showing that multi-frame methods are superior when

edge discontinuities are not collocated.

2. Related Work

Depth and color fusion: Depth image superresolution

has primarily been accomplished by using a high resolution

color image taken from the same location. The low resolu-

tion depth images are upsampled and regularized subject to

an edge consistency term with respect to the color image.

Regularization has taken the form of a MRF [2], bilateral

filtering of the cost volume [16], and bilateral filtering in

the image plane [8]. These methods can reproduce high fre-

quency detail, however they incorrectly assume that color is

correlated with depth. This causes difficulties with colored

textures and when a true depth discontinuity is not visible in

the color channel. Another approach was taken by Lindner

et al. [10], who applied noise and edge aware upsampling.

Using a pure upsampling method, they do not to recover de-

tails which are beyond the depth sensor’s resolution limit.

Color superresolution: Image based superresolution tar-

geted at standard color or intensity images has been well

studied for many years [3][5][14]. Multiple low resolution

images are aligned and then a high resolution image is es-

timated which explains the image stack. Interested readers

will find a survey informative [1].

Some researchers have formulated a joint optimization
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of superresolution together with shape-from-X. Shape from

photometric cues [6] as well as defocus [12] have both been

explored.

The noise and data statistics of depth data exhibit effects

which may not be found in normal color images, so it is not

obvious that color based methods are applicable. Indeed,

earlier work targeted at depth superresolution pursued an

alternate strategy. In this paper we show that color methods

are applicable in the depth domain, and that they can per-

form better than the specialized depth superresolution meth-

ods previously introduced.

Improving TOF sensors: The depth accuracy of time-of-

flight sensors can be increased by a variety of methods, e.g.

by accounting for ambient light [4], simulating the shape

of the reflected signal [7], and performing time gated su-

perresolution [9]. While these methods improve resolution

in the depth direction, they all operate at the level of peak

detection in the sensor itself and are not directly related to

improving resolution in the X-Y plane as discussed in this

work.

3. The Depth Camera and its Characteristics

The Z-cam [15] used in our experiments exploits the

time-of-flight principle of light to measure the distance of

each pixel from the scene. The camera features a lens and

a CMOS sensor, thus is based on video camera technology.

However, it houses additional components, like a ring of in-

frared LEDs and a rapid controlled shutter, to enable depth

rather than intensity measurement only. When capturing a

single frame, the camera emits a single-pulse light wave-

front from the LEDs into the scene. The returned pulse is

”shaped” by the scene structure and this shape information

can be extracted by gating the returned signal with the rapid

shutter. After normalization, the measured intensity values

can be interpreted as depth values. The Z-cam can measure

full frame depth at video rate and at a resolution of 320×240
pixels. The control of the shutters also enables the defini-

tion of a 3D frustum in space in which depth measurements

are taken.

In contrast to competing TOF cameras, the Z-cam fea-

tures a normal video camera of 640 × 480 pixels in the

same device which enables recording of texture-mapped ge-

ometry. Unfortunately, video and depth are not recorded

through the same optics and the homographic registration of

both data provided by the manufacturer can easily be sev-

eral pixels off. In our comparison experiments we therefore

resort to our own external color camera (Sect. 5).

Although the Z-cam delivers scene geometry at unprece-

dented speed and largely independently of scene texture, the

quality of recovered 3D data in a single frame is not suffi-

cient for high-quality 3D scanning, as shown in Fig. 2b. In

this image three wall plugs should be visible, but are mostly

masked by noise. The depth measurements are starkly con-

Figure 1: Variance distribution in a depth image taken at

approx. 1.5 m average distance from a scene. Depth images

contain heavy noise near the corners.

taminated by random noise which can, at 1 m average scene

distance, vary by up to 5 cm. Depth measurements also be-

come more unreliable towards the boundary of the field of

view, since there, optical aberrations like vignetting play a

stronger role, and the PSNR of the returned signal natu-

rally decreases. Fig. 1 shows the strongly increasing vari-

ance in random noise towards the field-of-view boundary.

Noise variance is also much higher at mixed pixels that in-

tegrate over depth discontinuities in the scene. Fortunately,

pixels with high measurement uncertainty typically exhibit

low measurement intensity and therefore the camera’s raw

intensity data can be interpreted as a confidence map. Ex-

perimentally, we could verify that the depth readings at a

single pixel location over time follow a slightly heavy-tailed

distribution.

In addition to random noise, the camera is likely to ex-

hibit a systematic measurement bias that may depend on re-

flectance, angle of incidence, and environment factors like

temperature and lighting. A detailed analysis of these con-

sistent inaccuracies is beyond the scope of this paper. In

our controlled lab setting, systematic errors played no sig-

nificant role.

The Z-cam delivers ray-space depth maps, i.e. gray-

scale images that store at each pixel the distance along the

ray from the center of projection to the point in the scene,

Fig. 3a. For reconstructing metric 3D data, one has to un-

project ray space measurements according to:

(X,Y, Z) = D · V̄ . (1)

Here, V = (x,y,f)√
(x2+y2+f2)

is the measurement ray direc-

tion (viewing vector) from the camera’s center of projec-

tion through the sensor pixel at location (x, y) relative to

the sensor center, and f is the camera’s focal length. For

metric reconstruction, x and y have to be specified in terms

of metric pixel size µ, i.e. x = ix ·µ with ix being the pixel

index in x-direction relative to the pixel center. Further on,

D = Pd +Pw
255−g
255 is the depth along the measurement ray

which is computed from the distance to the frontal clipping

plane Pd, the depth of the 3D view frustum Pw, and the gray

value g in the depth image which is quantized to eight bit.



4. Depth Superresolution

It is our goal to obtain high-quality 3D measurements of

a static scene despite the significant noise in the raw data.

By performing superresolution, we increase X-Y measure-

ment resolution and, at the same time, reduce the overall

random noise level. To this end, several depth maps cap-

tured from minimally displaced viewpoints are aligned, and

subsequently combined into a higher resolution depth im-

age. From this superresolved depth image, we can eventu-

ally reconstruct superresolved 3D geometry.

4.1. Setup

In our measurement setup, the depth camera is located

between 50 cm and 150 cm away from the scene. Typi-

cally, we capture N = 15 images by slightly translating the

camera orthogonally to the viewing direction. Please note

that the alignment of images captured by the above proce-

dure effectively leads to the creation of a multi-perspective

image in which parallax effects may play a role. One way to

overcome these effects would be to slightly rotate the cam-

era around the center of projection rather than translate it.

However, with as small displacements as we apply them we

could experimentally not verify an increase in reconstruc-

tion quality if the camera is rotated. Therefore, we always

record with translational offsets.

From the first to the last frame of a superresolution se-

quence, the camera is, in total, displaced by around 1 cm to

1.5 cm. In order to cancel out random noise, we average 30
depth measurements at each camera position.

4.2. Extracting High Resolution 3D Data

By appropriately combining the low resolution depth im-

ages Yk, k = 1, . . . , N taken from slightly displaced view-

points, we can create new depth maps at significantly higher

resolution. Using Eq. (1), the upsampled depth maps can

then be converted to high resolution 3D geometry. Our

depth superresolution method is based on the approach by

Farsiu et al. [3] who investigated superresolution for normal

photographs.

We cast superresolution as the problem of inverting the

formation process of low resolution depth images of a high

resolution 3D scene. To formulate the problem, we make

the simplifying assumption that the formation process of a

depth image can be described in analogy to the image for-

mation process of a normal optical camera. However, the

quality of our final results shows that this simplification is

valid. For a single depth image Yk, the formation process

therefore looks as follows:

Yk = DkHkFkX + Vk ,

where X is the original scene or, in other words, the su-

perresolved image of the 3D scene from which we sample.

Henceforth, we will refer to the upsampling factor between

low and high resolution images in x- and y-direction as β.

Fk is a translation operator representing the motion between

the superresolution image and the current low resolution

image. In our setting, we assume pure translational motion.

Hk is a blur operator accounting for the blur introduced dur-

ing the capture process (i.e. due to the optic system or mo-

tion). In our experiments we assumed no blur, hence Hk

was equivalent to the unity matrix. Dk is a decimation op-

erator modeling the downsampling from the superresolution

image to the size of the low resolution image. Finally Vk

represents additive noise inherited during the capture pro-

cess. To extract the high resolution image from the set of

low resolution depth maps, we need to solve the following

minimization problem:

X̂ = argmin
X

[
N∑

k=1

‖DkHkFkX − Yk‖p

p

]
, (2)

where [3] readily argues that p = 1 gives optimal results in

terms of robust statistics. Since with a typical set of images

this estimation problem is ill-posed, one is to add a regular-

ization term Υ(X) with weight λ yielding

X̂ = argmin
X

[
N∑

k=1

‖DkHkFkX − Yk‖p

p + λΥ(X)

]
(3)

Different regularization terms such as Tikhonov regulariza-

tion or Total Variation could be imagined. For this paper,

we used bilateral regularization. This robust technique, also

referred to as bilateral filtering, has the advantage of pre-

serving edges and removing random noise in areas of slowly

varying depth. Also, the computation of the regularizer is

relatively cheap. The bilateral regularization is given by

Υ(X)B =

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m>=0

α|m|+|l|
∥∥X − Sl

xSm
y X

∥∥
1

here Sl
x and Sm

y are shift operators that perform a shift in

x or y direction by l or respectively m pixels. The scalar

weight α, with 0 < α < 1, controls the spatial influence

area of the bilateral constraint, P ≥ 1 specifies the size of

the neighborhood used for bilateral filtering. Please refer

to [3] to learn about the equivalence of the above formu-

lation to the original bilateral filter proposed in [13]. The

robust bilateral formulation in Eq. (3) is preferable over

quadratic penalization since the latter would perform worse

in the presence of the heavy-tailed random noise in the raw

depth data, Sect. 3.

Solving the optimization problem in Eq. (3) yields a su-

perresolved depth image of the scene. In practice, we em-

ploy the solver implementation provided by Milanfar [11] to



(a) Color recording in high resolution (b) 3D model of single raw frame

Figure 2: Wall plug scene - details on the plugs, clearly visible in the color image, are entirely masked by random noise in an

unsmoothed 3D rendering of a single depth image.

compute the solution. From the superresolution depth im-

age, we reconstruct 3D geometry by means of Eq. (1). Prior

to 3D reconstruction, we median filter the superresolution

depth image with a kernel size of 3 × 3. Please remem-

ber that the effective metric pixel size in the high-resolution

image is µ/β.

5. Results and Discussion

We have tested our approach on three different scenes,

all of which show geometric detail that is close to the X-

Y resolution limit of the depth camera in one frame. The

test scenes also feature areas that contradict the assumption

color and depth discontinuities are well-aligned, which al-

lows us to show that methods relying on this simple prior

statistics will perform worse.

Resolving thin structure: We wanted to verify that our

superresolution method can resolve thin structures. There-

fore our first setup shows three wall plugs in front of a white

wall, Fig. 2a. The scene is approx. 50 cm away from the

camera, and was recorded from 15 displaced positions to

perform superresolution. For this scene, the camera was

configured to record objects from 0 cm up to 100 cm away.

To illustrate the performance of our method, we focus on a

dent and a long thin gap in the wall plugs which are marked

as A and B, respectively, in Fig. 2a. Since these features are

close to the resolution limit of the Z-cam, they do not appear

well in a single depth image, Fig. 3a, and consequently also

not in the corresponding low resolution 3D reconstruction,

Fig. 3d. In contrast, our 4-times superresolved result accu-

rately captures these details, as visible in the depth image

Fig. 3b, and in geometry Fig. 3e where they appear as true

3D structure with correct depth. To display the 3D geome-

try we convert the depth maps into triangulated height fields

and render them using basic Phong shading. Please note

that for fair comparison we always perform superresolution

at 8-bit depth precision in all tested methods, as this is the

limit of the software by Milanfar et al. [11]. Therefore, dis-

cretization artifacts in the form of depth steps are visible in

the renderings. To verify that our 3D reconstructions do not

suffer from incorrect scaling or distortion we compared the

size of several landmarks in our results to their real-world

size. In all cases, this comparison showed an exact match

which proves the reliability of our algorithm.

For comparison, we implemented a joint bilateral up-

sampling (JBU) approach [8], which uses a high-resolution

color and a low resolution depth image to raise the depth

resolution to the one of the color image. The color im-

age was recorded using a standard digital camera and has

been manually aligned using a homographic warp. By in-

spection the alignment error was determined to zero pix-

els for most pixels, while three pixels being the maximum

error. The method’s implicit assumption that color and

depth edges are collocated is frequently violated in our wall

plug scene causing erroneous reconstructions. Although the

depth map, Fig. 3c, shows crisp edges which is visually

pleasing if only the gray scale image is looked at, the ac-

tual reconstruction exhibits several errors. For instance, the

method wrongly reconstructs the shadowed area B on the

ripple of the left wall plug, Fig. 2a, as a depth discontinuity

that protrudes all the way through the scene Fig. 3f. Also,

joint bilateral upsampling performs excessive smoothing in

areas with low image gradient. Therefore, the dent in area A

on the right wall plug, whose edges are not clear in the color

image, is entirely smoothed out. Also, shadows on the back

of the table appear as geometry merged to the lower part

of the plugs, and the top of the right plug is cut off due

color similarity to the background. We thus conclude that a

slightly higher remaining level of noise, as in in our results,

is preferable over such excessive smoothing since in the lat-

ter case actual shape detail is lost or incorrectly estimated.

Preserving sharp edges: Another important characteris-

tic of superresolution is to preserve sharp edges. Hence, a

second scene, with a planar checkerboard spaced approx.

50 cm from a white background, was recorded to prove that

our method correctly captures both sharp edges and smooth

regions, Fig. 5a. In contrast, the joint bilateral upsampling

method runs into difficulties in the presence of strong tex-

ture on actually planar geometry. Here the camera was con-



(a) Depth map in native resolution (b) Depth map by superresolution, β = 4 (c) Depth map by joint bilateral upsampling

(d) 3D model from native resolution (e) 3D model from superresolution, β = 4 (f) 3D model from joint bilateral upsampling

Figure 3: Wall plug scene - superresolution (b),(e) unveils fine details, previously not visible in native resolution (a),(d). Joint

bilateral upsampling (c),(f) sharpens the image, but introduces false geometry. For better visibility the contrast of depth maps

was enhanced.

figured for recording between 70 cm and 200 cm. The

board features a color pattern with strong intensity gradi-

ents. The pattern is slightly smaller than the actual size of

the board, which has a 1 cm white boundary that is visually

indistinguishable from the white background. In Fig. 5a,

we marked the location of the actual depth edge with lines.

The low resolution depth image (Fig. 5d) has an apparent

staircase effect on the edge, while the edge appears sharp

and crisp in the depth map created by the proposed super-

resolution method (Fig. 5e). The joint bilateral upsampling

method is tricked by the non-collocation of the intensity

gradient (black pattern boundary) and true depth disconti-

nuity. Consequently, the true depth edge is smoothed with

the background leading to a blurred edge in the JBU depth

image, Fig. 5f. This effect can be studied best in 3D. While

our superresolved geometry, Fig. 5h, shows a sharp edge

with sharped depth discontinuity, the edge of the joint bi-

lateral upsampling result is incorrectly shaped like a curved

ramp, Fig. 5i. The rendering of the depth edges in a cross-

sectional views, Fig. 5j-5l, makes this effect even more ap-

parent. Or result shows a sharp corner and a straight depth

edge, Fig. 5j, whereas the JBU result is erroneously curved,

Fig. 5l. Another problematic region for joint bilateral up-

sampling is the surface of the checker board itself. Whereas

it appears up to noise as a plain, the color gradients in the

checker board provoke the bilateral filter to emboss this

structure into the geometry (Fig. 5c). In contrast, our up-

sampling result shows a planar board, Fig. 5b.

Gain in resolution: To further demonstrate the true gain

in resolution, we recorded three planar triangular wedges

30 cm in front of a flat wall. They exhibit clear sharp depth

edges and, close to the tips, fall below the resolution limit

of the camera. The recording settings were Pd = 50 cm
and Pw = 100 cm. While the depth map at original camera

resolution exhibits strong staircase aliasing at the bound-

aries, Fig. 4a, our 4-times upsampled result faithfully cap-

tures crisp depth edges, Fig. 4c. Consequently, the upsam-

pled 3D geometry also shows sharp edges, Fig. 4d. Simple

bicubic upsampling of the low resolution data cannot pro-

duce the same superresolution effect. It mainly upsamples

the staircase pattern and boosts the random noise, Fig. 4b.

Our method is subject to a few limitations. Since several

depth images have to be combined it is, in contrast to joint

bilateral upsampling, only suitable for static scenes. Also,

given a runtime of approximately one minute to compute a

superresolved depth map, our approach is not suitable for

real-time applications. Furthermore our approach relies on

faithful image registration which may be difficult in scenes

with few distinct depth discontinuities. In the future, we

plan to capitalize on noise characteristics and known mea-

surement uncertainty, from which we expect improved su-

perresolution quality.

We will also perform a more detailed analysis of the

range of achievable upsampling factors in dependence on



(a) Depth in native resolution (b) Depth by bicubic upsampling

(c) Depth by superresolution (d) 3D model from superresolution

Figure 4: Wedge scene - superresolution (β = 4) achieves

true resolution enhancement and shows straight alias-free

edges at depth boundaries (c),(d). In contrast, staircasing

artifacts are clearly visible at native resolution (a) and in the

bicubic upsampled result (b). Additionally noise is signifi-

cantly reduced by superresolution.

scene structure and recording conditions. Currently, we did

tests with β in the range of 2 − 6. Overall, we found that,

in our test scenes, β = 4 provides the best compromise be-

tween extracted shape detail and model size.

We would also like to remark that both tested superreso-

lution methods rely on a bilateral constraint of some form.

It is not the constraint itself that makes one method prefer-

able over the other, but the particular way how it is enforced.

Joint bilateral upsampling enforces the constraint in two dif-

ferent data domains, namely color and depth, and implic-

itly relies on the wrong prior. In contrast, we enforce the

constraint on depth data only and do not enforce the same

excessive smoothing as the former approach which renders

advantageous in our setting.

In summary, we have demonstrated that the concepts of

color superresolution can be used to greatly improve 3D re-

construction quality of static scenes.

6. Conclusion

In this work we have shown that superresolution methods

that were originally developed for color images can be ap-

plied to capture higher resolution 3D geometry with a time-

of-flight depth camera. We have also shown that a proper

formulation of superresolution only in terms of depth im-

ages frequently outperforms previous algorithms from the

literature that combine information from aligned color and

depth. Overall, the proposed superresolution strategy reli-

ably increases the X-Y resolution of captured 3D geometry.

Since it also severely reduces the noise level in the data, it

turns the TOF camera into a viable tool for 3D shape scan-

ning.
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(a) Color recording in high resolution (b) True structure by superresolution, β = 4 (c) False structure by joint bilateral upsampling

(d) Depth map in native resolution (e) Depth map by superresolution, β = 4 (f) Depth map by joint bilateral upsampling

(g) 3D model from native resolution (h) 3D model from superresolution, β = 4 (i) 3D model from joint bilateral upsampling

(j) Edge detail at native resolution (k) Edge detail by superresolution, β = 4 (l) Edge detail by joint bilateral upsampling

Figure 5: Board scene - The upper row shows that ”phantom” geometry is introduced by joint bilateral upsampling (b),

whereas superresolution retains the true geometry (c). This effect is also visible in the depth maps one row below. The two

lower rows show sharp edges being preserved by superresolution, while joint bilateral upsampling yields round edges.


