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Introduction

Recent years have seen much of Australia suffer from severe 

meteorological drought and a series of climatic extremes 

(e.g. Bureau of Meteorology 2008a, 2008b). As a result, water 

resources have widely fallen to record lows, and agricultural 

production in southern and eastern parts of Australia has 

been poor with a series of crop failures (e.g. Murray-Darling 

Basin Commission 2007; Australian Bureau of Agriculture 

and Resource Economics 2007). High-quality national cli-

mate information is clearly needed to place these climate-

driven events in a proper historical perspective and to pro-

vide a context for understanding the associated impacts on 

humans and the environment.

 A key to better management of Australia’s physical re-

sources is ensuring that expectation and demand match the 

long-term supply. Matching a demand to the available re-

source is clearly required in the case of water, where the idea 

of sustainable yields is fairly well developed (e.g. Chiew et 

al. 2008). However, it is also clear that other climate variables 

such as temperature can be considered as a resource, with 

agricultural productivity (for example) being closely tied to 

temperature in much the same way as it is to rainfall (Cline 

2007). A better characterisation of Australia’s climate and as-

sociated variability should lead to better risk management 

and improved decision-making processes. 
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In this paper, we describe a new high-quality set of historical and ongoing real-

time climate analyses for Australia. These analyses have been developed for im-

proving the definition of past climate variability and change over Australia and to 

improve on estimates of recent climate. The climate analyses cover the variables of 

rainfall, temperature (maximum and minimum) as well as vapour pressure at daily 

and monthly timescales and are complemented by remotely sensed and model-

derived data described elsewhere.

 New robust topography-resolving analysis methods have been developed and 

applied to in situ observations of rainfall, temperature and vapour pressure to pro-

duce analyses at a resolution of 0.05° × 0.05° (approximately 5 km × 5 km). The new 

methodologies are similar to those applied internationally, but in applying them 

to Australia we found it necessary and desirable to introduce a number of innova-

tions. The resulting analyses represent substantial improvements on operational 

analyses currently produced by the Australian Bureau of Meteorology, and have a 

number of advantages over other similar data-sets currently available.
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robust and useful for the monitoring of both climate variability and climate change. 

These systems are now running in real time and are expected to form the basis for 

the ongoing monitoring of Australia’s surface climate variability and change by the 

Australian Bureau of Meteorology. The underlying data and associated error sur-

faces (grids and station data) are updated in real time and are all available free of 

charge through the Bureau’s climate website (www.bom.gov.au/climate).
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 In this paper, we describe a new set of daily and monthly 

spatial climate analyses for Australia, covering the variables 

of rainfall, temperature and vapour pressure. These analy-

ses extend through the twentieth century and are updated 

in real time. The analyses are a component of a new effort to 

measure Australian climate, combining in situ surface obser-

vations, satellite data and a water-carbon model (Raupach et 

al. 2008), in a project called the Australian Water Availability 

Project (AWAP) (2004).

 There is a very extensive literature on spatial analysis 

techniques for analysing in situ observations dating back 

over half a century (e.g. Cressman 1956; Daley 1993). These 

range from relatively simple inverse distance-weighting 

schemes (Cressman 1956; Koch et al. 1983), through to high-

ly complex systems using dynamical model frameworks in 

which surface parameters are directly assimilated or other-

wise estimated (Kalnay et al. 1996; Compo et al. 2006; Ebert 

et al. 2007). More recently, remotely sensed data have been 

applied directly to the estimation of surface climate param-

eters, though in the case of rainfall with varying degrees of 

success (Ebert et al. 2007; Renzullo et al. 2008).

 The most significant challenge to the consistent spatial 

analysis of historical climate data over Australia is the gener-

al decline in data availability which occurs as one goes back 

in time (e.g. Jones and Trewin 2002) and the non-availability 

of modern data types (e.g. data from radar and satellites) for 

much of the period of the instrumental record. When analys-

ing historical data we require that the analyses are not only 

accurate as measured by some error metric but in addition:

• can be compared to and are consistent with the long-term 

averages (climatology);

• provide a more accurate representation of short-term cli-

mate than does the long-term average; and

• contain values which are limited to a physically realistic 

range.

 The last of these points, while seemingly trivial, is important 

as it is possible for interpolated surfaces to become unrealistic 

in data voids when meteorological gradients are strong. This 

is particularly important back in time with networks becom-

ing rather sparse during the first half of the twentieth century.

 Generating daily analyses of meteorological data which 

are consistent with monthly and longer-term analyses is far 

from straightforward (e.g. Rayner et al. 2004). Temporal aver-

aging dampens the small-scale variability, and also reduces 

random observational errors (Jones and Trewin 2002). This 

means that the characteristic spatial scales tend to increase 

with the temporal scale. In addition, the relationship with 

topography is significantly stronger on longer timescales, 

though often not well-resolved by networks.

 The favoured methods for analysing historical climate ob-

servations are geostatistical techniques, typically applied in 

a univariate framework (e.g. Jones and Trewin 2000a; Jeffrey 

et al. 2001). For the most part these methods behave simi-

larly, and often show relatively similar accuracies (e.g. Jones 

and Trewin 2000a), despite rather different levels of sophis-

tication. It is common practice for these techniques to be di-

vided into three broad classes; empirical interpolation, sta-

tistical interpolation and function fitting (Jones and Trewin 

2000a). In this work we describe a hybrid technique which 

combines empirical interpolation with function fitting, in a 

system which is similar to those described by Hunter and 

Meentemeyer (2005) and Xie et al. (2007).

Climate data

In constructing these new climate data we have deliberately 

used only in situ data managed by the Bureau of Meteorolo-

gy. We recognise that rather better analyses are possible for 

recent years, drawing on remotely sensed information from 

satellites and radar. However, these newer data types typi-

cally do not go back far in time, and even long-run data such 

as infrared data from geostationary satellites show large and 

systematic shifts in resolution and quality arising from mul-

tiple changes in satellites, orbits and instrumentation.

 The meteorological data used in this study are taken from 

the national climate databank of the Bureau of Meteorology, 

called the Australian Data Archive for Meteorology (ADAM). 

The climate analyses are generated using both daily and 

monthly data contained in this database. ADAM is updated 

in real time, with significant non-real-time inputs for some 

meteorological variables (in particular, rainfall), meaning 

that the analyses can (and need to) be updated over time. For 

rainfall about one-third of the current network in ADAM re-

ports in real time, while the remaining data arrive via mail on 

paper reports with most records added within three months 

of the end of the month. The ADAM database is an evolving 

resource, with new historical data added from time to time 

(in addition to the continual input of newly observed data) 

and ongoing quality control, meaning that improvements to 

the station data are frequently made and subsequently avail-

able for analysis.

 Figure 1 shows the total number of stations used for the 

analysis of rainfall, temperature and vapour pressure by 

year for the periods considered in this paper. For rainfall 

there is a nearly monotonic increase in the number of re-

ports from around 3000 at the start of the twentieth century 

to more than 7000 in the 1970s. Recent decades have seen an 

overall slight decline in the network, with some variability. 

The decline reflects a slow loss of manual observations taken 

by volunteer observers, in particular.

 The available temperature data at both daily and monthly 

timescales vary rather more erratically in response to an 

increasing and evolving network and also the fact that a 

large volume of paper reports remains undigitised (Jones 

and Trewin 2002). In recent years the vapour pressure (dew-

point temperature) network is very similar to the daily tem-

perature network, but prior to about 1980 there were rather 

fewer dew-point observations available, with a sharp decline 

in the network apparent in the 1970s. The station network for 

rainfall is substantially larger than those for temperature and 

dew-point, as rainfall is easier to record and the majority of 

rainfall observations come from volunteer observers.
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 The earliest temperature data in ADAM are from 1844, 

while rainfall data extend back to 1832 and dew-point data 

(the basis for vapour pressure) back to 1864. However, dur-

ing the earliest years observation practices were often very 

different from modern-day practices and the networks 

sparse. For Australian temperature, Stevenson Screens be-

came widespread around 1910 (Torok and Nicholls 1996) and 

for this reason the AWAP temperature analyses commence 

in 1911. The earlier recordings were made in a variety of in-

strument enclosures (Torok 1996), which can lead to mislead-

ing conclusions about the nature of past climate variations 

(e.g. Trewin 1997).

 The Australian rainfall network is particularly sparse pri-

or to 1900, with very little data in central Australia and large 

data voids in parts of the south and west. For this reason, the 

AWAP rainfall analyses commence in 1900, as has been the 

case with the existing operational system (Jones and Wey-

mouth 1997). The available vapour pressure network is sparse 

prior to 1971 and accordingly the analyses start in this year.

 There is the potential to extend the national temperature 

and vapour pressure analyses back some years earlier with 

further digitisation of historical data and suitable quality 

control. In addition there is the potential for extending re-

gional rainfall analyses into the nineteenth century in some 

better-observed regions such as Victoria. This will be a focus 

of future work.

 For rainfall, the base daily data and the spatial analyses 

represent the total precipitation (including rain, snow, hail 

and dew) accumulated in the 24-hour period to 0900 local 

time (0800 in the case of pre-Federation Queensland, which 

is effectively the years 1900–1907 as far as the analyses are 

concerned). The maximum (minimum) temperatures are the 

highest (lowest) temperature for the 24-hour period start-

ing (ending) 0900 local time. This convention means that 

the minimum and maximum temperatures will have usually 

occurred on the same calendar day (in the morning and af-

ternoon, respectively). The vapour pressure has been calcu-

lated at stations using observations of dew-point tempera-

ture, following Murray (1967). The vapour pressure is that 

observed at 0900 and 1500 (local time). These two times have 

the best data coverage for Australia, and are chosen for this 

reason. We note that the vapour pressure has a rather weak 

diurnal cycle through the day (Jeffrey et al. 2001; Jones et al. 

2007). We also note that accumulated maximum/minimum 

temperature and rainfall values over more than one day have 

been omitted from the analyses where these are identified in 

the ADAM database.

 The meteorological variables and analyses are sum-

marised in Table 1. We note that the early data come entirely 

from manual observations, while more recently an increas-

ing fraction of the data comes from automatic weather sta-

tions. Figure 2 shows the network of available stations for 

recent years (1980 to the end of 2007) showing a good cover-

age except in the arid interior.

Table 1. Definition of the meteorological data and associated 

analyses.

Variable Source Temporal Spatial

  resolution resolution

Precipitation Analysis of  Daily and 0.05°×0.05°

 rain gauge data monthly total

 

Daily Analysis of Daily and 0.05°×0.05°

maximum  thermometer monthly average

temperature data  

  

Daily Analysis of Daily and 0.05°×0.05°

minimum thermometer monthly average

temperature data

   

Vapour  Analysis of vapour Daily and 0.05°×0.05°

pressure  pressure data monthly average

‘humidity’ (calculated from at 9 am and 3 pm 

 temperature and

 dew-point) 

 

Fig. 1 The number of stations contributing to the (a) rainfall 

and (b) temperature (daily and monthly) and vapour 

pressure analyses (twice daily) by year.

(a)

(b)
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 We recognise that there are a number of important climate 

variables which are not considered in this paper for reasons of 

data quality and/or differences in analysis methodology. Spe-

cifically, we do not analyse wind data because these data are 

extremely problematic and show large and artificial drifts over 

time due to changes in instrumentation (Rayner 2007). Estimates 

of solar radiation form part of the AWAP product set, and are 

derived from high-resolution visible imagery from the Geosta-

tionary Meteorological Satellites, while evaporation estimates 

are generated via a water balance model (see Weymouth and Le 

Marshall 2001; Jones et al. 2006; Raupach et al. 2008).

Generating the spatial analyses

Seaman and Hutchinson (1985) and Jones and Trewin (2000a) 

describe a number of the common approaches to the gen-

eration of climate analyses for Australia using geostatistical 

techniques, of which there are many.

 We have used an anomaly-based approach, in part be-

cause this means that the full set of analyses is largely con-

sistent with the long-term climatology. A further motivation 

is that anomalies tend to be spatially rather smoother than 

the raw data and climatology provides information beyond 

that contained in individual observations and data for a 

single day or month. Our anomaly method is similar to that 

described by Hunter and Meentemeyer (2005) and Xie et al. 

(2007). It uses a decomposition of the meteorological vari-

able being analysed (such as rainfall) into its long-term aver-

age and an associated ‘anomaly’.

 The analysis methodology represents an extension of the 

background and increment method which has been popular 

in meteorological analysis (e.g., Koch et al. 1983; Daley 1993; 

Jones and Trewin 2000a; Rayner et al. 2004). It is important 

that analyses which are to be used for operational climate 

monitoring are robust and hence the similarity with these 

systems is seen as an advantage.

 An important factor is that anomalies tend to be weakly 

related to altitude, in part because of the tendency for atmo-

spheric anomalies to be nearly barotropic. This means that 

they can be more adequately analysed with a two-dimen-

sional analysis procedure, giving efficiency savings. In addi-

tion, this approach reduces the impact of network changes 

back in time, which sees a sharp decline in the number of 

stations generally in earlier years, and more specifically for 

those at higher elevations.

 For both temperature and vapour pressure, the anomaly 

is defined as a simple difference from the climatology, lead-

ing to T(t) = T
–
+T ’ (t) for the meteorological variable T for 

some day or month t. The over-bar denotes a long-term av-

erage (always monthly) for the meteorological variable. For 

rainfall, we have defined the anomalies using division rather 

than subtraction, leading to the representation R(t) = R
–
×R’(t).

 For all variables the representation given above is appli-

cable for both station observations and gridded analyses, and 

for both daily and monthly data. In each case the station aver-

age or grid average is that for the relevant calendar month.

Fig. 2 The networks of (a) rainfall, (b) temperature and (c) 

dew-point temperature (vapour pressure) stations 

contributing to the analyses from 1980 to 2007.

(a)

(b)

(c)
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for daily temperature. The rainfall, temperature and vapour 

pressure climatologies for January and July are provided in 

Jones et al. (2007).

 For rainfall, the use of ratios in interpolation can become 

unstable when the monthly mean is very low. This is most 

commonly a problem in northern Australia during winter 

when large areas have an average monthly rainfall of less 

than 10 mm but very occasionally experience heavy rainfall 

(an example is Wyndham in northwest Australia which aver-

ages just 7.5 mm of rain for the whole of winter but which 

has experienced daily totals in excess of 50 mm during this 

season). To address this we have applied a floor of 5 mm to 

the denominator in the ratio. This heuristic fix was applied 

after testing on a series of case examples.

 We have used the Barnes successive-correction method 

for the analysis of the daily and monthly anomalies (Koch 

et al. 1983; Seaman 1989; Jones and Weymouth 1997) and 

three-dimensional smoothing splines for the analysis of 

monthly climatological averages of 0900 and 1500 vapour 

pressure, maximum and minimum temperature and rainfall 

(Hutchinson 1995). These two techniques have been widely 

used for climate analyses and have been found to be robust 

for the types of analyses for which we are using them (e.g. 

Hutchinson 1995; Jones and Trewin 2000a; Bureau of Meteo-

rology 2000; Jeffrey et al. 2001; Rayner et al. 2004).

 The anomaly analysis is generated using an optimal two-

dimensional Barnes successive correction analysis proce-

dure, as described by Jones and Trewin (2000a) analysed to 

grid locations. The weighting function is obtained using the 

iterative Barnes algorithm described by Jones and Weymouth 

(1997) with the analysis parameters generated via exhaustive 

cross-validation (Seaman 1989) on pre-2000 data. The Barnes 

analysis technique has a number of advantages, including be-

ing efficient, robust (coping with strong gradients and data 

voids) and highly tunable. Jones and Trewin (2000a) have pre-

viously shown that the accuracy of this method is similar to 

that of more sophisticated techniques, and avoids some of the 

weaknesses such as extrapolation of unrealistic values into 

data voids and the dampening of variance.

 The smoothing spline approach is particularly suited to 

analysing smooth climatological relationships between me-

teorological variables and three-dimensional position (i.e. 

latitude, longitude and altitude) but not well suited to noisy 

or sparse data. The climatological surfaces from the spline 

have been fitted by minimising the generalised cross-vali-

dation error (Wahba and Wendelberger 1980), as is common 

practice (e.g. Hutchinson 1995; Jeffrey et al. 2001).

 The Barnes and spline methods are both ‘statistically op-

timal’, in that the analysis fields have the smallest error sub-

ject to constraints on the smoothness and spectrum of the 

final field. The analysis methods have been implemented in 

a modular fashion, which allows for the use of alternative 

methods for generating the climate (background) and anom-

aly (increment) fields in future as improved techniques are 

developed. These might include the use of weather-model 

forecasts or satellite estimates, for example.

 The final analysis is a simple sum (or multiplication in the 

case of rainfall) of the climatological and the anomaly analy-

ses. A graphical example of this procedure is shown in Fig. 3 

(a)

(b)

(c)

Fig. 3 Climatological (monthly) (a) average for February for 

1971-2000, (b) daily anomaly analysis and (c) summa-

tion, for maximum temperature on 1 February 2007.
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 The monthly and daily AWAP analyses are not con-

strained to be absolutely consistent, and indeed they are 

not for a number of reasons. Particularly, for historical data 

(pre-1957) and in real time there is a difference in the quan-

tity of data available for the daily versus monthly analyses. 

Consistency can be achieved in a straightforward way by a 

rescaling of the daily data using the monthly analyses. We 

have applied a rescaling to daily rainfall to produce an ad-

ditional daily data set for historical data which is consistent 

with the monthly analyses, although this requires a delay in 

real time. We do not consider these rescaled data further, but 

note their existence.

 The analysis scheme as applied requires station latitude, 

longitude and altitude. Prior to the mid 1970s, a significant 

number of (now closed) rainfall stations lack a station alti-

tude in ADAM: for example, nearly 1400 stations with rain-

fall data in ADAM in 1920 do not have a station altitude, rep-

resenting about 20 per cent of the total network for that year.

 We have generated estimated station altitudes for a sub-

set of these stations from a high resolution 0.0025° latitude/

longitude grid subject to constraints on the smoothness of 

the local topography to minimise estimation errors. Specifi-

cally, we required that the altitude vary by less than 75 m in 

an 8 × 8 grid-point lattice (representing an area of approxi-

mately 2 km × 2 km) around the station. We have chosen not 

to augment the network for temperature and vapour pres-

sure in the same manner owing to the strong control altitude 

places on these variables.

Defining the station and gridded climate normals 

The climate normal fields for the analysis are produced for 

each calendar month for each variable (rainfall, maximum and 

minimum temperature and 0900 and 1500 vapour pressure) 

for the 1911-1940, 1941-1970 and 1971-2000 base periods. The 

climatologies are for 30-year periods following World Meteo-

rological Organization convention (WMO 1989). Note that the 

terms ‘climate averages’, ‘climate means’ or ‘climate normals’ 

are all interchangeable. They refer to arithmetic calculations 

based on observed climate values for a location (or through 

space) over a specified time period and are used to describe 

the climatic characteristics of that location.

 The climate normals are used to form the final analysis 

through the addition of (or, for rainfall, multiplication by) the 

anomaly analysis fields. The climate base period used for each 

daily or monthly analysis depends on the date of the analysis, 

with the anomaly calculated with respect to the monthly average 

for the nearest base period. For example, all daily and monthly 

rainfall analyses for 1900-1940 use the 1911-1940 base period. In 

practice, many stations have incomplete data in each of the 30-

year periods owing to missed observations and station openings 

and closings. Following extensive testing, we found that stations 

with twelve or more complete monthly observations for the 

same calendar month provided useful information for the spatial 

climate analyses for that month (for example, twelve valid Janu-

ary monthly observations for the period 1971-2000). These are 

subsequently referred to as ‘qualified’ stations.

The use of incomplete station records

The analysis procedure requires the calculation of station 

climate normals (for 1911-1940, 1941-1970 and 1971-2000) as 

well as climate normal grids based on station data. As de-

scribed previously, the station normals used for generating 

the climate normal grids are limited to those ‘qualified’ sta-

tions with twelve or more years of records (or four in the 

case of high altitude stations as described below).

 Using data for stations with short records (less than 

twelve complete years) for calculating the individual month-

ly and daily anomaly grids requires us to form an estimate 

of the local 30-year average at the station. We have achieved 

this using a trade-off between the station’s temporal average 

(using all available observations in the 30-year period) and 

an estimate of the temporal average calculated by interpola-

tion to the station location of the smoothing spline analysis 

applied to those stations with twelve or more observations 

(for each of the 1911-1940, 1941-1970 and 1971-2000 periods).

 A linear combination of these two independent estimates 

at the stations with incomplete records was used, with the 

weights chosen through an optimisation process using 

cross-validation with the same values applied across the 

whole of Australia. This optimisation revealed that the final 

analysis accuracy was only weakly dependent on the exact 

form of the combination at stations. This weighted combina-

tion estimate for incomplete stations is internal to the analy-

sis procedure and not used for the climatological analyses 

(Fig. 3(a)).

Ensuring a consistency between adjacent climate normal 

grids

The Australian station network shows substantial changes 

over time. For the most part, there is a tendency for im-

proved coverage (e.g. Jones and Weymouth 1997; Jones and 

Trewin 2000a), but in some areas climatologically unique sta-

tions have closed, an effect which is most apparent in semi-

arid coastal locations such as around Shark Bay in Western 

Australia.

 The network changes can cause locally large and spurious 

differences between the climate normal fields for adjacent 

periods (e.g. between 1911-1940 and 1941-1970, and 1941-

1970 and 1971-2000). These then flow into the final analysis, 

as the anomaly analysis grids are added to (or multiplied 

by) the climate normal grid. The issue of network changes 

is more particularly a problem going backwards in time; the 

1911-1940 period has less data than the 1941-1970 period, 

which in turn has less data than the 1971-2000 period.

 We have preserved continuity in the climatological analy-

ses across the three normal periods by using consecutive 

climate normals at suitable stations (i.e. those stations which 

have enough data to calculate normals in at least one of the 

adjacent 30-year periods such as 1941-1970 and 1971-2000) 

perturbed by the difference between the normal periods. 

Obviously, for stations which are present in both normal pe-

riods (the ‘qualified’ stations) this adds no additional infor-

mation to the analysis process, but for those stations which 
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are ‘qualified’ for only one of the normal periods this intro-

duces substantially improved consistency between adjacent 

climate normals. Most importantly, this method allows the 

denser recent network to augment the climatology for the 

earlier periods on the assumption that the differences in the 

30-year averages are spatially smooth.

 The difference (ratio for rainfall) at a station has been 

calculated by an interpolation of a monthly difference grid 

using those stations which are qualified in consecutive nor-

mal periods (e.g. 1911-1940 and 1941-1970). The difference 

grids are analysed using the same Barnes analysis method 

as for the daily and monthly anomaly analyses. The overall 

impact on analysis accuracy is relatively small (a very slight 

improvement). The reason for using this technique is to en-

sure the analyses more faithfully capture both the variability 

and secular change across the full period (see below).

High altitude stations

High altitude stations play a key role in defining the verti-

cal gradient of climate parameters for the climate normals 

fields and hence for the final analyses. Unfortunately, it has 

only been in recent years, with the installation of automatic 

weather stations (AWS), that data have become available 

from the more isolated high altitude locations such as the 

Grampians in western Victoria, the central plateau and west-

ern ranges of Tasmania and parts of the Victorian and New 

South Wales Alps (see Fig. 4).

 We have found it necessary to apply a heuristic modifi-

cation to the analysis procedure to incorporate information 

from high altitude locations which are under-represented in 

the Australian station network. To capture these short-lived 

stations we have relaxed the rule for the inclusion of stations 

for the calculation of the climate normal fields to four (down 

from twelve) or more complete monthly observations where 

the station altitude is 1000 m or higher. The inclusion of ad-

ditional high altitude stations was found to make a modest 

but important improvement in representing high altitude 

climate. We note that W. Wright (personal communication) 

found it useful to do something similar when constructing 

the Climatic Atlas of Australia (Bureau of Meteorology 2000).

Measuring the accuracy of the analyses

The accuracy of the spatial analyses has been determined for 

the full analysis period using verification against station ob-

servations. Fully cross-validated estimates have been gen-

erated for the seven years 2001-2007, following the broad 

methodology described by Jones and Trewin (2002). It is 

possible to fully cross-validate both the anomaly analyses 

and also the station climatologies for this period, noting that 

the climatologies use data only up to and including 2000.

 Additional cross-validated verification statistics have been 

produced for the earlier periods 1911-2000 for temperature, 

1900-2000 for rainfall and 1971-2000 for vapour pressure. We 

note that the earlier verification statistics are not absolutely 

cross-validated because dependent station data have been 

used for the calculation of the climate normal grids. It is not 

practical to fully cross-validate the climate normal grids. In 

practice, however, the impact of not cross-validating the cli-

matology is extremely slight as most of the analysis error for 

individual months and days is associated with the anomaly 

interpolation rather than the gridded climatology. In addition, 

the climatological grids are only slightly affected by individual 

station observations owing to the underlying smoothness of 

these. This can be seen by the similarity of the analysis errors 

in years before and after the year 2000 (see below).

 Cross-validation has been achieved by randomly deleting 

five per cent of the stations in the network, performing an 

analysis using the remaining 95 per cent of station observa-

tions and then calculating the analysis errors for the omitted 

stations. This process was repeated twenty times for each 

month/day, providing independent verification statistics at 

stations. Every single monthly grid was cross-validated in 

this process, while the daily cross-validation was applied to 

ten days in each calendar month providing 120 analyses per 

year. We note that the errors are subsequently accumulated 

across stations which are not distributed evenly in space.

 Jones et al. (2006, 2007) describe a range of issues with 

the method of cross-validation. Importantly, cross-validation 

will tend to give somewhat inflated analysis errors, as the 

method involves a modest degrading of the data network 

compared to reality (e.g. Jones and Trewin 2000a; Jeffrey et 

al. 2001). 

 In addition, calculating analysis errors by independent 

cross-validation against station observations introduces a 

bias due to observation ‘error’ (see Daley 1993; Jones and 

Trewin 2002). Consider a cross-validated estimate of a sta-

tion value T at station k (at three-dimensional location rk) and 

time t, denoted by T̂ (rk, t). This is calculated using the 95 per 

cent of the network which is retained in the cross-validation 

Fig. 4 The average number of high-elevation stations op-

erating in January of the listed year. High-elevation 

stations are defined as those above 1500 metres in 

NSW and Victoria, above 1000 metres in Tasmania 

and above 700 metres in South Australia.
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step. The cross-validated analysis error is given by

• •

Ek (t) = T(rk, t) – Tk (t)  ...1
^

Aggregating across time, we can calculate a station root 

mean square analysis error (RMSE);

• •

1

N

N

t=1

2 2

Ek (t) = ...2RMSEk = ∑ [ ]
1
N

N

t=1

T (rk, t) – Tk (t) ∑ [ ]
^

Note that N will vary from station to station and according 

to whether the analysis is for daily or monthly data. The ob-

servation Tk(t) can be divided into a ‘true’ component, and an 

‘observational error’ component, ek(t). The true component 

is what would be measured if the observation at station k 

was completely accurate, while the error component is the 

error introduced due to factors such as instrument miscali-

bration, misreading by the observer, errors in spatial repre-

sentativeness arising from specific factors at the observation 

site and so on. Hence, we have

• •

2

...3RMSEk = 
1
N

N
True

t=1

T (rk, t) – Tk     (t)) – ek (t) ∑ [( ]
^

 Clearly, even a perfect analysis will have a non-zero 

cross-validated error because all observations have some 

level of error. To obtain a zero cross-validated error, the 

observations also need to be ‘perfect’. While it is common 

practice for the cross-validated differences between inde-

pendent observations and analyses to be treated as ‘analy-

sis errors’, it is important to keep in mind that they also 

contain an observation error component. Daley (1993) and 

Jones and Trewin (2000a) describe how the observational 

errors can be estimated statistically.

 In defining the analysis errors averaged across time and 

stations we have used the additional measures of bias and 

mean absolute error (MAE). These are both defined in the 

usual way (e.g. Jones and Weymouth 1997);

• •

Ek (t) ...4BIASk = 
1
N

N

t=1

∑ [ ]

and

• •

Ek (t) ...5MAEk = 
1
N

N

t=1

∑ | |

Quality of the analyses

Cross-validated statistics for the fully independent 2001 to 

2007 period and for the earlier years are provided in Tables 

2 to 4, with maps of RMSE for 2001 to 2007 in Figs 5, 6, 8 

and 10. For reference, we also provide national average sta-

tistics for the current operational Barnes analysis system 

used at the Bureau of Meteorology (Jones and Weymouth 

1997; Jones and Trewin 2000a). This operational system uses 

a relatively simple two-dimensional analysis with an isotro-

pic weighting function, something very similar to that used 

in the new system for the direct analysis of the rainfall and 

temperature ‘anomalies’. There are no ‘operational’ climate 

analyses for vapour pressure, so a comparison is not pos-

sible for this variable. We note that these verification results 

are not directly comparable to those provided by Jones and 

Weymouth (1997) (nor, for example, Jeffrey et al. 2001), be-

cause of slightly different cross-validation procedures and 

different verification periods. Beesley and Frost (2009) pro-

vide a more direct comparison of these different data-sets.

Table 2. Verification statistics for (a) monthly and (b) daily max-

imum and minimum temperatures. The units are °C.

(a)

 Mean  RMSE Bias RMSE Bias

 2001-  2001- 2001-  1910- 1910-

 2007 2007 2007 2000 2000

  Monthly maximum temperature

AWAP 24.9 0.7 0.0 0.7  0.0

Operational  1.6 0.0 1.7  0.0

  Monthly minimum temperature

AWAP  12.7 1.0 0.0 0.9 0.0

Operational   1.5 0.0 1.7 −0.1

(b)

 Mean  RMSE Bias RMSE Bias

 2001-  2001- 2001-  1910- 1910-

 2007 2007 2007 2000 2000

  Daily maximum temperature

AWAP  24.9 1.2 0.0 1.7 0.0

Operational  1.9 0.0 3.6 −0.1

  Daily minimum temperature

AWAP  12.8 1.7 0.0 2.0 0.0 

Operational   2.1 −0.1 3.1 −0.1

 

Table 3. Verification statistics for (a) monthly and (b) daily 

rainfall. The units are mm and % for MAE/Mean.

(a)

 Mean  Bias RMSE MAE MAE/Mean 

  Monthly rainfall 2001-2007

AWAP  54.3 0.5 21.2 11.5 21.0

Operational  0.1 24.4 12.8 23.5

  Monthly rainfall 2001-2007

AWAP  61.8 0.0 19.6 11.2 18.1

Operational  −0.1 24.7 13.1 21.5

(b)

 Mean  Bias RMSE MAE MAE/Mean 

  Daily rainfall 2001-2007

AWAP  1.8 0.0 3.1 0.9 50.0

Operational   0.0 3.8 1.1 61.1

  Daily rainfall 1900-2000

AWAP  2.0 0.0 3.7 1.2 59.6

Operational   0.0 3.9 1.3 63.4
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Maximum and minimum temperatures

The RMSEs for monthly maximum and minimum tempera-

tures are typically between 0.5 and 1°C, while those for dai-

ly temperatures are a little larger reflecting shorter length 

scales and larger station error variances (Jones and Trewin 

2000a). There is clearly a strong correspondence between 

station density (Fig. 2) and the analysis errors (Figs 5 and 

6), with the largest errors tending to occur in the poorly ob-

served western interior. There is also a tendency for large 

errors to occur where the variance of temperature is greater 

(Jones and Trewin 2000b).

 The new analyses are a substantial improvement on the 

current Bureau of Meteorology practice for maximum and 

minimum temperatures at both the monthly and daily times-

cales. For maximum temperatures, the RMSE is reduced by 

around 40 per cent for daily and nearly 60 per cent for month-

ly analyses. The percentage improvement for minimum tem-

peratures is smaller but still substantial, being around 0.5°C as 

measured by the RMSE. We note that the MAEs (not shown) 

tend to be a little smaller than the RMSEs, indicating a modest 

(positive) skewness in the analysis errors.

 The improvement in the temperature analyses compared 

to current Bureau practice is quite general across Australia. 

The most substantial improvements are in regions of signifi-

cant topography. For example, near the Victorian Alps and 

Snowy Mountains the RMSE is reduced from more than 2°C 

(not shown) to around 0.6°C for daily data. Similar improve-

ments have been reported for California (USA) by Hunter 

and Meentemeyer (2005), who used topography-resolving 

techniques like ours.

 The spatial maps of analysis error for maximum and mini-

mum temperatures (Figs 5 and 6) show little evidence of in-

creased values near significant topography. This confirms 

that the anomalies at both the daily and monthly timescale 

tend to be nearly barotropic, supporting the two-step ap-

proach which we have adopted.

 Spatially the RMSE represents a trade-off between the 

temperature variance, the network density and the local diffi-

culty of analysis (due to errors of representativeness and vari-

ations in correlation length scales). Locally large RMSEs high-

light regions where spatial analysis is particularly difficult or 

the network insufficiently dense. There is some evidence that 

analysis errors for maximum temperature are larger near 

the coast around northwest Australia and about the Nullar-

bor Plain, with the areas near Shark Bay and Eucla standing 

out in particular. These two coastal regions often experience 

Table 4. Verification statistics for (a) monthly and (b) daily va-

pour pressure. The units are hPa.

(a)

 Mean  Bias RMSE MAE

  Monthly vapour pressure 2001-2007

AWAP 9 am 13.7 0.0 1.1 0.8

AWAP 3 pm 13.1 −0.1 1.7 1.1

  Monthly vapour pressure 1971-2000

AWAP 9 am 13.9 0.0 1.0 0.7

AWAP 3 pm 13.5 0.0 1.3 0.9

(b)

 Mean  Bias RMSE MAE

  Daily vapour pressure 2001-2007

AWAP 9 am 13.7 0.0 1.8 1.2

AWAP 3 pm 13.1 −0.1 2.5 1.6

  Daily vapour pressure 1971-2000

AWAP 9 am 13.9 0.0 1.8 1.2

AWAP 3 pm 13.5 0.0 2.5 1.6

Fig. 5 Cross-validated root mean square error for monthly 

(a) maximum and (b) minimum temperatures for the 

seven years 2001-2007. The units are °C.

(a)

(b)
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the current operational practice. These factors combined 

imply that a denser network is required for minimum tem-

perature to achieve the same analysis accuracy as that for 

maximum temperature. This will be clearly important for 

analysing individual events such as frosts where a difference 

of 1°C to 2°C may be very significant in terms of impact.

 We note that the RMSEs for monthly maximum and mini-

mum temperatures are now not much larger than the theo-

retical lower bounds calculated by Jones and Trewin (2000a, 

2002) in parts of inland eastern Australia where the station 

network is most dense. This suggests that in these regions 

future improvements will require the use of very different 

analysis procedures and/or new data-sets (particularly with 

lower representativeness errors), such as those obtained by 

remote sensing or dynamical models.

 Figure 7 shows the historical variation of analysis RMSE 

from 1911 through to 2007 for both the daily and monthly 

data. Most obviously there is a general improvement in the 

analysis accuracy through time as the station density im-

proves (see Fig. 1). The improvement of daily maximum and 

minimum temperature errors is relatively monotonic up un-

til about 1970; after that time subsequent changes are slight, 

consistent with the findings of Jeffrey et al. (2001). Interest-

ingly, the abrupt increase in available daily data in the 1950s 

has only a modest improvement in the overall analysis accu-

racy, confirming the results of Jones and Trewin (2002) that 

daily temperature analyses are only slightly improved when 

going beyond a network of about 100 stations.

 A somewhat surprising property of the analyses is a ten-

dency for the monthly analyses to show larger RMSE er-

rors in recent years. There are a number of reasons for the 

increase in the errors. A partial explanation is the decline 

in the amount of available monthly data from a 1970s peak, 

which has only recently been reversed. This means that in 

recent years a significant number of stations lack a robust 

estimate of the station climate normal.

 The interaction between spatial analysis and the strong 

warming observed over Australia (Fig. 12) is also contribut-

ing to the evolution of the RMSE and the increase in val-

ues towards the end of the series. A warming trend means 

that the variance of temperature will tend to increase away 

from the centre of each of the 30-year average periods (see 

Fawcett and Jones 2007). This will tend to lead to slightly 

increased RMSEs.

 An additional factor is the spread of stations into remote 

coastal and alpine locations as automatic weather stations 

have come to dominate the station network. These more re-

mote locations tend to have considerably larger analysis er-

rors as a result of unique and often complex microclimates.

Monthly and daily rainfall

Table 3 and Fig. 8 provide verification statistics for the 

monthly and daily rainfall analyses, including a comparison 

with current operational practice. The monthly rainfall anal-

yses show a modest but significant improvement over cur-

rent Bureau practice, and the RMSEs are below those which 

very strong gradients in maximum temperatures between the 

coast and inland deserts, and are difficult to analyse with a 

relatively sparse network. It is quite possible that much of the 

coast of Western Australia and parts of the Northern Territory 

experience similar analysis issues during the warmer part of 

the year, but the historical network is not sufficiently dense to 

show this.

 Analysis errors for minimum temperature are greater 

than those for maximum temperatures. This is because mini-

mum temperatures tend to have larger errors of represen-

tativeness and shorter length scales (e.g. Jones and Trewin 

2000a). In addition minimum temperatures often show com-

plex and variable relationships with topography (e.g. Trewin 

2005). The weaker link between altitude and minimum tem-

perature also largely explains the lesser improvement over 

Fig. 6 Cross-validated root mean square error for daily (a) 

maximum and (b) minimum temperatures for the 

seven years 2001-2007. The units are °C.

(a)

(b)
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have been reported previously for Australia (Jones and Wey-

mouth 1997; Jeffrey et al. 2001). The analysis improvement is 

most marked in southern Australia where the climatological 

signals captured in the climate normals are most robust from 

month to month. We note that the RMSE is substantially 

larger than the MAE, while the bias is small. This is because 

of a significant skewness in the distribution of rainfall errors, 

with a relatively small number of large errors, particularly in 

the tropical parts of Australia. This skewness provides some 

caution against taking a non-linear transformation of the 

rainfall data prior to spatial analysis (e.g. taking the square 

root or cube root). Such a transformation may tend to de-

emphasise large rainfall events and emphasise smaller ones, 

leading to less accurate analyses overall.

 There is a substantial north-south gradient in the RMSE 

for rainfall across Australia on both monthly and daily tim-

escales (Fig. 8). In part this reflects the higher rainfall in the 

tropical regions which will lead to larger analysis errors for 

a given data smoothness and station network (e.g. Daley 

1993). This pattern has been noted previously by Mills et al. 

(1997), Jones and Weymouth (1997) and Jeffrey et al. (2001). 

This pattern is further amplified by the tendency for rainfall 

to be highly convective in tropical parts and hence to have 

shorter and more variable length scales (e.g. Mills et al. 1997; 

Ebert et al. 2007).

 The RMSEs for the historical period are a little better than 

those for the Bureau’s current operational system and those 

reported previously for Australia (Mills et al. 1997; Jeffrey et 

al. 2001; Beesley and Frost 2009). The insensitivity of the er-

rors to the analysis method for the earlier years is somewhat 

surprising, given that the underlying analysis systems are 

very different.

 For the most recent years (2001-2007), the new analyses 

are rather better than those for the operational system, sup-

porting the observations of Beesley and Frost (2009). A year-

by-year comparison of errors (not shown) shows that there 

is rather little difference between the quality of the AWA 

and operational analyses prior to the 1950s, but thereafter 

the AWA analyses show an improvement which grows over 

time. This improvement coincides with a significant expan-

sion of the rainfall network and an increase in observations 

at higher elevations. Hunter and Meentemeyer (2005) found 

modest impact from including climate-topography relation-

ships in daily rainfall analyses in California.

 While the improvement is positive we note that the analy-

sis errors remain large with the MAE being 50 per cent of 

the average daily rainfall amount. A possible way of improv-

ing the analyses might be to develop rainfall-altitude rela-

tionships (climatologies) which are conditional on weather 

type, such as light wind convective situations versus strong 

upslope flow situations.

(a)

(b)

Fig. 7 Cross-validated root mean square error for maximum 

(tmax) and minimum (tmin) temperature for the full 

analysis period. The units are °C. 

Fig. 8 Cross-validated root mean square error for (a) month-

ly and (b) daily rainfall for the seven years 2001-2007. 

The units are mm. 
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 We also note that the analysis errors for daily rainfall 

are only weakly dependent on the Barnes parameters ob-

tained through the optimisation process described by Sea-

man (1989). Mills et al. (1997), Weymouth et al. (1999) and 

Jeffrey et al. (2001) found similar insensitivities in accuracy 

for their analyses of daily rainfall. We interpret this as in-

dicating that the length scales for rainfall vary markedly 

from day to day (and also spatially), and hence are not well-

approximated by a single parameter set. It is clear that fur-

ther substantial improvements in daily rainfall analyses will 

require either much denser networks or the use of remotely 

sensed and/or model-derived data (e.g. Ebert et al. 2007), 

thereby introducing a substantial inhomogeneity with re-

spect to historical analyses.

 The annual mean RMSE for monthly rainfall by year to-

gether with the all-Australian annual mean rainfall is shown 

in Fig. 9. The time series for daily rainfall (not shown) shows 

a relatively monotonic decline from near 4 mm to near 3 mm, 

overlaid on substantial interannual variability.

 The RMSEs by year are dominated by a tendency for er-

rors in the monthly and daily data (not shown) to be larger 

in wet years than in dry ones, as noted previously by Jeffrey 

et al. (2001). There is some evidence for a slight reduction 

in analysis error as the available rainfall network expands 

through the first 20 years of the twentieth century, with rel-

atively less change thereafter. There is also some evidence 

for a recent slight increase in errors, which is likely to be 

associated with a slight reduction in the station network. 

In addition, recent years have been characterised by very 

wet conditions in large parts of northern Australia com-

pensated for by low rainfall in southern parts (Bureau of 

Meteorology 2008b). It would be expected that such a pat-

tern of rainfall will lead to increased analysis errors overall 

as analysis is more difficult in the north of Australia than in 

the south.

Monthly and daily vapour pressure

Figure 10 shows the distribution of analysis errors for 

monthly and daily vapour pressure (at 0900). The errors 

for 1500 are similar (see Table 4) though they do tend to 

be somewhat larger. Following the climatology, the va-

pour pressure analysis errors increase towards the north 

where average values are substantially higher (Jones et al. 

2007). There is also evidence of somewhat increased er-

rors close to the coast, where gradients often tend to be 

large between moist maritime air and drier continental air, 

in agreement with Jeffrey et al. (2001). The lowest analysis 

errors are found in the well-sampled southeast and south-

west parts of Australia.

 These vapour pressure analyses are the first of their type 

to be produced by the Bureau of Meteorology, and conse-

quently they cannot be directly compared to existing analy-

ses. Comparison with Jeffrey et al. (2001) suggests these 

analyses provide a slightly lower RMSE and MAE overall 

(1.4 hPa versus around 1.5 hPa). We note that direct com-

parison is not possible given different analysis periods. An 

important property is the absence of inflated errors near to-

pography. This suggests that the vapour pressure/altitude 

relationship is rather robust and amenable to the two-step 

anomaly analysis method we have developed.

Application of the data to climate change

The data which we described have been developed for the 

accurate description of daily and monthly climate over Aus-

tralia in a way which is consistent with long-term climatol-

ogy. An obvious application of these data is in document-

ing long-term trends and climate change. In this section 

we compare our new AWAP analyses with the most widely-

used Bureau of Meteorology climate change data-sets for 

rainfall and temperature. We focus on national annual av-

erages of the data as well as trend maps as described by 

Jones et al. (2004).

 The data-set described by Jones and Weymouth (1997) is 

currently used by the Bureau of Meteorology for describ-

ing the historical variation in local spatially averaged rainfall, 

while trend maps for rainfall use the station data of Lavery et 

al. (1992, 1997) with updates (see Jones et al. 2004). Updates 

to these two sets are made as data become available in the 

climate data bank (ADAM).

 The annual average rainfall (taken from the monthly 

grids) across the whole of Australia in the 0.05° AWAP data 

and the data of Jones and Weymouth (1997) has a correla-

tion of 0.995, while the trends as calculated by least-squares 

regression for 1900 to 2007 are +0.66 mm/year and +0.75 

mm/year, respectively. This reveals very good agreement 

between these nationally averaged data on both annual and 

longer timescales, with a modest wetting trend in both.

 Figure 11 shows the spatial map of the linear trend in an-

nual rainfall over the 1900-2007 period in units of mm/de-

cade for the Jones et al. (2004) and AWAP data. The Jones et 

Fig. 9 Cross-validated root mean square error for monthly 

rainfall together with the Australian annual mean 

rainfall. The units are mm.
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al. (2004) data include 184 stations with records sufficiently 

long to provide trend estimates, and as a result yield far 

smoother spatial trend maps. Overall, there is reasonably 

good agreement and in many places the AWAP data appear 

to be more physically consistent; for example they show 

marked and consistent drying in those parts of southern 

Australia where rainfall tends to occur from mid-latitude 

westerlies (including southwest Western Australia, west-

ern Tasmania, and the highlands of Victoria and New South 

Wales). In contrast, the Jones et al. (2004) analyses show 

trends through these regions which are less well linked to 

topography and geography. 

 

 A notable difference in the analyses is the strong drying 

in western Tasmania in the AWAP data. Jones and Beard 

(1998) have previously described the difficultly in produc-

ing historical analyses in this region due to the lack of sta-

tions in the first half of the twentieth century which can lead 

to an artificial wetting trend. A comparison with the avail-

able somewhat fragmented station data in this region (not 

shown) does suggest that this area may have experienced 

substantial drying over the course of the last century as sug-

gested by the AWAP data.

 The slightly enhanced wetting trend in the AWAP data for 

inland Western Australia appears to be associated with net-

Fig. 10 Cross-validated root mean square error for (a) month-

ly and (b) daily 9 am vapour pressure for the seven 

years 2001-2007. The units are hPa.

(a) (a)

(b)
(b)

Fig. 11 The linear trend in annually summed rainfall based 

on (a) the 0.25° Jones et al. (2004) data and (b) the 

monthly AWAP data. Units are mm/decade.
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 Elsewhere the trends (not shown) are similar though the 

full AWAP temperature data tend to contain substantially 

more detail as a result of the larger number of stations. At 

the large scale at least, these results suggest that the new 

data are robust for defining trends, except in regions of large 

network changes, and data voids.

Summary and conclusions 

In this paper we have provided a detailed description of a 

series of new meteorological analysis products developed by 

the Australian Bureau of Meteorology as a contribution to 

the Australian Water Availability Project. Careful attention 

has been paid to developing systems and data-sets which 

are robust and useful for the monitoring of both climate vari-

ability and climate change. These systems are now running 

in real time and are expected to form the basis for ongoing 

monitoring and mapping of Australia’s climate by the Aus-

tralian Bureau of Meteorology.

 The analyses make use of a new two-step analysis system 

which partitions the analysis field into a climatological com-

ponent and an anomaly component. This approach has been 

found to be robust, to preserve the background climatology 

in the long term and to be computationally efficient. These 

systems produce a substantial improvement on existing Bu-

reau practice as measured by error statistics.

 It is acknowledged that the accuracy of analyses will be 

limited in regions where the station network is insufficient to 

resolve detail, particularly on the daily timescale. Maps of the 

RMSE do reveal some tendency for errors to increase where 

climate gradients are tight, such as in coastal areas where the 

network may not be sufficient resolve maritime effects.

 In designing these systems we have deliberately confined 

the analysis to the use of in situ data, as the introduction of 

modern data-sets such as from satellites may lead to homo-

work changes and, in particular, the opening of the remote 

meteorological station at Giles in 1956. There are no data in 

this broad region prior to the 1950s, and so an extrapolation 

of spatially remote information for the first half of the trend 

period is required. These earlier interpolated data appear to 

slightly underestimate the actual rainfall in this region. This 

local trend highlights that it will never be possible to fully 

remove the effects of network change on analyses of histori-

cal climate change.

 The use of raw temperature data for the monitoring of 

climate change is somewhat problematic owing to a range of 

non-climatic effects. These include local changes in station 

environments (e.g. urbanisation), changes to observation 

practice (e.g. the introduction of daylight saving) and chang-

es to instrument exposure. There currently exist two widely 

used homogenised temperature data-sets for Australia, one 

being homogenised at the annual timescale (Torok and Nich-

olls 1996; Della-Marta et al. 2004) and the other at the daily 

timescale (Trewin 2001; Jones and Trewin 2002). The first of 

these currently yields annually resolved gridded data back 

to 1910, while the second yields monthly resolved gridded 

data back to 1950. The lack of pre-1950s data in the second 

set relates to the relative lack of digitised daily temperature 

data for use in local data homogenisation (Fig. 1). Both data-

sets are available in gridded form on a 0.25° national grid 

covering Australia (Jones et al. 2004).

 For climate change applications, we have developed a 

version of the AWAP monthly maximum and minimum tem-

perature grids by drawing only on the homogenised data of 

Trewin (2001) with updates (a total of 109 stations) analysed 

onto a 0.25° grid. The stations used for this grid-set have long 

and relatively homogeneous records, meaning that their use 

minimises the impact of network changes and artificial inho-

mogeneities

 In Fig. 12 we show the Australian annual mean tempera-

ture (as a departure from the 1961-1990 average) using the 

station data of Trewin (2001) and Torok and Nicholls (1996) 

together with the new 0.05° AWAP data and the 0.25° reso-

lution AWAP data (termed here the ‘high-quality’ set) us-

ing the station data from Trewin (2001) to form the anomaly 

grids. While a national average clearly smooths out much 

detail, these four data-sets show good agreement over this 

58-year period.

 There is a tendency for the full AWAP data-set to show 

slightly less warming than the high-quality data-sets. The 

lesser warming is in part due to smaller rates of warming 

over inland Western Australia as a result of network changes 

since 1950 which introduce a slight cool bias as the stations 

are relatively high and cool. The difference is somewhat 

ameliorated when our new methodology is applied to the 

station data of Trewin (2001). The use of the climate normal 

grids in the AWAP data-set, however, means that there is 

some lingering dependency on network changes in this re-

gion. These results suggest that the all-Australian tempera-

ture is a very robust statistic which is insensitive to the use of 

lower quality temperature data and urban sites.  

Fig. 12 The all-Australian annual mean temperature (anom-

aly from 1961-1990 average) for the AWAP data, the 

AWAP data using the Trewin (2001) station set, and 

the Trewin (2001) and Torok and Nicholls (1996) data 

(from Jones et al. 2004).
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geneity issues. Clearly, better analyses are possible for the 

more recent period making use of these new data types, par-

ticularly under a multivariate analysis paradigm. A focus for 

future development will be in developing these systems.

 There are ongoing issues which have emerged through 

this study and which will be the focus of future development 

and work. Foremost, there is a need to improve the daily 

rainfall analyses, for which all currently available Australian 

analyses have rather poor accuracy. The evidence is that this 

will require either very different analysis techniques which 

make use of data not currently used (such as from remote 

sensing and numerical weather prediction) or a substantial 

improvement in the national rain-gauge network. There is 

also a clear need to maintain consistent high-quality data 

networks across Australia, as the present analysis shows 

that even temporary declines in networks can have substan-

tial impacts on our ability to monitor climate.
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