
High-quality video view interpolation using a layered representation

C. Lawrence Zitnick Sing Bing Kang Matthew Uyttendaele Simon Winder Richard Szeliski

Interactive Visual Media Group, Microsoft Research, Redmond, WA

(a)

⇒

(b)

⇐

(c) (d)

Figure 1: A video view interpolation example: (a,c) synchronized frames from two different input cameras and (b) a virtual interpolated view.
(d) A depth-matted object from earlier in the sequence is inserted into the video.

Abstract

The ability to interactively control viewpoint while watching a video
is an exciting application of image-based rendering. The goal of our
work is to render dynamic scenes with interactive viewpoint control
using a relatively small number of video cameras. In this paper, we
show how high-quality video-based rendering of dynamic scenes can
be accomplished using multiple synchronized video streams com-
bined with novel image-based modeling and rendering algorithms.
Once these video streams have been processed, we can synthesize
any intermediate view between cameras at any time, with the poten-
tial for space-time manipulation.

In our approach, we first use a novel color segmentation-based stereo
algorithm to generate high-quality photoconsistent correspondences
across all camera views. Mattes for areas near depth discontinuities
are then automatically extracted to reduce artifacts during view syn-
thesis. Finally, a novel temporal two-layer compressed representa-
tion that handles matting is developed for rendering at interactive
rates.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—display algorithms; I.4.8 [Image Processing and Com-
puter Vision]: Scene Analysis—Stereo and Time-varying imagery.

Keywords: Image-Based Rendering, Dynamic Scenes, Computer
Vision.

1 Introduction

Most of the past work on image-based rendering (IBR) involves ren-
dering static scenes, with two of the best-known techniques being
Light Field Rendering [Levoy and Hanrahan 1996] and the Lumi-
graph [Gortler et al. 1996]. Their success in high quality rendering
stems from the use of a large number of sampled images and has

inspired a large number of papers. However, extending IBR to dy-
namic scenes is not trivial because of the difficulty (and cost) of
synchronizing so many cameras as well as acquiring and storing the
images.

Our work is motivated by this problem of capturing, representing,
and rendering dynamic scenes from multiple points of view. Being
able to do this interactively can enhance the viewing experience,
enabling such diverse applications as new viewpoint instant replays,
changing the point of view in dramas, and creating “freeze frame” vi-
sual effects at will. We wish to provide a solutionthat is cost-effective
yet capable of realistic rendering. In this paper, we describe a sys-
tem for high-quality view interpolation between relatively sparse
camera viewpoints. Video matting is automatically performed to
enhance the output quality. In addition, we propose a new temporal
two-layer representation that enables both efficient compression and
interactive playback of the captured dynamic scene.

1.1 Video-based rendering

One of the earliest attempts at capturing and rendering dynamic
scenes was Kanade et al.’s Virtualized RealityTM system [1997],
which involved 51 cameras arranged around a 5-meter geodesic
dome. The resolution of each camera is 512 × 512 and the cap-
ture rate 30 fps. They extract a global surface representation at each
time frame, using a form of voxel coloring based on the scene flow
equation [Vedula et al. 2000]. Unfortunately, the results look un-
realistic because of low resolution, matching errors, and improper
handling of object boundaries.

Matusik et al. [2000] use the images from four calibrated FireWire
cameras (256 × 256) to compute and shade visual hulls. The com-
putation is distributed across five PCs, which can render 8000 pixels
of the visual hull at about 8 fps. Carranza et al. [2003] use seven
inward looking synchronized cameras distributed around a room to
capture 3D human motion. Each camera has a 320× 240 resolution
and captures at 15 fps. They use a 3D human model as a prior to
compute 3D shape at each time frame. Yang et al. [2002a] designed
an 8 × 8 grid of 320 × 240 cameras for capturing dynamic scenes.
Instead of storing and rendering the data, they transmit only the
rays necessary to compose the desired virtual view. In their system,
the cameras are not genlocked; instead, they rely on internal clocks
across six PCs. The camera capture rate is 15 fps, and the interactive
viewing rate is 18 fps.

Using the Lumigraph structure with per-pixel depth values, Schi-
macher et al. [2001] were able to render interpolated views at close

to interactive rates (ranging from 2 to 9 fps, depending on image size,
number of input cameras, and whether depth data has to be computed
on-the-fly). Goldlücke et al. [2002] proposed a system which also
involves capturing, computing, and triangulating depth maps off-
line, followed by real-time rendering using hardware acceleration.
However, their triangulation process ignores depth discontinuities
and matting is not accounted for (single depth per pixel).

Yang et al. [2002b] use graphics hardware to compute stereo data
through plane sweeping and subsequently render new views. They
are able to achieve the rendering rate of 15 fps with 5 320 × 240
cameras. However, the matching window used is only one pixel, and
occlusions are not handled.

As a proof of concept for storing dynamic light fields, Wilburn et
al. [2002]demonstrated that it is possible to synchronize six cameras
(640 × 480 at 30 fps), and compress and store all the image data in
real time. They have since increased the size of the system to 128
cameras.

The MPEG community has also been investigating the issue of visu-
alizing dynamic scenes, which it terms “free viewpoint video.” The
first ad hoc group (AHG) on 3D audio and video (3DAV) of MPEG
was established at the 58th meeting in December 2001 in Pattaya,
Thailand. A good overview of this MPEG activity is presented by
Smolić and Kimata [2003].

1.2 Stereo with dynamic scenes

Many images are required to perform image-based rendering if the
scene geometry is either unknown or known to only a rough approx-
imation. If geometry is known accurately, it is possible to reduce the
requirement for images substantially [Gortler et al. 1996]. One prac-
tical way of extracting the scene geometry is through stereo. Within
the past 20 years, many stereo algorithms have been proposed for
static scenes [Scharstein and Szeliski 2002].

As part of the Virtualized RealityTM work, Vedula et al. [2000] pro-
posed an algorithm for extracting 3D motion (i.e., correspondence
between scene shape across time) using 2D optical flow and 3D
scene shape. In their approach, they use a voting scheme similar to
voxel coloring [Seitz and Dyer 1997], where the measure used is
how well a hypothesized voxel location fits the 3D flow equation.

Zhang and Kambhamettu [2001] also integrated 3D scene flow and
structure in their framework. A 3D affine motion model is used
locally, with spatial regularization, and discontinuities are preserved
using color segmentation. Tao et al. [2001] assume the scene is
piecewise planar. They also assume constant velocity for each planar
patch in order to constrain the dynamic depth map estimation.

In a more ambitious effort, Carceroni and Kutulakos [2001] recover
piecewise continuous geometry and reflectance (Phong model) un-
der non-rigid motion with known lighting positions. They discretize
the space into surface elements (“surfels”), and perform a search
over location, orientation, and reflectance parameter to maximize
agreement with the observed images.

In an interesting twist to conventional local window matching, Zhang
et al. [2003] use matching windows that straddle space and time.
The advantage of this method is that there is less dependence on
brightness constancy over time.

Active rangefinding techniques have also been applied to moving
scenes. Hall-Holt and Rusinkiewicz [2001] use projected boundary-
coded stripe patterns that vary over time.There is also a commercial
system on the market called ZCamTM , which is a range sensing
video camera add-on used in conjunction with a broadcast video

camera.1 However, it is an expensive system, and provides single
viewpoint depth only, which makes it less suitable for free viewpoint
video.

1.3 Video view interpolation

Despite all the advances in stereo and image-based rendering, it is
still very difficult to render high-quality, high resolution views of
dynamic scenes. To address this problem, we use high-resolution
cameras (1024 × 768) and a new color segmentation-based stereo
algorithm to generate high quality photoconsistent correspondences
across all camera views. Mattes for areas near depth discontinuities
are automatically extracted to reduce artifacts during view synthesis.
Finally, a novel temporal two-layer representation is used for on-
line rendering at interactive rates. Once the input videos have been
processed off-line, our real-time rendering system can interactively
synthesize any intermediate view at any time.

Interactive “bullet time”—and more. For several years now,
viewers of TV commercials and feature films have been seeing the
“freeze frame” effect used create the illusion of stopping time and
changing the camera viewpoint. The earliest commercials were pro-
duced using Dayton Taylor’s film-based TimetrackR system2, which
rapidly jumped between different still cameras arrayed along a rail
to give the illusion of moving through a frozen slice of time.

When it first appeared, the effect was fresh and looked spectacu-
lar, and soon it was being emulated in many productions, the most
famous of which is probably the “bullet time” effects seen inTheMa-
trix. Unfortunately, this effect is typically a one-time, pre-planned
affair. The viewpoint trajectory is planned ahead of time, and many
man hours are expended to produce the desired interpolated views.
Newer systems such as Digital Air’s MoviaR are based on video
camera arrays, but still rely on having many cameras to avoid soft-
ware view interpolation.

In contrast, our approach is much more flexible. First of all, once
all the input videos have been processed, viewing is interactive.
The user can watch the dynamic scene by manipulating (freezing,
slowing down, or reversing) time and changing the viewpoint at
will. Since different trajectories can be taken through space-time,
no two viewing experiences need be the same. Second, because we
have high-quality 3D stereo data at our disposal, object manipulation
(such as insertion or deletion) is easy.

Features of our system. Our current system acquires the video
and computes the geometry information off-line, and subsequently
renders in real-time. We chose thisapproach because the applications
we envision include high-quality archival of dynamic events and
instructional videos for activities such as ballet and martial arts. Our
foremost concern is the rendering quality, and our current stereo
algorithm, while very effective, is not fast enough for the entire
system to operate in real-time. Our system is not meant to be used
for immersive teleconferencing (such as blue-c [Gross et al. 2003])
or real-time (live) broadcast 3D TV.

We currently use eight cameras placed along a 1D arc spanning
about 30◦ from one end to the other (this span can be extended, as
shown in the discussion section). We plan to extend our system to
2D camera arrangement and eventually 360◦ coverage. While this
would not be a trivial extension, we believe that the Unstructured
Lumigraph [Buehler et al. 2001] provides the right framework for
accomplishing this. The main contribution of our work is a layered

1http://www.3dvsystems.com/products/zcam.html
2http://www.timetrack.com/

concentrators

banks

of hard

disks

cameras

controlling

laptop

Figure 2: A configuration of our system with 8 cameras.

depth image representation that produces much better results than
the crude proxies used in the Unstructured Lumigraph.

In the remainder of this paper, we present the details of our sys-
tem. We first describe the novel hardware we use to capture mul-
tiple synchronized videos (Section 2). Next, we describe the novel
image-based representation that is the key to producing high-quality
interpolated views at video rates (Section 3). We then present our
multi-view stereo reconstruction and matting algorithms that en-
able us to reliably extract this representation from the input video
(Sections 4 and 5). We then describe our compression technique
(Section 6) and image-based rendering algorithm (implemented on a
GPU using vertex and pixel shaders) that enable real-time interactive
performance (Section 7). Finally, we highlight the results obtained
using our system, and close with a discussion of future work.

2 Hardware system

Figure 2 shows a configuration of our video capturing system with
8 cameras arranged along a horizontal arc. We use high resolution
(1024× 768) PtGrey color cameras to capture video at 15 fps, with
8mm lenses, yielding a horizontal field of view of about 30◦. To han-
dle real-time storage of all the input videos, we commissioned Pt-
Grey to build us two concentrator units. Each concentrator synchro-
nizes four cameras and pipes the four uncompressed video streams
into a bank of hard disks through a fiber optic cable. The two con-
centrators are synchronized via a FireWire cable.

The cameras are calibrated before every capture session using a
36” × 36” calibration pattern mounted on a flat plate, which is
moved around in front of all the cameras. The calibration technique
of Zhang [2000] is used to recover all the camera parameters neces-
sary for Euclidean stereo recovery.

3 Image-based representation

The goal of the offline processing and on-line rendering stages is to
create view-interpolated frames of the highest possible quality. One
approach, as suggested in the seminal Light Field Rendering paper
[Levoy and Hanrahan 1996], is to simply re-sample rays based only
on the relative positions of the input and virtual cameras. However,
as demonstrated in the Lumigraph [Gortler et al. 1996] and subse-
quent work, using a 3D impostor or proxy for the scene geometry can
greatly improve the quality of the interpolated views. Another ap-
proach is to create a single texture-mapped 3D model [Kanade et al.
1997], but this generally produces inferior results to using multiple
reference views.

Since we use geometry-assisted image-based rendering, which kind
of 3D proxy should we use? Wang and Adelson [1993] use planar
sprites to model object motion, but such models cannot account
for local depth distributions. An alternative is to use a single global
polyhedral model, as in the Lumigraph and Unstructured Lumigraph

di

matte

(a) (b)

Mi

Bi

strip

width

depth
discontinuity

strip

width

Figure 3: Two-layer representation: (a) discontinuities in the depth
are foundanda boundarystrip is created around these; (b) amatting
algorithm is used to pull the boundary and main layers Bi andMi.
(The boundary layer is drawn with variable transparency to suggest
partial opacity values.)

papers [Buehler et al. 2001]. Another possibility is to use per-pixel
depth, as in Layered Depth Images [Shade et al. 1998], the offset
depth maps in Façade [Debevec et al. 1996], or sprites with depth
[Baker et al. 1998;Shadeet al. 1998].In general, using different local
geometric proxies for each reference view [Pulliet al. 1997;Debevec
et al. 1998; Heigl et al. 1999] produces higher quality results, so that
is the approach we adopt.

To obtain the highest possible quality for a fixed number of in-
put images, we use per-pixel depth maps generated by the novel
stereo algorithm described in Section 4. However, even multiple
depth maps still exhibit rendering artifacts when generating novel
views: aliasing (jaggies) due to the abrupt nature of the foreground to
background transition and contaminated colors due to mixed pixels,
which become visible when compositing over novel backgrounds or
objects.

We address these problems using a novel two-layer representation
inspired by Layered Depth Images and sprites with depth [Shade
et al. 1998]. We first locate the depth discontinuities in a depth map
di and create a boundarystrip (layer) around these pixels (Figure 3a).
We then use a variant of Bayesian matting [Chuang et al. 2001] to
estimate the foreground and background colors, depths, and opaci-
ties (alpha values) within these strips, as described in Section 5. To
reduce the data size, the multiple alpha-matted depth images are then
compressed using a combination of temporal and spatial prediction,
as described in Section 6.

At rendering time, the two reference views nearest to the novel view
are chosen, and all the layers involved are then warped. The warped
layers are combined based on their respective pixel depths, pixel
opacity, and proximity to the novel view. A more detailed description
of this process is given in Section 7.

4 Reconstruction algorithm

When developing a stereo vision algorithm for use in view interpo-
lation, the requirements for accuracy vary from those of standard
stereo algorithms used for 3D reconstruction. We are not as directly
concerned with error in disparity as we are in the error in intensity
values for the interpolated image. For example, a multi-pixel dispar-
ity error in an area of low texture, such as a white wall, will result in
significantly less intensity error in the interpolated image than the
same disparity error in a highly textured area. In particular, edges
and straight lines in the scene need to be rendered correctly.

Traditional stereo algorithms tend to produce erroneous results
around disparity discontinuities. Unfortunately, such errors produce
some of the most noticeable artifacts in interpolated scenes, since
they typically coincide with intensity edges. Recently, a new ap-
proach to stereo vision called segmentation-based stereo has been
proposed. These methods segment the image into regions likely

Segmentation Compute Initial DSD DSD Refinement

Cross Disparity Refinement Matting

Figure 4: Outline of the stereo algorithm.

(a) (b) (c)

Figure 5: Segmentation: (a) neighboring pixel groups used in aver-
aging; (b) close-up of color image and (c) its segmentation.

to have similar or smooth disparities prior to the stereo computa-
tion. A smoothness constraint is then enforced for each segment.
Tao et al. [2001] used a planar constraint, while Zhang and Kamb-
hamettu [2001] used the segments for local support. These methods
have shown very promising results in accurately handling disparity
discontinuities.

Our algorithm also uses a segmentation-based approach and has
the following advantages over prior work: disparities within seg-
ments must be smooth but need not be planar; each image is treated
equally, i.e., there is no reference image; occlusions are modeled
explicitly; and consistency between disparity maps is enforced re-
sulting in higher quality depth maps.

Our algorithm is implemented using the following steps (Figure 4).
First, each image is independently segmented. Second, we compute
an initial disparity space distribution (DSD) for each segment, using
the assumption that all pixels within a segment have the same dispar-
ity. Next, we refine each segment’s DSD using neighboring segments
and its projection into other images. We relax the assumption that
each segment has a single disparity during a disparity smoothing
stage. Finally, we use image matting to compute alpha values for
pixels along disparity discontinuities.

4.1 Segmentation

The goal of segmentation is to split each image into regions that
are likely to contain similar disparities. These regions or segments
should be as large as possible to increase local support while mini-
mizing the chance of the segments covering areas of varying dispar-
ity. In creating thesesegments, we assume that areas ofhomogeneous
color generally have smooth disparities, i.e., disparity discontinuities
generally coincide with intensity edges.

Our segmentation algorithm has two steps. First, we smooth the im-
age using a variant of anisotropic diffusion [Peronaand Malik 1990].
We then segment the image based on neighboring color values.

The purpose of smoothing prior to segmentation is to remove as
much image noise as possible in order to create more consistent seg-
ments. We also want to reduce the number of thin segments along
intensity edges. Our smoothing algorithm iteratively averages (8
times) a pixel with three contiguous neighbors as shown in Figure
5(a). The set of pixels used for averaging is determined by which
pixels have the minimum absolute difference in color from the center
pixel. This simplified variant of the well known anisotropic diffu-
sion and bilateral filtering algorithms produces good results for our
application.

Good match Bad match

Figure 7: Good and bad match gain histograms.

After smoothing, each pixel is assigned its own segment. Two neigh-
boring 4-connected segments are merged if the Euclidean distance
between their average colors varies by less than 6. Segments smaller
than 100 pixels in area are merged with their most similarly colored
neighbors. Since large areas of homogeneous color may also possess
varying disparity, we split horizontally and vertically segments that
are more than 40 pixels wide or tall. Our segments thus vary in size
from 100 to 1600 pixels. A result of our segmentation algorithm can
be seen in Figure 5(b–c).

4.2 Initial Disparity Space Distribution

After segmentation, our next step is to compute the initial disparity
space distribution (DSD) for each segment in each camera. The DSD
is the set of probabilities over all disparities for segment sij in image
Ii. It is a variant of the classic disparity space image (DSI), which
associates a cost or likelihood at every disparity with every pixel
[Scharstein and Szeliski 2002]. The probability that segment sij has
disparity d is denoted by pij(d), with

∑
d
pij(d) = 1.

Our initial DSD for each segment sij is set to

p0
ij(d) =

∏
k∈Ni

mijk(d)
∑

d′

∏
k∈Ni

mijk(d′)
, (1)

where mijk(d) is the matching function for sij in image k at dispar-
ity d, and Ni are the neighbors of image i. For this paper, we assume
that Ni consists of the immediate neighbors of i, i.e. the cameras
to the left and right of i. We divide by the sum of all the matching
scores to ensure the DSD sums to one.

Given the gain differences between our cameras, we found a match-
ing score that uses a histogram of pixel gains produces the best
results. For each pixel x in segment sij , we find its projection x′

in image k. We then create a histogram using the gains (ratios),
Ii(x)/Ik(x′). For color pixels, the gains for each channel are com-
puted separately and added to the same histogram. The bins of the
histogram are computed using a log scale. For all examples in this
paper, we used a histogram with 20 bins ranging from 0.8 to 1.25.

If a match is good, the histogram has a few bins with large values with
the rest being small, while a bad match has a more even distribution
(Figure 7). To measure the “sharpness” of the distribution, we could
use several methods such as measuring the variance or entropy. We
found the following to be both efficient and produce good results:

mijk(d) = max
l

(hl−1 + hl + hl+1), (2)

where hl is the lth bin in the histogram, i.e., the matching score is
the sum of the three largest contiguous bins in the histogram.

4.3 Coarse DSD refinement

The next step is to iteratively refine the disparity space distribution
of each segment. We assume as we did in the previous section that

(a) (b) (c) (d) (e)

Figure 6: Sample results from stereo reconstruction stage: (a) input color image; (b) color-based segmentation; (c) initial disparity estimates

d̂ij; (d) refined disparity estimates; (e) smoothed disparity estimates di(x).

each segment has a single disparity.

When refining the DSD, we wish to enforce a smoothness constraint
between segments and a consistency constraint between images.
The smoothness constraint states that neighboring segments with
similar colors should have similar disparities. The second constraint
enforces consistency in disparities between images. That is, if we
project a segment with disparity d onto a neighboring image, the
segments it projects to should have disparities close to d.

We iteratively enforce these two constraints using the following
equation:

pt+1
ij (d) =

lij(d)
∏

k∈Ni
cijk(d)

∑
d′

lij(d′)
∏

k∈Ni
cijk(d′)

, (3)

where lij(d) enforces the smoothness constraint and cijk(d) en-
forces the consistency constraint with each neighboring image in
Ni. The details of the smoothness and consistency constraints are
given in Appendix A.

4.4 Disparity smoothing

Up to this point, the disparities in each segment are constant. At this
stage, we relax this constraint and allow disparities to vary smoothly
based on disparities in neighboring segments and images.

At the end of the coarse refinement stage, we set each pixel x in

segment sij to the disparity d̂ij with the maximum value in the DSD,
i.e., ∀x∈sij

, d(x) = argmaxd′ pij(d
′). To ensure that disparities

are consistent between images, we do the following. For each pixel
x in Ii with disparity di(x), we project it into image Ik. If y is the
projection of x in Ik and |di(x) − dk(y)| < λ, we replace di(x)
with the average of di(x) and dk(y). The resulting update formula
is therefore

dt+1
i (x) =

1

#Ni

∑

k∈Ni

δx
ik

dt
i(x) + dt

k(y)

2
+ (1 − δx

ik)dt
i(x), (4)

where δx
ik = |di(x) − dk(y)| < λ is the indicator variable that

tests for similar disparities and #Ni is the number of neighbors.
The parameter λ is set to 4, i.e., the same value used to compute
the occlusion function (9). After averaging the disparities across
images, we then average the disparities within a 5 × 5 window of x
(restricted to within the segment) to ensure they remain smooth.

Figure 6 shows some sample results from the stereo reconstruction
process. You can see how the disparity estimates improve at each
successive refinement stage.

5 Boundary matting

During stereo computation, we assume that each pixel has a unique
disparity. In general this is not the case, as some pixels along the

boundary of objects will receive contributions from both the fore-
ground and background colors. If we use the original mixed pixel
colors during image-based rendering, visible artifacts will result. A
method to avoid such visible artifacts is to use image priors [Fitzgib-
bon et al. 2003], but it is not clear if such as technique can be used
for real-time rendering.

A technique that may be used to separate the mixed pixels is that of
Szeliski and Golland [1999]. While the underlying principle behind
their work is persuasive, the problem is still ill-conditioned. As a
result, issues such as partial occlusion and fast intensity changes at
or near depth discontinuities are difficult to overcome.

We handle the mixed pixel problem by computing matting infor-
mation within a neighborhood of four pixels from all depth dis-
continuities. A depth discontinuity is defined as any disparity jump
greater than λ (=4) pixels. Within these neighborhoods, foreground
and background colors along with opacities (alpha values) are com-
puted using Bayesian image matting [Chuang et al. 2001]. (Chuang
et al. [2002] later extended their technique to videos using optic
flow.) The foreground information is combined to form our bound-
ary layer as shown in Figure 3. The main layer consists of the back-
ground information along with the rest of the image information
located away from the depth discontinuities. Note that Chuang et
al.’s algorithms do not estimate depths, only colors and opacities.
Depths are estimated by simply using alpha-weighted averages of
nearby depths in the boundary and main layers. To prevent cracks
from appearing during rendering, the boundary matte is dilated by
one pixel toward the inside of the boundary region.

Figure 8 shows the results of the applying the stereo reconstruction
and two-layer matting process to a complete image frame. Notice
how only a small amount of information needs to be transmitted
to account for the soft object boundaries, and how the boundary
opacities and boundary/main layer colors are cleanly recovered.

6 Compression

Compression is used to reduce our large data-sets to a manage-
able size and to support fast playback from disk. We developed our
own codec that exploits temporal and between-camera (spatial) re-
dundancy. Temporal prediction uses motion compensated estimates
from the preceding frame, while spatial prediction uses a reference
camera’s texture and disparity maps transformed into the viewpoint
of a spatially adjacent camera. We code the differences between pre-
dicted and actual images using a novel transform-based compression
scheme that can simultaneously handle texture, disparity and alpha-
matte data. Similar techniques have previously been employed for
encoding light fields [Chang et al. 2003]; however, our emphasis is
on high-speed decoding performance.

Our codec compresses two kinds of information: RGBD data for the
main plane (where D is disparity) and RGBAD alpha-matted data for
the boundary edge strips. For the former, we use both non-predicted

(a) (b) (c) (d) (e)

Figure 8: Sample results from matting stage: (a) main color estimates; (b) main depth estimates; (c) boundary color estimates; (d) boundary
depth estimates; (e) boundary alpha (opacity) estimates. For ease of printing, the boundary images are negated, so that transparent/empty
pixels show up as white.

(a)

Ps

I

Ps

Ps

Ps

I

Ps

Ps

Ps

Ps

Pt

Ps

Ps

Ps

Pt

Ps

Ps

Ps

C
am

er
a

v
ie

w
s

T = 0 T = 1Time

Temporal

prediction

Inter-view

prediction

(b)

37

39

41

43

45

47

49

51

53

0 50 100 150 200

Compression Ratio

P
S

N
R

 (
d

B
)

No Prediction Camera 0 Camera 1
Camera 2 Camera 4 Camera 5
Camera 6 Camera 7

Figure 9: Compression figures: (a) Spatial and temporal prediction
scheme; (b) PSNR compression performance curves.

(I) and predicted (P) compression, while for the latter, we use only
I-frames because the thin strips compress extremely well.

Figure 9(a) illustrates how the main plane is coded and demon-
strates our hybrid temporal and spatial prediction scheme. Of the
eight camera views, we select two reference cameras and initially
compress the texture and disparity data using I-frames. On sub-
sequent frames, we use motion compensation and code the error
signal using a transform-based codec to obtain frames Pt. The re-
maining camera views, Ps, are compressed using spatial prediction
from nearby reference views. We chose this scheme because it min-
imizes the amount of information that must be decoded when we
selectively decompress data from adjacent camera pairs in order to
synthesize our novel views. At most, two temporal and two spatial
decoding steps are required to move forward in time.

To carry out spatial prediction, we use the disparity data from each
reference view to transform both the texture and disparity data into
the viewpoint of the nearby camera, resulting in an approximation
to that camera’s data, which we then correct by sending compressed
difference information. During this process, the de-occlusion holes
created during camera view transformation are treated separately
and the missing texture is coded without prediction using an alpha-
mask. This gives extremely clean results that could not be obtained
with a conventional block-based P-frame codec.

To code I-frame data, we use an MPEG-like scheme with DC pre-
diction that makes use of a fast 16-bit integer approximation to the
discrete cosine transform (DCT). RGB data is converted to the YUV
color-space and D is coded similarly to Y. For P-frames, we use a
similar technique but with different code tables and no DC predic-
tion. For I-frame coding with alpha data, we use a quad-tree plus
Huffman coding method to first indicate which pixels have non-zero
alpha values. Subsequently, we only code YUV or D texture DCT

Render

main layer

Mi

Render

boundary layer

BiCamera i

Render

main layer

Mi+1

Render

boundary layer

Bi+1

Blend

Camera i+1

Figure 10: Rendering system: the main and boundary images from
each camera are rendered and composited before blending.

coefficients for those 8 × 8 blocks that are non-transparent.

Figure 9(b) shows graphs of signal-to-noise ratio (PSNR) versus
compression factor for the RGB texture component of Camera 3
coded using our I-frame codec and using between-camera spatial
prediction from the other seven cameras. Spatial prediction results in
a higher coding efficiency (higher PSNR), especially for prediction
from nearby cameras.

To approach real-time interactivity, the overall decoding scheme is
highly optimized for speed and makes use of Intel streaming me-
dia extensions. Our 512 × 384 RGBD I-frame currently takes 9
ms to decode. We are working on using the GPU for inter-camera
prediction.

7 Real-time rendering

In order to interactively manipulate the viewpoint, we have ported
our software renderer to the GPU. Because of recent advances in
the programmability of GPUs, we are able to render directly from
the output of the decompressor without using the CPU for any ad-
ditional processing. The output of the decompressor consists of 5
planes of data for each view: the main color, main depth, boundary
alpha matte, boundary color, and boundary depth. Rendering and
compositing this data proceeds as follows.

First, given a novel view, we pick the nearest two cameras in the
data set, say cameras i and i + 1. Next, for each camera, we project
the main data Mi and boundary data Bi into the virtual view. The
results are stored in separate buffers each containing color, opacity
and depth. These are then blended to generate the final frame. A
block diagram of this process is shown in Figure 10. We describe
each of these steps in more detail below.

The main layers consistsof colorand depthat every pixel. We convert
the depth map to a 3D mesh using a simple vertex shader program.
The shader takes two input streams: the X-Y positions in the depth
map and the depth values. To reduce the amount of memory required,
the X-Y positions are only stored for a 256×192block. The shader is
then repeatedly called with different offsets to generate the required

(a) (b)

(c) (d)

Figure 11: Sample results from rendering stage: (a) rendered main
layer from one view, with depth discontinuities erased; (b) rendered
boundary layer; (c) rendered main layer from the other view; (d)
final blended result.

3D mesh and texture coordinates. The color image is applied as a
texture map to this mesh.

The main layer rendering step contains most of the of the data, so it
is desirable to only create the data structures described above once.
However, we should not draw triangles across depth discontinuities.
Since it is difficult to kill triangles already in the pipeline, on current
GPU architectures, we erase these triangles in a separate pass. The
discontinuities are easy to find since they are always near the inside
edge of the boundary region (Figure 3). A small mesh is created to
erase these, and an associated pixel shader is used to set their color
to a zero-alpha main color and their depth to the maximum scene
depth.

Next, the boundary regions are rendered. The boundary data is fairly
sparse since only vertices with non-zero alpha values are rendered.
Typically, the boundary layer contains about 1/64 the amount of
data as the main layer. Since the boundary only needs to be rendered
where the matte is non-zero, the same CPU pass used to generate the
erase mesh is used to generate a boundary mesh. The position and
color of each pixel are stored with the vertex. Note that, as shown
in Figure 3, the boundary and main meshes share vertices at their
boundaries in order to avoid cracks and aliasing artifacts.

Once all layers have been rendered into separate color and depth
buffers, a custom pixel shader is used to blend these results. (During
the initial pass, we store the depth values in a separate buffers, since
pixel shaders do not currently have access to the hardware z-buffer.)
The blending shader is given a weight for each camera based on the
camera’s distance from the novel virtual view [Debevec et al. 1996].
For each pixel in the novel view all overlapping fragments from the
projected layers are composited from front to back, and the shader
performs a soft Z compare in order to compensate for noise in the
depth estimates and reprojection errors. Pixels that are sufficiently
close together are blended using the view-dependent weights. When
pixels differ in depth, the frontmost pixel is used. Finally, the blended
pixel value is normalized by its alpha value. This normalization is
important since some pixels might only be visible or partially visible
in one camera’s view.

Figure 11 shows four intermediate images generated during the
rendering process. You can see how the depth discontinuities are
correctly erased, how the soft alpha-matted boundary elements are
rendered, and how the final view-dependent blend produces high-
quality results.

(a) (b) (c)

Figure 13: Interpolation results at different baselines: (a) current
baseline, (b) baseline doubled, (c) baseline tripled. The insets show
the subtle differences in quality.

Our rendering algorithms are implemented on an ATI 9800 PRO.
We currently render 1024 × 768 images at 5 fps and 512 × 384
images at 10 fps from disk or 20 fps from main memory. The current
rendering bottleneck is disk bandwidth, which should improve once
the decompression algorithm is fully integrated into our rendering
pipeline. (Our timings show that we can render at full resolution at
30 fps if the required images are all loaded into the GPU’s memory.)

8 Results

We have tested our system on a number of captured sequences.
Three of these sequences were captured over a two evening period
using a different camera configuration for each and are shown on
the accompanying video.

The first sequence used the cameras arranged in a horizontal arc, as
shown in Figure 2 and was used to film the break-dancers shown
in Figures 1, 6, 8, and 12. The second sequence was shot with the
same dancers, but this time with the cameras arranged on a vertical
arc. Two input frames from this sequence along with an interpolated
view are shown in Figure 12(a–c). The third sequence was shot the
following night at a ballet studio, with the cameras arranged on an
arc with a slight upward sweep (Figure 12(d–f)).

Looking at these thumbnails, it is hard to get a true sense of the qual-
ity of our interpolated views. A much better sense can be obtained
by viewing our accompanying video. In general, we believe that the
quality of the results significantly exceeds the quality demonstrated
by previous view interpolation and image-based modeling systems.

Object insertion example. In addition to creating virtual fly-
throughs and other space-time manipulation effects, we can also
use our system to perform object insertion. Figure 1(d) shows a
frame from our “doubled” video in which we inserted an extra copy
of a break-dancer into the video. This effect was achieved by first
“pulling” a matte of the dancer using a depth threshold and then
inserting the pulled sprite into the original video using z-buffering.
The effect is reminiscent of the Agent Smith fight scene in The Ma-
trix Reloaded and the multiplied actors in Michel Gondry’s Come
IntoMyWorldmusic video. However, unlike the computer generated
imagery used in theMatrix or the 15 days of painful post-production
matting in Gondry’s video, our effect was achieved totally automat-
ically from real-world data.

Effect of baseline. We have also looked into the effect of in-
creasing the baseline between successive pairs of cameras. In our
current camera configuration, the end-to-end coverage is about 30◦.
However, the maximum disparity between neighboring pairs of cam-
eras can be as large as 100 pixels. Our algorithm can tolerate up to

(a)

⇒

(b)

⇐

(c) (d)

⇒

(e)

⇐

(f)

Figure 12:More video view interpolation results: (a,c) input images from vertical arc and (b) interpolated view; (d,f) input images from ballet
studio and (e) interpolated view.

about 150-200pixels of disparity before hole artifacts due to missing
background occur. Our algorithm is generally robust, and as can be
seen in Figure 13, we can triple the baseline with only a small loss
of visual quality.

9 Discussion and conclusions

Compared with previous systems for video-based rendering of dy-
namic scenes, which either use no 3D reconstruction or only global
3D models, our view-based approach provides much better visual
quality for the same number of cameras. This makes it more practical
to set up and acquire, since fewer cameras are needed. Furthermore,
the techniques developed in this paper can be applied to any dynamic
lightfield capture and rendering system. Being able to interactively
view and manipulate such videos on a commodity PC opens up all
kinds of possibilities for novel 3D dynamic content.

While we are pleased with the quality of our interpolated viewpoint
videos, there is still much that we can do to improve the quality of
the reconstructions. Like most stereo algorithms, our algorithm has
problems with specular surfaces or strong reflections. In a separate
work [Tsin et al. 2003], our group has worked on this problem with
some success. This may be integrated into our system in the future.
Note that using more views and doing view interpolation can help
model such effects, unlike the single texture-mapped 3D model used
in some other systems.

While we can handle motion blur through the use of the matte (soft
alpha values in our boundary layer), we minimize it by using a fast
shutter speed and increase the lighting.

At the moment, we process each frame (time instant) of video sep-
arately. We believe that even better results could be obtained by in-
corporating temporal coherence, either in video segmentation (e.g.,
[Patras et al. 2001]) or directly in stereo as cited in Section 1.2.

During the matting phase, we process each camera independently
from the others. We believe that better results could be obtained
by merging data from adjacent views when trying to estimate the
semi-occluded background. This would allow us to use the multi-
image matting of [Wexler et al. 2002] to get even better estimates
of foreground and background colors and opacities, but only if the
depth estimates in the semi-occluded regions are accurate.

Virtual viewpoint video allows users to experience video as an inter-
active 3D medium. It can also be used to produce a variety of special
effects such as space-time manipulation and virtual object insertion.
The techniques presented in this paper bring us one step closer to
making image-based (and video-based) rendering an integral com-
ponent of future media authoring and delivery.

References

Baker, S., Szeliski, R., and Anandan, P. 1998. A layered approach
to stereo reconstruction. In Conference on Computer Vision and
Pattern Recognition (CVPR), 434–441.

Buehler, C., Bosse, M., McMillan, L., Gortler, S. J., and Cohen,
M. F. 2001. Unstructured lumigraph rendering. Proceedings of
SIGGRAPH 2001, 425–432.

Carceroni, R. L., and Kutulakos, K. N. 2001. Multi-view scene
capture by surfel sampling: From video streams to non-rigid 3D
motion, shape and reflectance. In International Conference on
Computer Vision (ICCV), vol. II, 60–67.

Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003.
Free-viewpoint video of human actors. ACM Transactions on
Graphics 22, 3, 569–577.

Chang, C.-L., et al. 2003. Inter-view wavelet compression of light
fields with disparity-compensated lifting. In Visual Communica-
tion and Image Processing (VCIP 2003), 14–22.

Chuang, Y.-Y., et al. 2001. A Bayesian approach to digital mat-
ting. In Conference on Computer Vision and Pattern Recognition
(CVPR), vol. II, 264–271.

Chuang, Y.-Y., et al. 2002. Video matting of complex scenes. ACM
Transactions on Graphics 21, 3, 243–248.

Debevec, P. E., Taylor, C. J., and Malik, J. 1996. Modeling and
rendering architecture from photographs: A hybrid geometry- and
image-based approach. Computer Graphics (SIGGRAPH’96),
11–20.

Debevec, P. E., Yu, Y., and Borshukov, G. D. 1998. Efficient
view-dependent image-based rendering with projective texture-
mapping. Eurographics Rendering Workshop 1998, 105–116.

Fitzgibbon, A., Wexler, Y., and Zisserman, A. 2003. Image-based
rendering using image-based priors. In International Conference
on Computer Vision (ICCV), vol. 2, 1176–1183.

Goldlücke, B., Magnor, M., and Wilburn, B. 2002. Hardware-
accelerated dynamic light field rendering. In Proceedings Vision,
Modeling and Visualization VMV 2002, 455–462.

Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996.
The Lumigraph. In Computer Graphics (SIGGRAPH’96) Pro-
ceedings, ACM SIGGRAPH, 43–54.

Gross, M., et al. 2003. blue-c: A spatially immersive display and 3D
video portal for telepresence. Proceedings of SIGGRAPH 2003
(ACM Transactions on Graphics), 819–827.

Hall-Holt, O., and Rusinkiewicz, S. 2001. Stripe boundary codes
for real-time structured-light range scanning of moving objects.
In International Conference on Computer Vision (ICCV), vol. II,
359–366.

Heigl, B., et al. 1999. Plenoptic modeling and rendering from image
sequences taken by hand-held camera. In DAGM’99, 94–101.

Kanade, T., Rander, P. W., and Narayanan, P. J. 1997. Virtual-
ized reality: constructing virtual worlds from real scenes. IEEE
MultiMedia Magazine, 1(1):34–47.

Levoy, M., and Hanrahan, P. 1996. Light field rendering. In
Computer Graphics (SIGGRAPH’96) Proceedings, ACM SIG-
GRAPH, 31–42.

Matusik, W., et al. 2000. Image-based visual hulls. Proceedings of
SIGGRAPH 2000, 369–374.

Patras, I., Hendriks, E., and Lagendijk, R. 2001. Video segmentation
by MAP labeling of watershed segments. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23, 3, 326–332.

Perona, P., and Malik, J. 1990. Scale-space and edge detection using
anisotropic diffusion. IEEETransactions onPatternAnalysis and

Machine Intelligence 12, 7, 629–639.
Pulli, K., et al. 1997. View-based rendering: Visualizing real objects

from scanned range and color data. In Proceedings of the 8th
Eurographics Workshop on Rendering, 23–34.

Scharstein, D., and Szeliski, R. 2002. A taxonomy and evaluation of
dense two-frame stereo correspondencealgorithms. International
Journal of Computer Vision 47, 1, 7–42.

Schirmacher, H., Ming, L., and Seidel, H.-P. 2001. On-the-fly
processing of generalized Lumigraphs. In Proceedings of Euro-
graphics, Computer Graphics Forum 20, 3, 165–173.

Seitz, S. M., and Dyer, C. M. 1997. Photorealistic scene reconstr-
cution by voxel coloring. In Conference on Computer Vision and
Pattern Recognition (CVPR), 1067–1073.

Shade, J., Gortler, S., He, L.-W., and Szeliski, R. 1998. Layered
depth images. In Computer Graphics (SIGGRAPH’98) Proceed-
ings, ACM SIGGRAPH, 231–242.

Smolić, A., and Kimata, H. 2003. AHG on 3DAV Coding. ISO/IEC
JTC1/SC29/WG11 MPEG03/M9635.

Szeliski, R., and Golland, P. 1999. Stereo matching with trans-
parency and matting. International Journal of Computer Vision
32, 1, 45–61.

Tao, H., Sawhney, H., and Kumar, R. 2001. A global matching
framework for stereo computation. In International Conference
on Computer Vision (ICCV), vol. I, 532–539.

Tsin, Y., Kang, S. B., and Szeliski, R. 2003. Stereo matching with
reflections and translucency. In Conference on Computer Vision
and Pattern Recognition (CVPR), vol. I, 702–709.

Vedula, S., Baker, S., Seitz, S., and Kanade, T. 2000. Shape and
motion carving in 6D. In Conference on Computer Vision and
Pattern Recognition (CVPR), vol. II, 592–598.

Wang, J. Y. A., and Adelson, E. H. 1993. Layered representation for
motion analysis. In Conference on Computer Vision and Pattern
Recognition (CVPR), 361–366.

Wexler, Y., Fitzgibbon, A., and Zisserman, A. 2002. Bayesian
estimation of layers from multiple images. In Seventh European
Conference on Computer Vision (ECCV), vol. III, 487–501.

Wilburn, B., Smulski, M., Lee, H. H. K., and Horowitz, M. 2002.
The light field video camera. In SPIE Electonic Imaging: Media
Processors, vol. 4674, 29–36.

Yang, J. C., Everett, M., Buehler, C., and McMillan, L. 2002. A real-
time distributed light field camera. In EurographicsWorkshop on
Rendering, 77–85.

Yang, R., Welch, G., and Bishop, G. 2002. Real-time consensus-
based scene reconstruction using commodity graphics hardware.
In Proceedings of Pacific Graphics, 225–234.

Zhang, Y., and Kambhamettu, C. 2001. On 3D scene flow and struc-
ture estimation. In Conference on Computer Vision and Pattern
Recognition (CVPR), vol. II, 778–785.

Zhang, L., Curless, B., and Seitz, S. M. 2003. Spacetime stereo:
Shape recovery for dynamic scenes. In Conference on Computer
Vision and Pattern Recognition, 367–374.

Zhang, Z. 2000. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis andMachine Intelligence
22, 11, 1330–1334.

A Smoothness and consistency

Here we present the details of our smoothness and consistency con-
straints.

Smoothness Constraint. When creating our initial segments,
we use the heuristic that neighboring pixels with similar colors
should have similar disparities. We use the same heuristic across
segments to refine the DSD. Let Sij denote the neighbors of seg-

ment sij , and d̂il be the maximum disparity estimate for segment

sil ∈ Sij . We assume that the disparity of segment sij lies within a

vicinity of d̂il modeled by a contaminated normal distribution with

mean d̂il:

lij(d) =
∏

sil∈Sij

N (d; d̂il, σ
2
l) + ǫ, (5)

where N (d; µ, σ2) = (2πσ2)−1e−(d−µ)2/2σ2

is the usual normal
distribution and ǫ = 0.01. We estimate the variance σ2

l for each
neighboring segment sil using three values: the similarity in color
of the segments, the length of the border between the segments and

pil(d̂il). Let ∆jl be the difference between the average colors of
segments sij and sil and bjl be the percentage of sij’s border that
sil occupies. We set σ2

l to

σ2
l =

υ

pil(d̂il)2 bjl N (∆jl; 0, σ2
∆)

, (6)

where υ = 8 and σ2
∆ = 30 in our experiments.

Consistency Constraint. The consistency constraint ensures
that different image’s disparity maps agree, i.e., if we project a pixel
with disparity d from one image into another, its projection should
also have disparity d. When computing the value of cijk(d) to en-
force consistency, we apply several constraints. First, a segment’s
DSD should be similar to the DSD of the segments it projects to in the
other images. Second, while we want the segments’ DSD to agree
between images, they must also be consistent with the matching
function mijk(d). Third, some segments may have no correspond-
ing segments in the other image due to occlusions.

For each disparity d and segment sij we compute its projected DSD,
pijk(d) with respect to image Ik. If π(k, x) is the segment in image
Ik that pixel x projects to and Cij is the number of pixels in sij ,

pt
ijk(d) =

1

Cij

∑

x∈sij

pt
π(k,x)(d). (7)

We also need an estimate of the likelihood that segment sij is oc-
cluded in image k. Since the projected DSD pt

ijk(d) is low if there is
little evidence for a match, the visibility likelihood can be estimated
as

vijk = min(1.0,
∑

d′

pt
ijk(d′)). (8)

Along with the projected DSD, we compute an occlusion function
oijk(d), which has a value of 0 if segment sij occludes another
segment in image Ik and 1 if is does not. This ensures that even
if sij is not visible in image Ik, its estimated depth does not lie in
front of a surface element in the kth image’s estimates of depth.
More specifically, we define oijk(d) as

oijk(d) = 1.0 −
1

cj

∑

x∈sij

pt
π(k,x)(d)h(d − d̂kl + λ), (9)

where h(x) = 1 if x ≥ 0 is the Heaviside step function and λ is
a constant used to determine if two surfaces are the same. For our
experiments, we set λ to 4 disparity levels.

Finally, we combine the occluded and non-occluded cases. If the
segment is not occluded, we compute cijk(d) directly from the pro-
jected DSD and the match function, pt

ijk(d)mijk(d). For occluded
regions we only use the occlusion function oijk(d). Our final func-
tion for cijk(d) is therefore

cijk(d) = vijkpt
ijk(d)mijk(d) + (1.0 − vijk)oijk(d). (10)

