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Abstract—The growing popularity of 3-D movies has led to
the rapid development of numerous affordable consumer 3-D
displays. In contrast, the development of technology to generate
3-D content has lagged behind considerably. In spite of significant
improvements to the quality of imaging devices, the accuracy of
the algorithms that generate 3-D data, and the hardware avail-
able to render such data, the algorithms available to calibrate,
reconstruct, and then visualize such data remain difficult to use,
extremely noise sensitive, and unreasonably slow. In this paper, we
present a multi-camera system that creates a highly accurate (on
the order of a centimeter), 3-D reconstruction of an environment
in real-time (under 30 ms) that allows for remote interaction be-
tween users. This paper focuses on addressing the aforementioned
deficiencies by describing algorithms to calibrate, reconstruct, and
render objects in the system. We demonstrate the accuracy and
speed of our results on a variety of benchmarks and data collected
from our own system.

Index Terms—Human-computer interaction, real-time, stereo
reconstruction, virtual reality, visualization, 3-D teleimmersion,
3-D video.

I. INTRODUCTION

R
OBUST accurate real-time generation of 3-D data from

real-life scenes has proved extremely difficult. In fact,

most of the content we now enjoy on 3-D displays is either gen-

erated entirely offline or is synthetically generated. In this paper,

we focus on a particularly important application of 3-D content

generating technology: video conferencing systems.

Most existing video conferencing systems make some

attempt to humanize remote interaction, but few are able to
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Fig. 1. Snapshot of a 3-D reconstruction of two users in separate Teleimmer-
sion systems discussing a synthetic dataset in a virtual environment.

provide the desired immersive component of actual face-to-face

communication. These systems, which rely on two-dimensional

video streams between remote users, fall short of providing

the desired immersive component for a number of reasons in-

cluding not allowing users to establish eye contact, not placing

all users inside the same environment, or not allowing users to

jointly interact with synthetic objects. Limited attempts have

been made to create a more immersive experience using large

displays, gaze preservation through multi-camera capturing

systems [1], and matching environments (e.g., tables, chairs)

between the remote locations that create the illusion of conti-

nuity of the physical space into the screen. In contrast to such

systems, an immersive experience, as illustrated in Fig. 1, is

one that generates a full body real-time 3-D reconstruction

that realistically represents a user’s appearance and completely

models the dynamics of movement such as facial expressions,

chest deformation during breathing, and movement of hair or

clothing.

Teleimmersion or TI is an emerging technology that allows

users to collaborate remotely by generating a realistic 3-D rep-

resentation of users in real-time and placing them inside a shared

virtual space [2]. Such virtual meeting spaces could allow for the

possibility of collaborative work on 3-D data such as medical

data, scientific data, and design models or the remote teaching

of physical activities. Unfortunately, the accurate construction

of 3-D data at high frame rates has always been the common

shortcoming of TI systems. In this paper, we describe a multi-

camera system that creates a highly accurate (on the order of a

cm), real-time (under 30 ms), 360 3-D reconstruction of users.

The main contributions of this work are three-fold. First, in

Section IV, we develop a robust calibration of the multi-camera

system and the physical space to ensure the preservation of spa-

tial correspondences between various TI systems. Second, in

1520-9210/$26.00 © 2011 IEEE
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Section V, we introduce a novel multi-scale representation that

allows for a highly accurate reconstruction of a scene while al-

lowing for high compressibility of the produced 3-D data. Third,

in Section VI, we describe how the data produced from the mul-

tiple cameras can be integrated together to improve the overall

visual quality of the reconstruction. The rest of the discussion

includes a brief overview of related work in Section II, an overall

description of the system in Section III, and a description of var-

ious applications that illustrate the robustness and utility of the

proposed system in Section VII.

II. RELATED WORK

In the past decade, several have attempted to develop real-

time 3-D reconstruction systems for marker-less capture of the

human body for telepresence in a virtual environment. Most

real-time approaches fall into one of three categories depending

upon their computational approach: 1) image-based reconstruc-

tion using dense stereo, 2) voxel-based methods with spatial

sampling, and 3) silhouette-based reconstruction.

We begin by describing several systems that perform 3-D re-

construction using image-based reconstruction. In 1999, Kanade

et al. presented one of the first full-body capturing systems using

image-based reconstruction with a large number of distributed

cameras to capture human movement at close to real-time (less

than a single frame per second) [3]. The first TI system was devel-

oped by researchers at the University of Pennsylvania who used

several stereo camera triplets for image-based reconstruction of

the upper body [4]. Sang et al. presented a faster TI system based

on dense-stereo depth maps obtained via trinocular 3-D recon-

struction [5]. The presented approach, however, had two major

shortcomings: its slow speed and its unreliability in texture-less

regions of the scene which resulted in missing data.

Several systems have employed voxel-based methods to per-

form 3-D reconstruction. Hasenfratz et al. proposed a voxel-

based interactive virtual reality system that featured real-time

(25 frames per second) 3-D reconstruction of the human body

[6]. However, the approach had limited ability to acquire details

such as clothing and facial features due to the inherent limita-

tions of space carving methods. Schreer et al. attempted to over-

come this limitation by incorporating a depth estimate from an

image-based reconstruction [7]. The system, however, required

a large number of cameras to generate a 3-D model of the user.

Several systems perform 3-D reconstruction using silhouette-

based methods. Baker et al. proposed a desktop 3-D recon-

struction systems that used five different views to obtain a 3-D

model of the user via a visual-hull approach [8]. The system

was run on a single PC which performed 3-D reconstruction

and rendering of the users in a simple virtual meeting room. A

full-body TI system was introduced by Gross et al. who applied

silhouette-based 3-D reconstruction from several views to cap-

ture the user inside a CAVE-like environment [9]. Two such sys-

tems were built to offer a collaborative platform connecting ge-

ographically distributed users. Unfortunately, silhouette-based

methods fail to reconstruct concave regions in the scene and tend

to be inaccurate unless numerous cameras are employed.

In recent years, several benchmarks to compare the accuracy

of various types of stereo reconstructions have become avail-

able. Scharstein et al. present a thorough overview of a variety

of standard algorithms to perform 3-D reconstruction (most do

not work in real-time) and provide a powerful benchmark that

has become an industry standard [10]. A brief review of the re-

sults of a variety of algorithms on this benchmark illustrates

rather clearly that image-based reconstructions, in general, pro-

vide far more accurate results than the other two approaches.

Image-based approaches make fewer explicit assumptions about

the object to be imaged and therefore tend to be more accurate

at the expense of speed.

The use of multiple cameras also provides a distinct advan-

tage over direct-ranging sensors (e.g., Kinect) which cannot sat-

isfy the multi-viewer multi-viewpoint experience since critical

areas of the scene (i.e., object boundaries, transparencies, etc.)

are poorly reconstructed, poorly resolved, or missed altogether

due to the nature of the underlying technology (e.g., multi-sam-

pling within a measurement pixel). Redundancy of such sen-

sors could potentially improve the experience; however, this ap-

proach would require complex hardware-based triggering to ef-

ficiently deal with interference between multiple range sensors.

TI systems, in general, have focused almost entirely on the

speed of the system and have not focused on the accuracy of

the reconstruction. In this paper, we describe a TI framework

that employs image-based reconstruction to get accurate results

in real-time. We compare our approach on the aforementioned

benchmark to illustrate the strength of our method. The ap-

proach can be applied to various camera configurations, from

a single stereo view to multi-view 360-degree reconstruction, to

achieve accurate 3-D reconstruction.

III. SYSTEM OVERVIEW

The goal of the TI system presented in this paper is to allow

for geographically distributed collaboration in a shared virtual

environment. To this end, each user interacts in the virtual en-

vironment via their own local TI station. Each station maintains

a local copy of the entire virtual space in order to allow model

manipulation and postprocessing of data locally. With these re-

quirements in mind, each station must perform the following

three tasks: 1) computation of a 3-D reconstruction of local ob-

jects, 2) communication of 3-D data to other stations, and 3) vi-

sualization of the virtual environment with other remote users.

An appropriate choice of representation for the data should

take into consideration the aforementioned goals. Namely, the

system should be able to reconstruct any object that is present at

each station without making a priori assumptions about the ob-

ject to be reconstructed. The 3-D reconstruction should also be

fast and accurate, which suggests that the reconstruction should

only occur at informative points and then be filled in using

interpolation where appropriate. Since we require real-time

streaming of 3-D data, we must choose a representation that

allows for fast and efficient compression and decompression.

Though each station creates a separate 3-D model of an object

based on views from multiple camera clusters, in order to vi-

sualize the objects, these views must be integrated. With these

requirements in mind, we argue that the ideal representation

of an object from a view is a mesh as opposed to a set of

scattered points without connectivity information. We describe

the different components of the TI system as illustrated in
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Fig. 2. Components of the TI system. Capturing component is displayed to the
left. Data are then processed using a computing cluster. The model is transmitted
over the network for display at another TI station.

Fig. 2. Though we describe two particular hardware instantia-

tions of the TI system (a general and portable apparatus), we

stress that the algorithms presented in the next few sections are

independent of the particular hardware choices.

The general TI apparatus consists of 48 Dragonfly cameras

(Point Grey Research Inc., Vancouver, BC, Canada), each with

a resolution of 640 480 pixels. The cameras are arranged in

12 clusters of three grayscale cameras for stereo reconstruction

and a color camera for texture acquisition. Ten of the clusters

are equipped with 6-mm lenses while the remaining two clusters

have 3.8-mm lenses for wider capture space. The clusters cover

360 of the workspace of about . The cameras

of each cluster are connected through IEEE 1394a (FireWire) in-

terface to a dedicated server which performs image acquisition

and stereo reconstruction. The server computers used for the re-

construction have two Dual-Core Intel Xeon 2.33-GHz proces-

sors, 2 GB of memory, and 1 Gbps connection to Internet 2. The

portable TI apparatus consists of four color Bumblebee cameras

(Point Grey Research Inc., Vancouver, BC, Canada), each with

a resolution of 640 480 pixels. Each cluster is equipped with

3.8-mm lenses for wider capture space. The clusters cover 180

of the workspace of about . The cameras of

each cluster are connected through IEEE 1394a (FireWire) in-

terface to a dedicated server which performs image acquisition

and stereo reconstruction. The server computers used for the re-

construction have two Intel Dual-Core 2.33-GHz processors, 2

GB of memory, and 1 Gbps connection to Internet 2.

The display system for both systems consists of a rendering

computer with Intel Dual Core CPU, 2.66-GHz processors, 2

GB of memory, and two NVIDIA GeForce 8800 GTS graphics

cards. The renderer can receive compressed 3-D data directly

from the cluster computers in separate network streams or in-

directly through a gateway computer which can also connect to

a remote site. The renderer supports different display options,

such as single or multiple desktop displays and various passive

or active stereo systems. The users can also use different inter-

face devices (e.g., wireless 3-D mouse, Wii remote) to interact

with the virtual environment.

IV. CALIBRATION

In this section, we describe a hierarchical approach to the cali-

bration of the TI system. In the lowest level, we calibrate internal

camera parameters using Zhang’s method [11] through homog-

raphy obtained from a checkerboard. Once each cluster is inter-

nally calibrated, we can proceed with the external calibration of

clusters to obtain their position and orientation with respect to

a reference camera. The external calibration is performed using

a calibration object fashioned out of two LEDs positioned at a

fixed distance. Finally, we calibrate the display and the tracking

system to determine the spatial relationship of the data with re-

spect to a world coordinate system in the virtual environment.

During our discussion, we assume some familiarity with calibra-

tion. A formal introduction to this topic can be found in [12].

A. Stereo Cluster Calibration

The cameras for the TI system can be arranged in various pat-

terns, from simple two-camera clusters to multi-camera linear

arrays. As long as the cameras within the cluster have large

overlap, they can be calibrated simultaneously. Calibration of

each stereo cluster is performed using Zhang’s method. A planar

checkerboard target is placed in different positions and orienta-

tions to generate a set of points for homography calculation. We

use the standard pinhole camera model:

(1)

The model in (1) represents the transformation from a ho-

mogeneous 3-D point seen by camera to the corre-

sponding image pixel coordinate defined on the image plane.

represents the camera matrix which contains the

focal length and the optical center. is the standard

projection matrix. contains rotational matrix and

position of the camera center from the object coordinate system

origin.

The calibration algorithm uses a set of known points on a

planar checkerboard and a set of detected corner features on

the image as their projection. A system of linear equations is

formed and solved via singular value decomposition to obtain

the initial value of the focal length, optical center, and distor-

tion. The minimization function is defined as the reprojection

error between image points obtained in positions of the

calibration board and the points projected through the camera

model with the linear parameters as an initial guess. After each

camera is calibrated independently, the relative orientation and

position of the cameras within the cluster ( , ) are com-

puted. The relative relationship between an arbitrary camera

and selected reference camera can be expressed as follows:

(2)

Next, we rewrite (1) to only consider the orientation and po-

sition of the reference camera and the relative orientation and

position between cameras:

(3)

Finally, nonlinear optimization of the external camera pa-

rameters within the cluster is performed using Levenberg-Mar-

quardt algorithm. The error function is defined as the total repro-

jection error, i.e., the sum of reprojection errors of all the grid

points as seen by cameras in checkerboard positions.
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Fig. 3. (a) Distribution of the reprojection error of the checkerboard points for
a pair of cameras inside a stereo cluster. (b) Distribution of reprojection error
across the image for each camera. The total mean reprojection error was 0.18
(0.11) pixels.

Since the internal parameters of the cameras are independent

and have already been optimized, only the external parameters

are considered during this optimization. In total,

parameters are optimized.

Usually, one needs to collect about 15–20 images of the

checkerboard in various poses to obtain accurate calibration.

The typical reprojection error for a pair of cameras is between

0.12 and 0.20 pixels. Fig. 3(a) shows the error distribution

for a calibrated stereo pair. Notice that it is approximately a

skewed Gaussian distribution. Fig. 3(b) illustrates the repro-

jection error across each image. Areas with consistently high

reprojection error indicate an inadequate model which may

suggest deviations in the lens construction or other issues with

the camera.

B. External Calibration

Before we externally calibrate the camera clusters, we con-

struct a vision graph to identify the cameras with largest overlap.

In contrast to other methods [13]–[15], our approach resolves

Euclidean reconstruction (preserving metric information) and

introduces novel parameter reduction in the case of two-point

bar calibration which increases the robustness of the calibra-

tion [16].

Our external calibration algorithm consists of the following

steps:

1) image acquisition and sub-pixel marker detection on

multiple cameras;

2) composition of adjacency matrix to construct a weighted

vision graph that describes interconnections between the

cameras (e.g., the number of common points);

3) computation of the fundamental, , and essential, ,

matrices with RANSAC;

4) essential matrix decomposition into rotation and trans-

lation parameters defined up to a scale factor, ;

5) determination of the scale factor, , through triangula-

tion and LM optimization;

6) optimal path search using Dijkstra algorithm;

Fig. 4. Vision graph generated for 12 stereo clusters with the cluster #3 se-
lected as the reference cluster (left) and typical reprojection error for the ex-
ternal cluster calibration (right).

7) global optimization of the parameters using sparse

bundle adjustment (SBA) [17].

Our external calibration approach assumes that at least any

two clusters overlap. Based on captured marker positions, pair

wise geometric relationships are established between camera

pairs with large numbers of common points. The relationship

between the points captured by each camera can be described by

the fundamental matrix, , for the image coordinates, , and by

the essential matrix, , for the normalized image coordinates,

:

(4)

The fundamental matrix is calculated from the image points

using the 8-point algorithm while the outliers are removed by

the RANSAC method. From the fundamental matrix, the essen-

tial matrix is computed using predetermined internal calibration

parameters. The essential matrix can then be decomposed into

a rotational matrix and a position vector . Using singular

value decomposition, the matrices and can be obtained

[18]. Results obtained from the essential matrix decomposition

are further optimized using the LM algorithm. Due to the na-

ture of the essential matrix, the translation between cameras can

only be obtained up to a scale factor which can be obtained by

knowing the distance between the two LED markers.

To solve for the global calibration, only the transformations

for the relevant pairs of cameras are calculated. The pairs are au-

tomatically selected from the vision graph which is constructed

based on the number of overlapping points between the camera

clusters. In the vision graph, weighted connections represent the

reciprocal of the number of common points seen by both refer-

ence cameras. If there are no common points or the number of

points is too small, the connection is removed. Using the shortest

path from the reference camera to each camera, we can calculate

the absolute position of each camera (Fig. 4). Let , , and be

indices of consecutive cameras on the path found in the vision

graph. From pairwise calibration, the transformations from to

and from to are denoted as ( , ) and ( , ). The

transformation from to can be calculated as follows:

(5)

After the initial solution of the relative position and orientation

of the cameras are obtained, the results are globally optimized

using nonlinear optimization to reduce the reprojection errors.
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Fig. 5. Block diagram of the stereo algorithm for the 3-D mesh generation.

The sparse nature of the optimization problem (i.e., all cameras

cannot see all the points) ensures that the optimal solution can

be obtained efficiently using SBA [19].

For external calibration of our 48 camera setup, we use a rigid

metal bar with two LED markers attached on each end. We chose

Luxeon I LED (Philips Lumileds Lighting Company, San Jose,

CA), with a brightness of 30.6 lm and 160 emitting angle. The

two LEDs are placed on a metal bar at a distance of 298 mm. The

complete external calibration of our general TI apparatus which

has 12 stereo clusters with about 3000 3-D points, takes between

10–15 s on an Intel Xeon 3.20-GHz processor with 1 GB of

memory. The mean reprojection error between all the cameras

is typically between 0.25 and 0.40 pixels with the standard devi-

ation between 0.04 and 0.12 pixels as illustrated in Fig. 4. In our

setup, these errors result in the cluster position errors of about

0.5% and orientation errors of about 0.1 .

C. Calibration of Physical Space

Once the calibration of the cameras is performed, the ref-

erence camera cluster needs to be aligned with the display to

achieve correct scale for each user. We propose a simple method

for calibrating the reference cluster (i.e., camera space) to the

physical space of each TI station. The calibration of the phys-

ical space is performed by acquiring one image of the checker-

board placed in the vertical position in front of the reference

camera and aligned with the display. The checkerboard can also

be equipped with calibration markers if a tracking system needs

to be aligned with the 3-D data (e.g., for tracking input de-

vices or stereo glasses). Since the reference camera calibration

is known, it is possible to determine the exact position and ori-

entation from one checkerboard image.

V. 3-D RECONSTRUCTION

In this section, we explain how we construct a 3-D model

of an object using a calibrated camera cluster. Fig. 5 illustrates

the algorithmic pipeline for each stereo cluster. Our focus, in

this section, are the algorithms drawn between the dotted lines.

We assume some familiarity with 3-D reconstruction. A more

formal introduction to this topic can be found in [12] and [20].

Determining the 3-D coordinates of a point using a cal-

ibrated stereo pair is in fact equivalent to matching the

projection of the point in each of the image planes. To simplify

the matching procedure, the image is first transformed via a

process known as rectification, which reduces the problem into

a linear search problem along vertically aligned images. More

concretely, given rectified left and right gray scale images,

, our objective is to find the disparity map,

, such that

(6)

For simplicity, we model the domain and range of each image

as the continuum, but the methods presented in this section gen-

eralize to a discrete space in a straightforward manner. The dis-

parity function determines the 3-D position of every point that

is simultaneously observable by both cameras in a stereo pair.

Traditional methods to determine this match either employ a

local approach like normalized cross correlation or global op-

timization techniques [21]. The normalized cross correlation

techniques rely on a fixed window to perform matching, which

assumes unreasonably that all depths within a window are iden-

tical. This assumption ensures that the algorithm is able to work

quickly, but unfortunately produces extremely inaccurate re-

sults. Global optimization techniques begin by associating a cost

to each pixel’s disparity that depends not only on how well it

matches to a pixel in the other image, but also how well this dis-

parity matches to neighboring pixels’ disparity. This cost func-

tion is then minimized in order to determine the disparity of each

pixel. Though these optimization techniques produce more ac-

curate results than the entirely local approaches, they are com-

putationally expensive.

In this paper, we employ a hybrid approach to resolve the

problem. We construct a triangular mesh over the set of visible

points on the domain of the right image, and then construct a

disparity map using a version of normalized cross correlation

over the nodes of the mesh. Importantly, the size of each tri-

angle dictates an appropriate window size over which to perform

matching while simultaneously reducing the number of points

to perform matching over. Once the disparity is determined at

these points, interpolation can be employed to determine depth

in between nodes. Several post-processing techniques exist that

act similarly to global optimization by enforcing some regu-

larity on the disparity map (e.g., smoothness). In our case, we

employ anisotropic diffusion which when defined on our mesh

converges quickly [22].

We continue our discussion by finding a graphical model of an

image which yields an appropriate triangular mesh upon which

we can define neighborhood-based operators. Then, we specify

how a regularized disparity is computed using this model. Fi-

nally, we analyze the accuracy of our results and the efficiency

of our meshing approach in compressing data.

A. Image Model

We begin by defining the amount of variation on the gray

scale values around a point on the domain. We want the size of

a triangle in the mesh to dictate the scale at which to perform
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Fig. 6. Triangular meshing of an image domain: A hierarchy of meshes is used
to define the neighborhoods �� � around any point � (left). A collection of
sets is highlighted for a point in the domain. A non-conforming meshing of the
domain obtained by selecting the neighborhoods specified by the index of sup-
port ���� �� for a given threshold, � , which corresponds to the desired amount
of variation (middle). A conforming meshing obtained after refining non-con-
forming triangles (right).

matching (i.e., every point in a triangular region should be at ap-

proximately the same depth); therefore, an ideal mesh would give

more detail to regions with large values of variation since these

areas generally correspond to places with depth discontinuities.

For every point in , let denote a decreasing

collection of sets, where is some fixed number and

if . The variation around a point at

level is then defined as

(7)

where is the mean intensity value over . Let the index

of support be the function defined as

(8)

where is a user-specified threshold which identifies the

amount of variation allowed in a fixed region within an image.

The index of support defines the neighborhood around at

which we first find the desired amount of variation.

Before generating the triangular mesh of the image domain,

a coarse mesh of right isosceles triangles is generated at level

as illustrated in Fig. 6. This coarse mesh is then refined by

bisecting each triangle. The refinement procedure in a particular

region is halted when the variation in each triangle is less than a

user-specified threshold . The index of support, , is then

equivalent to choosing the coarsest level triangular mesh that

covers the domain while satisfying the user-defined threshold.

As we discussed earlier, our goal is to mimic the effects of a

global optimization procedure by refining our initial local dis-

parity estimates via anisotropic diffusion. To define such a post-

processing step, our mesh must be able to share information be-

tween neighboring nodes which requires that our mesh have no

nodes that are on the middle of another triangle’s edge. A mesh

satisfying such a property is referred to as a conforming mesh

[23]. A conforming triangular mesh is constructed by following

Algorithm 1. Importantly, the steps required to construct the

mesh using the Bisection Algorithm can be stored as a list corre-

sponding to the triangles at which a bisection took place, which

Fig. 7. Graphical representation of the mesh: A conforming triangular mesh
(left). The graph constructed by representing each triangle by a point and
drawing edges between triangles that share an edge (middle). Discretization of
the diffusion operator on the triangulated domain (right).

as we discuss in Section V-E gives an efficient way to compress

the mesh. Fig. 6 illustrates the outcome of the algorithm.

A graphical representation, , of the image is then con-

structed by letting each triangle in the mesh correspond to a

vertex and letting edges in the graph correspond to triangles

that share an edge. Fig. 7 illustrates the construction of such

a graph. Notice that by requiring the mesh to be conforming,

each node in the graph (except those sitting at the edge of the

image) has exactly three edges connecting to it.

Algorithm 1: Bisection Algorithm

1: Initialize the procedure with a coarse triangulation of the

image domain.

2: for each triangle in the mesh do

3: Let correspond to the level to which belongs.

4: if the variation in is greater than then

5: Bisect .

6: Let be the neighboring triangle to opposite to its

right angle and suppose belongs to level .

7: if then

8: Repeat steps 5 through 9 using .

9: end if

10: end if

11: end for

B. Disparity Computation

Since each vertex of the graph, , uniquely corresponds to

an image coordinate, , in the right image, , in order

to determine a depth, it is sufficient to construct a disparity

map, . We begin by defining a matching score,

. At a point , with corresponding

to a triangle, , the matching score is defined as the average nor-

malized cross correlation between the reference window cen-

tered at each of the corners of in the right image and a window
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centered at the same coordinate as each of the corners of in

the left image after a horizontal translation by . Importantly

the size of the neighborhoods used during the normalized cross

correlation step are dictated by the level of the triangle (i.e., a

small triangle employs a small correlation window and a large

triangle uses a large correlation window).

We then define an approximation to the disparity, , by se-

lecting for each vertex the displacement value that gives

the greatest correlation score. That is

(9)

Let the set of vertices be the set of points

for which we do not have a confident match, i.e., its correlation

score is smaller than some user-specified threshold . These are

the vertices that are processed during the anisotropic diffusion

step described in the next section.

C. Anistropic Diffusion

At this point, we have an initial estimate of the disparity, ,

but in order to approximate a global method, we enforce a reg-

ularity condition on the disparity values of . In practice, reg-

ularity conditions generally take the form

(10)

where is the disparity we are attempting to compute,

is a weighting function known as the

diffusivity function, and denotes the gradient operation.

This diffusivity function penalizes large variations of . We

can impose additional constraints on this function in order to

ensure that it behaves appropriately given our task such as

large penalties at homogeneous regions in the image or small

penalties at inhomogeneous regions in the image. The first re-

quirement describes our expectation that homogeneous regions

of the image should have approximately constant disparity,

whereas the second requirement allows for high variability in

the disparity at or near edges. The diffusivity function therefore

depends on the image itself.

In order to compute the disparity, (10) must be minimized,

but this process is generally cumbersome. A typical approach

to minimizing the energy functional in (10), using the Euler-

Lagrange equations, leads to a diffusion process of the form

(11)

where denotes the divergence operation and is the evolution

parameter [24]. To compute the disparity, this diffusion process

is initialized with some estimate and then allowed to evolve ac-

cording to (11) until it converges, which in practice can take

quite some time. Fortunately, using our triangular mesh, this dif-

fusion process takes a more computable form that quickly con-

verges in practice. To arrive at this computable form, we begin

by integrating the diffusion equation in a triangular region, ,

and then apply Gauss’s Theorem:

where is the boundary of the triangular region considered,

are the sides of the triangle, and is the normal to each of

these sides.

Using the notation introduced in Fig. 7, we discretize the dif-

fusion equation. As noted above, every triangle has exactly three

neighbors. Let be the disparity value to be updated and ’s

the disparity values of the neighboring vertices in , then

(12)

where is the area of the triangle , is the time step,

is evaluated at the side , is the length of the hy-

potenuse of neighboring triangle , and is the distance between

the and . In order to simplify this equation, we first assume

that is constant. This is a good approximation in prac-

tice. We then combine into a single constant, , and

our discrete update equation that performs anisotropic diffusion

becomes

(13)

At this point, we substitute for given our requirements.

Let denote the intensity of the base vertex and denote the

intensity of the neighboring vertices in . We then set

, where is a monotone decreasing

function. Observe that this choice satisfies our required proper-

ties. Namely, due to our choice of representation, large size tri-

angular regions correspond to homogeneous regions. is eval-

uated at the edge between triangles wherein there could be a dra-

matic change in the intensity (i.e., an inhomogeneous region).

Therefore, we measure the homogeneity of this edge by com-

paring the intensity of neighboring vertices. Combining these

two terms measuring the homogeneity, we arrive at our diffu-

sivity function. With this substitution, the discrete update equa-

tion that performs anistropic diffusion becomes

(14)

We initialize this discrete update equation using our initial esti-

mate for the disparity, . We obtain from by applying
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Fig. 8. A 320� 240 image taken from a single camera in a stereo cluster (left), a background subtracted image generated for that image (second from the left), the
mesh generated for this image (middle), the pre-processed disparity image (second from the right), and the post-processed disparity image (right). Note that lighter
gray values indicate that the object in the scene is closer, darker gray indicate that an object in the scene is further away, and black indicates areas of uncertainty.

TABLE I
AVERAGE FRAME RATE FOR A TYPICAL IMAGE SEQUENCE IN THE

TI SYSTEM ON TWO DUAL CORE 2.33-GHz MACHINES OBTAINED

USING TI STEREO PAIRS EACH WITH SIZE 320 � 240 AND 640 � 480
WITH APPROXIMATELY 10 000 TRIANGLES PER FRAME

steps of anisotropic diffusion. In practice, after ten steps, this

procedure converges. We can then obtain a disparity map over

the entire image domain by interpolating the values obtained for

each of the triangular regions.

Fig. 8 illustrates the output of our algorithm at various steps in

the reconstruction pipeline for a typical 320 240 image from

our portable TI apparatus. Table I describes the average time

required to perform each step of our algorithm using an image

sequence similar to the one presented in Fig. 8.1

D. Analysis of Disparity

At this point, we can compare the effectiveness of our al-

gorithm in calculating disparities on the traditional aforemen-

tioned benchmarks. The benchmarks consist of dozens of pic-

tures. The two images that the benchmark has identified as the

most difficult are found in the left column of Fig. 9. The accu-

racy of the measurements is calculated against a ground truth

image, which can be found in the center column of Fig. 9, gen-

erated by a laser range finder. Error, in this domain, is gener-

ally calculated by the percentage of pixels that differ in their

returned disparity from the ground truth by more than one. Put

more clearly, this is approximately the number of pixels that

differ in their returned value by more than an order of magni-

tude greater than a single centimeter. The output of our stereo

1The video icme_project.avi included in the supplementary material is an il-
lustration of the local reconstruction of a user from a single stereo camera.

Fig. 9. Two images, each of size 450 � 375, from the benchmark developed
by Scharstein et al. [25] (left column), the ground truth for these two images
produced using a laser range finder (center column), and the output of our stereo
algorithm (right column). Note that lighter gray values indicate that the object
in the scene is closer, darker gray indicate that an object in the scene is further
away, and black indicates areas of uncertainty.

algorithm on the images found in the left column of Fig. 9 cal-

culated on two dual core 2.33-GHz machines can be found in

the right column of the same figure. A quantitative comparison

of our algorithm can be found in Table II. We include the most

accurate performers on this benchmark in the same table. Wang

et al. employed a dual core 1.6-GHz machine [26], Bleyer et al.

employed a 2-GHz Pentium 4 machine [27], and Klaus et al.

employed a dual core 2.21-GHz machine [28].

E. Communication of Reconstruction

Sharing the models between different stations requires trans-

mitting the triangulation models in real-time. A standard format

for transmitting triangulation information consists of transmit-

ting nodal values, and then specifying the triangles based on the

node indices. In particular, if we consider RGB values (3 bytes)

and depth values (2 bytes) per pixel, we have 5 bytes per node.

Each triangle must specify 3 vertices and each vertex requires at

least 3 bytes (since there are more than possible nodes in our

representation). Hence, there are at least 9 bytes per triangle.

Given our choice of representation, we can do better. Since

our triangulation results from a bisection scheme, it is possible
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TABLE II
QUANTITATIVE COMPARISON OF OUR ALGORITHM AGAINST THE TOP

PERFORMERS ON THE BENCHMARK DEVELOPED BY SCHARSTEIN ET AL. [25].
THE TEDDY AND CONE IMAGE CORRESPOND TO THE TOP AND BOTTOM

ROWS OF FIG. 9, RESPECTIVELY. OUR OUTPUT WAS PRODUCED WITH

APPROXIMATELY 40 000 TRIANGLES IN BOTH INSTANCES

Fig. 10. Comparison of package size between the standard and our encoded
format.

to specify how the representation was generated instead of spec-

ifying each node in the triangle. That is, we can specify which

triangles are bisected. This encoding scheme for the triangula-

tion yields large gains given enough triangles in the representa-

tion. No additional time is required to encode the representation

since the information for encoding the representation is gener-

ated at the same time the representation is initially computed.

In Fig. 10, we compare the size of the data package gener-

ated over a typical image sequence after background subtraction

from the TI system (each image has size 320 240). Typical im-

ages in the sequence look similar to the left images in Fig. 8. In

the sequence used for Fig. 10, no object is present in the field of

view of the camera for the first seven frames during which time

the compressed package is larger than the standard package, but

from then on, the compressed package is close to three times

smaller than the standard package. Notice, each frame is less

than 15 Kbytes.

VI. 3-D VISUALIZATION

The TI renderer is responsible for providing a collaborative,

immersive, virtual environment by integrating the 3-D video

streams coming from the local and remote TI stations. The ren-

derer allows users to freely reposition and reorient reconstructed

3-D objects within the environment and record and later play

back with full control incoming streams. The immersive envi-

ronment and the 3-D video components each present a set of

challenges to the real-time performance expected of the ren-

derer. In this section, we highlight these challenges and how we

address them.

Fig. 11. Contribution of each triangle is determined by: (Left) how well the
corresponding capturing camera is able to resolve that triangle; (Right) how
much that triangle is likely to contribute to the final image given the current
view parameters. Filled lines represent important triangles versus unimportant
ones which are depicted as dashed lines.

Fig. 12. Illustration of the difference between naïvely projecting facades (left)
and after compositing different facades using the weight factors (right).

Immersive environments must satisfy a strict set of require-
ments to ensure usability [29]. For example, a steady refresh rate
of 60 frames per second for virtual reality displays is required
to prevent discomfort or motion sickness. Given this fact, the TI
renderer must satisfy the following requirements: first, it should
optimize the necessary processing for speed, fully exploiting all
available computational resources; and second, its design must
separate the rendering from 3-D video processing to ensure that
the visual refresh is not stalled.

We optimize the stream management by exploiting two levels
of parallelism: task parallelism and data parallelism. At the task
level, we distinguish between the rendering thread and the 3-D
video processing thread. The two task sets communicate via
triple-buffered storage which receives reconstructed video data
produced by the processing thread and then serves it to the ren-
dering thread. The buffered storage guarantees that complete
data is always available for the display independent of erratic
video processing behavior. Conversely, the video processing is
able to produce representations unhampered by the rendering
thread’s lock on data. The 3-D video stream bundles the data,
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Fig. 13. Illustration of the various applications of the TI system. An example of remote learning of physical actions wherein Tai Chi is being taught in 3-D (left).
An example of cyber-archeology (middle). An illustration of the tracking (drawn in green) that can be constructed using particle filtering (the yellow and red dots)
in tandem with our representation (right).

called facades, coming from each of the individual clusters of a
TI system. The video processing task is split further into mul-
tiple concurrent tasks for each facade. The CPU cores are used
to uncompress the data, but are not used to produce the final
virtual space 3-D projection of the facades. Instead, the trans-
formation from the 3-D reconstruction done at each capturing
cluster to the calibrated cross-cluster 3-D space representation
is most suited for the data parallel processing step.

If we want a high-quality rendition that is visually consis-
tent over the duration of playback, relying on a naïve approach
(i.e., projecting the different facades into the cross-cluster 3-D
space without enforcing some type of consistently between dif-
ferent facades) would not produce a well-defined surface due
to the noise in the reconstruction of each facade and the color
mismatch between different facades since the capturing clus-
ters are not photometrically calibrated. Our approach to the vi-
sual representation addresses these issues by 1) leveraging the
built-in functionality of the graphics hardware to rapidly project
the triangles and compute screen coverage in real-time and 2)
compositing the individual contributions of all reconstructions
at each screen pixel to obtain better quality visualization. In the
first phase of the rendering process, the individual contributions
for each reconstruction are contributed relative to the current
view. For this purpose, each reconstruction is transformed and
rasterized based on the current view into an off-screen buffer
using a custom fragment program. For each covered fragment,
we generate the usual color and depth contribution and compute
and store weight factors used during the compositing of multiple
views. As illustrated in Fig. 11, we determine the weight factor
using two pieces: the capture and view weight.

To determine the view weight, we consider the orientation of
each triangle in a reconstruction with respect to the capturing di-
rection of the corresponding camera cluster. Triangles directly
facing the capturing cluster receive a high weight, and as the
triangles face away from the camera, the weight drops towards
zero at the orthogonal orientation. This first weight relies on a
TI system using many clusters to cover the environment which
produces many overlapping regions, where better resolved tri-
angles in the overlap should naturally be favored. Similar to the
capturing weight, to determine the view weight we consider the
current viewing parameters to determine interesting parts of the
reconstruction with respect to the current view. Again the dot
product is taken, but here it is calculated between the normal
of each triangle and the viewing direction. This second weight,
thus, favors the facades from camera clusters that are aligned
with the current view.

The two weights are multiplied together to form the final
weight of the contribution. In the second phase, the contribu-
tions at each pixel of the screen are composited independently.
Care has to be taken not to blend all the stored contributions
to retain proper occlusion, e.g., a hand in front of a torso. Our
current implementation determines the closest contribution
and blends it with those within a user-specified depth range.
Fig. 12 illustrates the difference between using a naïve ap-
proach wherein everything is projected without blending and
our approach.2

VII. APPLICATIONS

In the past several years, we have demonstrated the utility of
the TI system via several interdisciplinary applications as illus-
trated in Fig. 13. In this section, we briefly review several of
these applications.

One of the first applications of the TI framework presented
in this paper was during a distributed dance performance across
the continent (between Berkeley, CA and Urbana-Champaign,
IL) in a shared virtual environment. The TI system provided a
bi-directional connection between two locations, allowing the
dancers to see each other side-by-side in the same virtual space.
The dancers had to accommodate to the networking limitations
of the system (delays ranged between 500 to 1500 ms).3 The
TI system also introduced the novel concept of “virtual touch”
wherein tactile and haptic feedback rely on visual information
from the rendering [30].

In collaboration with Stanford University, we have examined
the utility of immersive environments when compared with 2-D
video for learning [31]. To do this, we captured a Tai Chi teacher
in our TI system performing several moves and then reprojected
this information into a virtual space alongside the real-time 3-D
data of a student. The student was then able to see the teacher’s
and his or her own data in real-time side by side as in a vir-
tual mirror. Two sets of experiments were then performed with
40 participants comparing the immersive and video learning.
The result of the study conclusively demonstrated according to
a self-report and an objective performance measure that users
learned much better in the TI system rather than via video.

2The video J360.mov included in the supplementary material is an illustration
of the local reconstruction of a user for a single frame from multiple views using
our blending scheme.

3The video DanceLab.mov included in the supplementary material is an illus-
tration of two dancers collaborating together over the network using the portable
TI system.
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Similar collaborative ideas have been applied to the applica-
tion of cyber-archaeology for remote real-time interaction with
3-D archaeological models in a shared virtual environment. The
framework addresses key issues in modern archeology, the re-
versibility of the excavation process, and the accessibility of
data during the interpretation process [32]. In collaboration with
UC Merced, we are developing a virtual participatory platform
where 3-D models, photos, movies, maps, and other spatial data
are presented to geographically distributed users in a virtual en-
vironment. Each user navigates and interacts from a first person
perspective while users from remote locations also participate
using their own TI station.

The real-time TI system can also be used to perform marker-
less motion capture to provide 3-D data for full-body tracking
using a particle filter [33]. Importantly we show that by ap-
plying this method to our representation of 3-D space rather
than a point wise representation of the 3-D space, the resulting
full-body tracking is far more accurate and faster. Though this
has obvious applications to user interface design, we briefly de-
scribe how we have applied a simplified real-time data analysis
technique to this tracking data to perform tele-rehabilitation be-
tween a “therapist” and a “patient” in a virtual environment. The
patient was required to track the movement of the therapist who
was performing a stepping-in-place task. Hip angles were ex-
tracted in real-time from the data and projected on the screen to
augment the visual feedback for the users [34].

VIII. CONCLUSION

In this paper, we described a multi-camera system that cre-
ates a highly accurate, 3-D reconstruction of an environment in
real-time. We began by providing an overall systems perspec-
tive and then described in detail a calibration, representation, re-
construction, and then visualization methodology that together
provide a state-of-the-art TI system. The hierarchical calibration
approach allows for robust and flexible calibration of multiple
cameras with various pairwise overlap. The representation and
reconstruction of 3-D data is simultaneously flexible and accu-
rate which allows for high levels of compressibility and easy
visualization. The reconstruction is amongst the top performers
on an industry wide benchmark for accuracy and it is easily one
of the fastest reconstructions available. The visualization tech-
nique employs the nature of the representation and the viewing
direction to build high-quality depiction that is visually consis-
tent. The technique works rapidly by taking advantage of stan-
dard graphics hardware.

Future work will focus on employing the reconstruction to
build a single unified model of the 3-D environment from the
various views as opposed to the current strategy of simply re-
lying on the visualization technique to correct for possible in-
consistencies amongst the various views. This would have the
added benefit of reducing the final size for the entire 3-D envi-
ronment, which would have the benefit of reducing the overall
network bandwidth required for a particular TI station. Full-
body 3-D reconstruction of users in real-time offers new pos-
sibilities for immersive and TI applications. The users can be
immersed inside computer generated existing or non-existing
environments, such as ancient buildings and future architec-
tural designs to allow interactive exploration. The 3-D capturing
framework presented can also provide data for human motion
analysis and modeling. Extracted kinematic parameters could

be applied as online feedback to a user for training of physical
movements (e.g., dancing, physical therapy, and exercise).

REFERENCES

[1] D. Nguyen and J. Canny, “Multiview: Spatially faithful group video
conferencing,” in Proc. ACM SIGCHI Conf. Human Factors in Com-
puting Systems, New York, 2005, pp. 799–808.

[2] T. DeFanti, D. Sandin, M. Brown, D. Pape, J. Anstey, M. Bogucki,
G. Dawe, A. Johnson, and T. S. Huang, “Technologies for virtual re-
ality/tele-immersion applications: Issues of research in image display
and global networking,” in Proc. EC/NSF Workshop Research Fron-
tiers in Virtual Environments and Human-Centered Computing, Jun.
1–4, 1999.

[3] T. Kanade, P. Rander, S. Vedula, and H. Saito, “Virtualized reality:
Digitizing a 3D time varying event as is and in real time,” in Mixed Re-
ality, Merging Real and Virtual Worlds. New York: Springer-Verlag,
1999, pp. 41–57.

[4] J. Mulligan and K. Daniilidis, “Real time trinocular stereo for tele-
immersion,” in Proc. 2001 Int. Conf. Image Processing, Thessaloniki,
Greece, 2001, pp. 959–962.

[5] S. Jung and R. Bajcsy, “A framework for constructing real-time im-
mersive environments for training physical activities,” J. Multimedia,
vol. 1, no. 7, pp. 9–17, 2006.

[6] J. Hasenfratz, M. Lapierre, and F. Sillion, “A real-time system for full-
body interaction with virtual worlds,” in Proc. Eurographics Symp. Vir-
tual Environments, The Eurographics Association, 2004, pp. 147–156.

[7] O. Schreer, I. Feldmann, N. Atzpadin, P. Eisert, P. Kauff, and H. Belt,
“3dpresence—A system concept for multi-user and multi-party immer-
sive 3d videoconferencing,” in Proc. 5th Eur. Conf. Visual Media Pro-
duction (CVMP 2008), Nov. 2008, pp. 1–8.

[8] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. Gross, W. Culbertson, and
T. Malzenbender, “The coliseum immersive teleconferencing system,”
in Proc. Int. Workshop Immersive Telepresence, Juan-les-Pins, France,
2002.

[9] M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. V. Gool, S. Lang, K. Strehlke, A. V.
Moere, and O. Staadt, “blue-c: A spatially immersive display and 3d
video portal for telepresence,” ACM Trans. Graph., vol. 22, no. 3, pp.
819–827, 2003.

[10] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vis., vol.
47, no. 1, pp. 7–42, 2002.

[11] D. Zhang, Y. Nomura, and S. Fujii, “Error analysis and optimization
of camera calibration,” in Proc. IEEE/RSJ Int. Workshop Intelligent
Robots and Systems (IROS 91), Osaka, Japan, 1991, pp. 292–296.

[12] Y. Ma, S. Soatto, J. Kosecka, Y. Ma, S. Soatta, J. Kosecka, and S.
Sastry, An Invitation to 3-D Vision. New York: Springer, 2004.

[13] X. Cheng, J. Davis, and P. Slusallek, “Wide area camera calibration
using virtual calibration objects,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition (CVPR 2000), 2000.

[14] I. Ihrke, L. Ahrenberg, and M. M. Magnor, “External camera calibra-
tion for synchronized multi-video systems,” in Proc. 12th Int. Conf.
Computer Graphics, Visualization and Computer Vision 2004, Plzen,
Czech Republic, Feb. 2004, vol. 12, pp. 537–544.

[15] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multicamera
self-calibration for virtual environments,” Presence, vol. 14, no. 4, pp.
407–422, 2005.

[16] G. Kurillo, Z. Li, and R. Bajcsy, “Wide-area external multi-camera cal-
ibration using vision graphs and virtual calibration object,” in Proc. 2nd
ACM/IEEE Int. Conf. Distributed Smart Cameras (ICDSC 08), Stan-
ford, CA, Sep. 7–11, 2008, IEEE.

[17] M. Lourakis, Levmar: Levenberg-Marquardt Nonlinear Least Squares
Algorithms in C/C++, Jul. 2004. [Online]. Available: http://www.ics.
forth.gr/~lourakis/levmar.

[18] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. New York: Cambridge Univ. Press, 2004.

[19] M. Lourakis and A. Argyros, The Design and Implementation of
a Generic Sparse Bundle Adjustment Software Package Based on
the Levenberg-Marquardt Algorithm, Institute of Computer Sci-
ence—FORTH, Heraklion, Crete, Greece, Tech. Rep. 340, Aug. 2004.
[Online]. Available: http://www.ics.forth.gr/~lourakis/sba.

[20] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. En-
glewood Cliffs, NJ: Prentice-Hall Professional Technical Reference,
2002.

[21] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A com-
parison and evaluation of multi-view stereo reconstruction algorithms,”
in Proc. Int. Conf. Computer Vision and Pattern Recognition, 2006, pp.
519–528.

[22] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
12, no. 7, pp. 629–639, Jul. 1990.



584 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 3, JUNE 2011

[23] J. Maubach, “Local bisection refinement for N-simplicial grids gener-
ated by reflection,” SIAM J. Sci. Comput., vol. 16, p. 210, 1995.

[24] T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE,
Wavelet, and Stochastic Methods. Philadelphia, PA: SIAM, 2005.

[25] D. Scharstein, R. Szeliski, and M. Coll, “High-accuracy stereo depth
maps using structured light,” in Proc. 2003 IEEE Computer Society
Conf. Computer Vision and Pattern Recognition, 2003, vol. 1.

[26] Z. Wang and Z. Zheng, “A region based stereo matching algorithm
using cooperative optimization,” in Proc. IEEE Computer Society Conf.
Computer Vision and Pattern Recognition 2008, Anchorage, AK.

[27] M. Bleyer and M. Gelautz, “A layered stereo matching algorithm using
image segmentation and global visibility constraints,” ISPRS J. Pho-
togram. Remote Sens., vol. 59, no. 3, pp. 128–150, 2005.

[28] A. Klaus, M. Sormann, and K. Karner, “Segment-based stereo
matching using belief propagation and a self-adapting dissimilarity
measure,” in Proc. Int. Conf. Pattern Recognition, 2006, vol. 2.

[29] G. Kurillo, R. Bajcsy, K. Nahrstedt, and O. Kreylos, “Immersive 3d en-
vironment for remote collaboration and training of physical activities,”
in Proc. IEEE Virtual Reality Conf. (VR 2008), Reno, NV, Mar. 8–12,
2008, pp. 269–270.

[30] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy, “Enabling
multi-party 3d tele-immersive environments with viewcast,” ACM
Trans. Multimedia Comput., Commun., Appl. (TOMCCAP), accepted
for publication.

[31] J. N. Bailenson, K. Patel, A. Nielsen, R. Bajcsy, S. Jung, and G. Kurillo,
“The effect of interactivity on learning physical actions in virtual re-
ality,” Media Psychol., to be published.

[32] M. Forte and G. Kurillo, “Cyberarchaeology—Experimenting with
teleimmersive archaeology,” in Proc. 16th Int. Conf. Virtual Systems
and Multimedia (VSMM 2010), Seoul, Korea, Oct. 20–23, 2010.

[33] S. Hauberg, S. Sommer, and K. S. Pedersen, “Gaussian-like spatial
priors for articulated tracking,” in Proc. ECCV 2010, K. Daniilidis, P.
Maragos, and N. Paragios, Eds., 2010, pp. 425–437, Springer-Verlag,
Berlin, Germany.

[34] G. Kurillo, T. Koritnik, T. Bajd, and R. Bajcsy, “Real-time 3d avatars
for tele-rehabilitation in virtual reality,” in Proc. 18th Medicine Meets
Virtual Reality (MMVR) Conf., Newport Beach, CA, Feb. 2011, pp.
290–296.

Ramanarayan Vasudevan (S’10) received the
B.S. degree in electrical engineering and computer
sciences and an honors degree in physics from the
University of California, Berkeley, in 2006 and
the M.S. degree in electrical engineering from the
University of California, Berkeley, in 2009.

His research interests include sensor networks,
computer vision, hybrid systems, and optimal
control. He is the recipient of the 2002 Regent and
Chancellor’s Scholarship.

Gregorij Kurillo received the B.Sc. and Ph.D. de-
grees from School of Electrical Engineering, Univer-
sity of Ljubljana, Ljubljana, Slovenia, in 2001 and
2006, respectively.

He received the highest national award for his un-
dergraduate thesis work. He was a Research Assis-
tant with the Laboratory of Robotics and Biomed-
ical Engineering at the same institution from 2002 to
2006. He was a Postdoctoral Researcher at University
of California (UC), Berkeley, from 2006–2009. Since
2009, he has been assigned to the Research Engineer

position to manage work on the Teleimmersion project at UC Berkeley. His
research interests include camera calibration, stereo vision, image processing,
robotics, and collaborative virtual reality.

Edgar Lobaton (M’09) received the B.S. degrees in
mathematics and electrical engineering from Seattle
University, Seattle, WA, in 2004 and the Ph.D. degree
in electrical engineering and computer sciences from
the University of California, Berkeley, in 2009.

He is currently a Post-Doctoral Researcher at the
Department of Computer Science at the University of
North Carolina at Chapel Hill. He was previously en-
gaged in research at Alcatel-Lucent Bell Labs in 2005
and 2009. His research interests include sensor net-
works, computer vision, tele-immersion, and motion

planning. He is the recipient of the 2009 Computer Innovation Fellows post-doc-
toral fellowship award, the 2004 Bell Labs Graduate Research Fellowship, and
the 2003 Barry M. Goldwater Scholarship.

Tony Bernardin received the B.S. degree in
computer science from the Universität Karlsruhe
(TH), Karlsruhe, Germany, and the Ph.D. degree in
computer science from the University of California,
Davis, in 2009 under the supervision of B. Hamann.

His primary research interests are visualization,
computer graphics, and virtual reality, with a focus
on immersive visualization applications in the
computational and earth sciences.

Oliver Kreylos received the B.S. and M.S. degrees
in computer science from the Universität Karlsruhe
(TH), Karlsruhe, Germany, and the M.S. degree in
computer science from the University of California
(UC), Davis. He received the Ph.D. degree in com-
puter science from the UC Davis, in 2003 under the
supervision of B. Hamann.

He is an assistant research scientist with the UC
Davis W.M. Keck Center for Active Visualization in
the Earth Sciences (KeckCAVES), and the UC Davis
Institute for Data Analysis and Visualization (IDAV).

His primary research interests are visualization, computer graphics, and virtual
reality, with a focus on immersive visualization applications in the computa-
tional and earth sciences.

Ruzena Bajcsy (LF’08) received the Master’s and
Ph.D. degrees in electrical engineering from Slovak
Technical University, Bratislava, Slovak Republic, in
1957 and 1967, respectively, and the Ph.D. in com-
puter science from Stanford University, Stanford,
CA, in 1972.

She is a Professor of Electrical Engineering and
Computer Sciences at the University of California,
Berkeley, and Director Emeritus of the Center for In-
formation Technology Research in the Interest of Sci-
ence (CITRIS). Prior to joining Berkeley, she headed

the Computer and Information Science and Engineering Directorate at the Na-
tional Science Foundation.

Dr. Bajcsy is a member of the National Academy of Engineering and the
National Academy of Science Institute of Medicine as well as a Fellow of the
Association for Computing Machinery (ACM) and the American Association
for Artificial Intelligence. In 2001, she received the ACM/Association for the
Advancement of Artificial Intelligence Allen Newell Award, and was named as
one of the 50 most important women in science in the November 2002 issue
of Discover Magazine. In 2008, she was the recipient of the Benjamin Franklin
Medal for Computer and Cognitive Sciences.

Klara Nahrstedt (F’08) received the Diploma in
mathematics and numerical analysis from Humboldt
University, Berlin, Germany, in 1985 and the Ph.D.
degree from the Department of Computer and
Information Science, University of Pennsylvania,
Philadelphia, in 1995.

She is Ralph and Catherine Fisher Professor at the
Computer Science Department, University of Illinois
at Urbana-Champaign. She was a research scientist
in the Institute for Informatik in Berlin until 1990.
Her research interests are directed toward multimedia

distributed systems and networking, and tele-immersive systems.
Prof. Nahrstedt is the recipient of the University Scholar Award and the Hum-

boldt Research Award. She is the associate editor of ACM TOMCCAP. She is
the chair of the ACM SIG Multimedia. She is the member of ACM.


