High Quality Voice Morphing

Hui YE Cambridge University Engineering Department

March 16th 2004

Content

- Motivation
- Key issues of Voice Morphing
- Pitch Synchronous Harmonic Model
- Speaker Identity Feature
- Conversion Function
- System Enhancement
- Evaluation
- Unknown Speaker Transformation
- Summary

What is Voice Morphing?

Voice morphing is a technique for modifying a source speaker's speech to sound as if it was spoken by some designated target speaker.

- Research Goals: To develop algorithms which can morph speech from one speaker to another with the following properties.
 - 1. High quality (natural and intelligible)
 - 2. Morphing function can be trained automatically from speech data which may or may not require the same utterances to be spoken by the source and target speaker.
 - 3. the ability to operate with target voice training data ranging from a few seconds to tens of minutes.

Key Technical Issues

- 1. Mathematical Speech Model
 - For speech signal representation and modification
- 2. Accoustic Feature
 - For speaker identification
- 3. Conversion Function
 - Involves methods for training and application

Pitch Synchronous Harmonic Model

Sinusoidal model has been widely used for speech representation and modification in recent years.

1. PSHM is a simplification of the standard ABS/OLA sinusoidal model

$$\tilde{s}_k(n) = \sum_{l=0}^{L_k} A_l^k \cos(l\omega_0^k n + \phi_l^k), [n = 0, \cdots, N_k]$$
(1)

2. The parameters were estimated by minimising the modeling error

$$\mathcal{E} = \sum_{n} [s_k(n) - \tilde{s}_k(n)]^2$$
(2)

Time and Pitch Modification using PSHM

- 1. Pitch Modification
 - It is essential to maintain the spectral structure while altering the fundamental frequency.
 - Achieved by modifying the excitation components whilst keeping the original spectral envelope unaltered.
- 2. Time Modification
 - PSHM model allows the analysis frames be regarded as phaseindependent units which can be arbitrarily discarded, copied and modified.
- 3. Demo original speech \Rightarrow pitch scale 1.3 \Rightarrow time scale 1.3

Speaker Identity Features

- 1. Suprasegmental Cues
 - Speaking rate, pitch contour, stress, accent, etc.
 - Very hard to model
- 2. Segmental Cues
 - Formant locations and bandwidths, spectral tilt, etc.
 - Can be modelled by spectral envelope.
 - In our research, Line Spectral Frequencies (LSF) are used to represent the spectral envelope.
 - LSF requires less coefficients to efficiently capture the formant structure and it has better interpolation properties.

Conversion Function

- Interpolated Linear Transform
 - Assume the training set contains two sets of time-aligned parallel spectral vectors (LSF) \mathbf{X} and \mathbf{Y} respectively from the source and target speaker.

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_T] \ \mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_T]$$
(3)

- Use a GMM to cluster the source speech data into M classes, and each class is associated with a linear transform.
- The conversion function is defined as

$$\mathcal{F}(\mathbf{x}) = (\sum_{m=1}^{M} \lambda_m(\mathbf{x}) W_m) \bar{\mathbf{x}} \quad where \quad \lambda_m(\mathbf{x}) = P(C_m | \mathbf{x})$$
(4)

Conversion Function (Cont)

• For easier manipulation, equation (4) can be rewritten compactly as,

$$\mathcal{F}(\mathbf{x}) = \begin{bmatrix} W_1 : W_2 : \cdots : W_M \end{bmatrix} \begin{pmatrix} \lambda_1(\bar{\mathbf{x}}) \bar{\mathbf{x}} \\ \cdots \\ \lambda_2(\bar{\mathbf{x}}) \bar{\mathbf{x}} \\ \cdots \\ \vdots \\ \cdots \\ \lambda_M(\bar{\mathbf{x}}) \bar{\mathbf{x}} \end{pmatrix}$$
$$= \bar{\mathbf{W}} \Lambda(\mathbf{x})$$

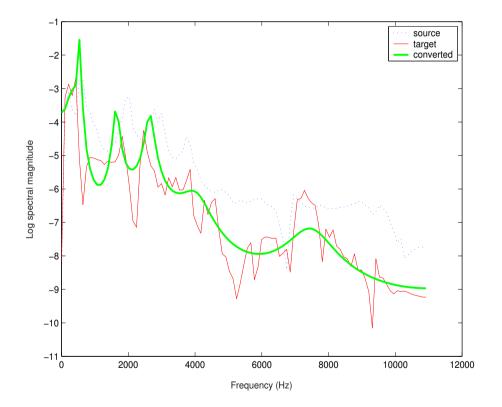
• Use standard least-squares estimation to derive the transformation matrices $\bar{\mathbf{W}}$.

$$\bar{\mathbf{W}} = \mathbf{Y} \Lambda(\mathbf{X})' \left(\Lambda(\mathbf{X}) \Lambda(\mathbf{X})' \right)^{-1}$$
(6)

(5)

System Enhancements

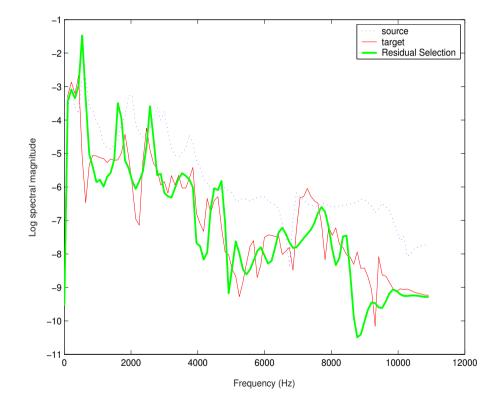
- Spectral Distortion
 - Formant structure has been transformed
 - Spectral details lost due to reduced LSF dimensionality
 - Spectral peaks broadened by the averaging effect of least square error estimation.



System Enhancements (Cont)

- Spectral Residual Selection
 - Idea: reintroduce the lost spectral details to the converted envelopes.
 - Use a codebook selection method to construct a residual.
 - Each target spectral residual r_t is associated with a LSF vector v_k .
 - The residual whose associated v_k minimizes the following square error is then selected.

$$\mathcal{E} = (v_k - \tilde{v})'(v_k - \tilde{v}) \quad (7)$$



Unnatural Phase Dispersion

- In the baseline system, the converted spectral envelope was combined with the original phases. This results in converted speech with a "harsh" quality.
- Spectral magnitudes and phases of human speech are highly correlated.

• To simultaneously model the magnitudes and phases and then convert them both via a single unified transform is extremely difficult.

Phase Prediction

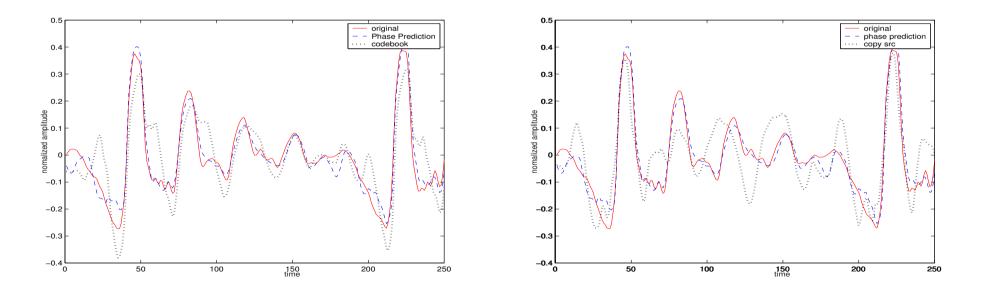
- Idea: Phase dispersion can be obtained from the waveform shape. If we can predict the waveform shape, then we can predict the phases.
- Implementation
 - A GMM model is first trained to cluster the target spectral envelopes coded via LSF coefficients into M classes (C_1, \dots, C_M) .
 - For each target envelope v we have a set of posterior probabilities $\mathcal{P}(v) = [P(C_1|v), \cdots, P(C_M|v)]'$, this can be regarded as another form of representation of the spectral shape.
 - A set of template signal (codebook entries) $\mathcal{T} = [T_1, \cdots, T_M]$ can be estimated by minimising the waveform shape prediction error

$$E = \sum_{t=1}^{N} (s(t) - \mathcal{TP}(v_t))'(s(t) - \mathcal{TP}(v_t))$$
(8)

Phase Prediction Result

The SNR ratio in dB of different phase coding methods.

src phases	codebook phases	phase prediction
3.2171	6.1544	7.2079



Transforming Unvoiced Sounds

- Theoretically the unvoiced sounds contain very little vocal tract information, so in our baseline system, the unvoiced sounds are not transformed.
- In reality, many unvoiced sounds have some vocal tract colouring which affects the speech characteristics.
- Since the spectral envelopes of the unvoiced sounds have large variations, it is not effective to convert them using the linear transformation scheme.
- An simple approach based on unit selection and concatenation was therefore developed to transform the unvoiced sounds.

Post-filtering

- As noted earlier, transform-based voice conversion has a tendency to broaden the formants.
- To mitigate this effect and suppress noise in the spectral valleys, a final post-processing stage applies a perceptual filter to the converted spectral envelope.

$$H(\omega) = \frac{A(z/\beta)}{A(z/\gamma)}, 0 < \gamma < \beta \le 1$$
(9)

where A(z) is the LPC filter and the choice of parameters in our system is $\beta=1.0$ and $\gamma=0.94.$

Objective Evaluation

• Objective Measure: log spectral distortion defined as

$$d(S_1, S_2) = \sum_{k=1}^{L} (loga_k^1 - loga_k^2)^2$$
(10)

where $\{a_k\}$ are the amplitudes resampled from the spectral envelope S at L uniformly spreaded frequencies.

• The overall transformation performance can be evaluated by comparing the convertedto-target distortion with the source-to-target distortion, which was defined as,

$$D = 10 \log_{10} \frac{\sum_{t=1}^{N} d(S_{tgt}(t), S_{cov}(t))}{\sum_{t=1}^{N} d(S_{tgt}(t), S_{src}(t))}$$
(11)

where $S_{tgt}(t)$, $S_{src}(t)$ and $S_{cov}(t)$ are the target spectral envelope,

Experiments

- Training data: parallel speech data about 5 minutes from both the source and the target speaker.
- Tasks: 4 tasks; male to male, male to female, female to male and female to female.

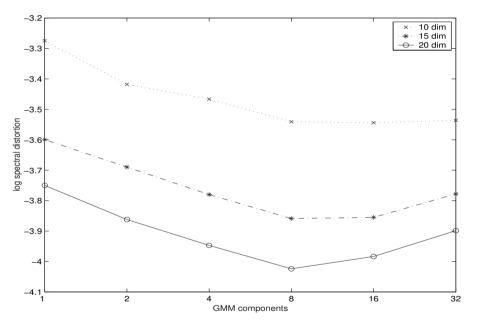


Fig: Log spectral distortion over different GMM components and dimensions.

Subjective Evaluation

• ABX test

	baseline system	enhanced system
ABX	86.4%	91.8%

• Preference test

	baseline system	enhanced system
preference	38.9%	61.1%

Examples

Voice transformatin with parallel training data.

	Source	Target	Converted 1	Converted 2
F to M	src01	tgt01	vc01	vm01
M to F	src02	tgt02	vc02	vm02
F to F	src03	tgt03	vc03	vm03
M to M	src04	tgt04	vc04	vm04

Unknown Speaker Voice Transformation

- Situation: No pre-existed training data is available from the source speaker, although there is still a reasonable amount of speech data from the designated target speaker.
- Idea: Use speech recognition to create a mapping between the unknown input source speech and the target vectors.
- Implementation:
 - 1. Use speaker independent HMM to force align the target data, then label each frame with a state id.
 - 2. Either force align or recognize the input source utterance, and label each frame with a state id.
 - 3. According to the force aligned or recognized state sequence, select the best matched target frames, and then train the transform.
 - 4. Apply the transform to the source utterance.

Examples

	Source	Converted	Target
Female	src05	vc05	tgt05
Male	src06	vc06	tgt06

Summary

- A complete solution to the voice morphing problem has been developed which can deliver reasonable quality.
- A system for unknown speaker transformation has been implemented which only requires pre-existed training data for the target speaker.
- However, there still some way to go before these techniques can support high fidelity studio applications.
- Future work would be
 - Improve the quality of the converted speech.
 - Cross language voice conversion will be another challenge.

