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High-Rate Girth-Eight Low-Density Parity-Check
Codes on Rectangular Integer Lattices

Bane Vasic, Senior Member, IEEE, Karunakar Pedagani, and Milos Ivkovic

Abstract—This letter introduces a combinatorial construction of
girth-eight high-rate low-density parity-check codes based on in-
teger lattices. The parity-check matrix of a code is defined as a
point-line incidence matrix of a 1-configuration based on a rect-
angular integer lattice, and the girth-eight property is achieved by
a judicious selection of sets of parallel lines included in a configu-
ration. A class of codes with a wide range of lengths and column
weights is obtained. The resulting matrix of parity checks is an
array of circulant matrices.

Index Terms—Combinatorial designs, error-control coding, fi-
nite geometries, graph girth, iterative decoding, low-density parity-
check (LDPC) codes.

I. INTRODUCTION

CODES on graphs, especially low-density parity-check
(LDPC) codes, is a research area of great current in-

terest. The theory of codes on graphs has not only yielded
capacity-approaching codes, it has also opened new research
avenues for investigating alternative optimal and suboptimal
decoding schemes based on belief propagation. Applied on a
Tanner graph of a linear block code [6], [12], the belief-propa-
gation algorithm gives an exact a posteriori probability mass
function for a given probability density function of the observed
variables, but only if the factor graph is cycle free. Extensive
simulation results of MacKay and Neal [14] showed that
the message-passing algorithm also performs well in graphs
with cycles. However, the presence of short cycles hurts the
performance.

In this letter, we address the problem of finding codes with
good cycle properties. We are interested in “deterministic”
sparse parity-check matrices, as opposed to the common
“random code” assumption that has been widely used in recent
research [13]. One of the first attempts to design a deterministic
LDPC for iterative decoding is due to Kou et al. [3], and it is
based on projective and Euclidean geometries. The codes given
in [3] are one-step majority logic decodable, and therefore,
the girth of the associated Tanner graph [6] is six. Lucas et al.
showed that such LDPC codes can be efficiently decoded by
belief-propagation algorithms [15]. A first attempt to construct
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deterministic codes with large girth is due to Margulis [18],
who introduced an explicit construction of LDPC codes using

-regular graphs obtained as Caley graphs of , a spe-
cial linear group, and , a projective general linear
group, of dimension two over , the finite field with elements
( power of a prime). By careful selection of transformation
matrices, the author was able to achieve good girth properties.
This idea was further developed by Rosenthal and Vontobel
[18]. They were able to construct a short code (of length less
than 5000) with girth 12. Recently, the explicit construction
of families of LDPC with girth at least six has been discussed
in Kim et al. [17]. The authors extended Lazebnik and Usti-
menko’s [19] method for explicit construction of graphs with
arbitrary large girth, based on regular graphs.

The code construction presented in this letter is based on bal-
anced incomplete block designs (BIBD) [1]. More specifically,
the codes are based on subdesigns of a 2- design, where

is the number of parity bits, and is the column weight of
a parity-check matrix. The parity-check matrix is a point-block
incidence matrix of the design ( ), where is a set of points
and is a set of blocks of size . As we have shown in [7], the
removal of certain blocks from a design can result in eliminating
Pasch and generalized Pasch configurations and, consequently,
in increasing minimum distance of a code. In this letter, we ex-
ploit the idea that a judicious selection of disregarded blocks
can also increase the girth of a design. It is a desirable property
of a bipartite graph to have a large girth, because in the mes-
sage-passing decoding algorithm [10] on such graphs, it takes
more iterations until extrinsic information originating from dif-
ferent nodes in the bipartite graph becomes correlated. The con-
struction of designs with high girths appears to be a very difficult
problem, in general [8]. However, the designs based on rectan-
gular integer lattices introduced in [7] allow for a simple algo-
rithm for finding a girth-eight subdesign. In [23], a condition for
absence of cycles of lengths smaller than a given constant was
given for array codes, but no explicit construction is given for
girths larger than six. In this letter, we give an explicit construc-
tion for , using arithmetically constrained sequences.

In this letter, we are interested in very-high-rate codes (
), for which the girth-eight property is much “rarer” than in

low-rate codes. We present a construction based on sets of par-
allel lines on a rectangular integer lattice, which is conceptually
simple and gives a large family of codes. The number of parity
bits is equal to , , and the blocks are defined as
lines of different slopes connecting points of an integer
lattice.

Section II introduces some definitions necessary for dealing
with BIBDs. Section III introduces a construction of LDPC
codes using rectangular integer lattices, and construction of



girth-eight codes. It also gives the bit-error rate (BER) per-
formance of these codes in additive white Gaussian (AWGN) 
channels, obtained by computer simulations.

II. BIBDS AND LDPC CODES

In this section, we introduce some definitions. A BIBD is a
pair ( ) where is a -element set and is a collection of

-subsets of , called blocks, such that each element of is
contained in exactly blocks, and any 2-subset of is contained
in exactly blocks. The parameter is called the replication
number. The notation 2- design is used for a BIBD on

points, block size , and index . We consider a slightly dif-
ferent class of combinatorial designs called -configurations. A

-configuration is an incidence structure of points and blocks
such that each block contains points, each point is incident
with blocks, and two different points are contained in at most

blocks. A -configuration can be obtained from a 2-
design by removing some of its blocks. Two blocks in a design
are referred to as parallel if they are disjoint. A design is called
resolvable if there exists a partition of its block set into par-
allel classes, each of which partitions the set . As we will show,
the lines on a lattice introduced in [7] and analyzed in [19] and
[20] form a resolvable 1-configuration.

We define the point-block incidence matrix of ( ) as a
matrix , in which if the th element of
occurs in the th block of , and , otherwise. It is easy
to see that is a matrix of parity checks of a Gallager code [2].
The row weight is , column weight is , and the code rate is

. We are interested in designs in which
no more than one block contains the same pair of points. Such
codes are one-step majority logic decodable, or equivalently,
there are no cycles of length four in a bipartite graph [6]. The
main idea of this letter is that a 1-configuration with large girth
can be constructed by removing whole classes of parallel blocks,
rather than removing individual blocks.

III. LATTICE CONSTRUCTION OF 2-
GIRTH-EIGHT 1-CONFIGURATIONS

In this section, we address the problem of construction of
resolvable l-configurations with a wide range of block sizes.
2- designs naturally come as girth-six designs, because
no pair of points occurs in more than one block. In other words,
if (i.e., if the design has the maximum pos-
sible number of blocks), then the girth is . As we
will show, for every design ( ), there exists a 1-configuration
( ), , such that . In a 1-configuration,
there exist a pair of points that are disconnected, i.e., there is no
line incident with both of them. This is why the girth of a 1-con-
figuration can be larger than six. Our construction is based on
the integer lattice construction given in [7], and briefly summa-
rized as follows.

We define a class of 1-configurations as sets of lines con-
necting the points of a rectangular integer lattice. Consider a
rectangular integer lattice

, where is a prime. The construction can be
readily generalized to the case when is a prime power (i.e.,

Fig. 1. Example of the rectangular grid for m = 5 and k = 3.

). Let be a one-to-one mapping of the lattice
to the point set . An example of such mapping is a simple

linear mapping . The numbers
are referred to as lattice-point labels.

A line with slope , , starting at the point
(0, ), is the set of points

, where . We are concerned with
a 1-configuration which is an incidence structure comprised of
points on the integer lattice and all lines of slopes ,

. As mentioned earlier, two lines are referred to as parallel
if they do not have any common points. There are, therefore,

classes of parallel lines in our 1-configuration corresponding
to different slopes. Each class of parallel lines comprises
lines.

Example 3.1: Fig. 1 depicts the rectangular integer lattice
with and . It also shows two classes of parallel
lines (with slopes and ).

In our example, the lines of slope one are {1,7,13}, {2,8,14},
{3,9,15}, etc. We assume that the lattice labels are periodic in
the vertical ( ) dimension, and therefore, the line comprising
points {4,10,11} also has the slope one. The examples of
lines with slope two are {1,8,15} and {2,9,11}. The slopes

can be defined analogously. Notice that no
vertical line belongs to the design. Each column in Table I gives
a set of parallel lines with slope . A set of parallel lines defines
a resolvability class.

Remark 3.1: Notice that in general, there are parallel
classes of blocks (lines), each corresponding to a different
slope.

Lemma 3.1: A set of all -element sets of obtained
by taking the labels of the points along the lines with slopes ,

, is a 1-configuration.



TABLE I
RESOLVABILITY CLASSES OF LATTICE DESIGN IN FIG. 1

Proof: The design containing all -element sets of
points in obtained by taking labels of points along the lines
with slopes , , is a 1-configuration. It can be
readily verified by noticing that because is a prime, for each
lattice point there cannot be more than one line with slope

that passes through .
Q.E.D.

Remark 3.2: The generalization to the case when is a
power of prime is straightforward.

Remark 3.3: The block size is , number of blocks is
and each point in the design occurs in exactly blocks. The
matrix of parity checks of a lattice code can be written in the
form

...
...

...

wherein each submatrix is a circulant with column weight
equal to one. is a line-point incidence matrix of a 1-configu-
ration defined by the integer lattice defined above.

The position of the only nonzero position in the first column
of can be found by using , the th element of the first
base block in the class of blocks corresponding to the th slope
(see [7]).

Remark 3.4: Notice a similarity of the structure of the above
parity-check matrix with that obtained in [17]. The codes de-
noted by in [17] have a square matrix of parity checks,
while our codes have rectangular matrices of parity checks. This
is not surprising, since it was shown in [17] that and

are equivalent to Euclidean geometry codes [3], while
a square lattice design (which includes the lines with infinity
slope) is equivalent to the Euclidean plane. Notice also the sim-
ilarity with a parity-check matrix of array codes [23].

Remark 3.5: The ensemble of integer-lattice codes defined
by matrices of parity checks obtained by random selection of
slopes and starting points has well-defined asymptotic distance
distribution. Litsyn and Shevelev [21] showed that such an en-
semble (they called it “Ensemble A”) has superior distance dis-
tribution, compared with other ensembles they considered in
[21].

Denote by a resolvability class corresponding to slope
, and by , a set of blocks of a subdesign composed of resolv-

ability classes corresponding to the slopes from the set , i.e.,
. We are interested in the following problem.

Find a maximum cardinality slope set , such that is a girth-
eight design. We are concerned with finding a set of slopes of
maximal cardinality, because the slope-set cardinality directly

influences the code rate, i.e., the larger the slope-set cardinality,
the higher the code rate.

The problem of finding a set of maximal cardinality for given
integers and is generally difficult, i.e., the complexity of
the algorithm for finding such a set of slopes is exponential in

. Instead of solving the hard problem of finding the maximal
slope set, we give a polynomial algorithm that constructs a set of
slopes , resulting in a girth-eight 1-configuration ( ). The
algorithm is based on a select, check, and disregard procedure.

, , , .
while

if

else

end
end

The function gives the girth of a graph for a
( ) design, and can be computed in time time
(e.g., Dijkstra or Bellman–Ford algorithm; for more details, see
[16]).

Clearly, the algorithm is greedy in the sense that if a slope
does not satisfy the girth-eight criterion, it checks for the imme-
diate next slope . Although this method does not result in a
maximal slope set, the simulation results of the different codes
obtained through this method have shown to yield good perfor-
mance (discussed later).

In [23], Fan gave a condition for the absence of cycles of an
arbitrary length in a Tanner graph of an array code, in terms of a
relation among powers of a permutation matrix used as blocks in

. Notice, however, that this condition still requires a search for
finding a desired set of powers, and is equivalent to a “triangle”
condition in this letter (see the Appendix).

Note that finding a set of slopes for is trivial, because
is always a solution. However, for ,

we deduce a simple way of generating a slope set , such that
is a girth-eight design. The simplification

stems from the interesting relationship between the elements of
with the “arithmetic-constrained” sequences (see [22]).
Definition 3.1: Given a fixed positive integer , we define

the arithmetically constrained sequence as the sequence
of positive integers by the conditions:

1) ;
2) having chosen ( ), let be

the least integer such that , and such that the
sequence contains no three terms
(not necessarily consecutive) in an arithmetic progression.

Furthermore, we define the “earliest” sequence
such that .

It can be verified [23] that is an arithmetically constrained
sequence with the property that the ternary expansion of

has 0 or 1 [22, Th. 2] (“Earliest” corresponds to



Fig. 2. Performance comparison of LDPC codes with maximal set slopes and
the linear time method.

“greedy” when it comes to choosing the terms, for example: for
the set {1, 2}, since 3 cannot be considered in the sequence, the
sequence considers the first possible number, i.e., 4).

Theorem 3.1: For arbitrary and ,
results in a girth-eight 1-configuration ( ),

where is the earliest sequence.
Proof: Given in the Appendix.

Theorem 3.1 is consequence of the fact that the sequence of
the set of slopes obtained from the algorithm is greedy, and so
is the earliest sequence. As we will show in the next section,
the codes obtained by the proposed slope-selection algorithm
or the above straightforward implication ( ), have perfor-
mance slightly worse than codes with a slope set with maximum
cardinality.

The lower bound on a minimum distance of a code with girth
, column weight code is given by the formula shown at the

bottom of the page [2]. The above bound can be aptly applied
for the above girth-eight codes with .

IV. SIMULATION RESULTS

The first experiment deals with the performance of codes
obtained from the slope set generated using the above select-
and-discard procedure. (Note that we do not consider high-rate
codes, for the reason that we need to find a maximal slope
set, which is tough to obtain for high-rate codes, as it involves
large block length). For the specific case of and ,
either with the proposed algorithm (or using Theorem 3.1),
we obtain a slope set , resulting
in a code rate of (and ). On the other
hand, with an extensive computer search for a maximal slope

Fig. 3. Performance of girth-eight codes in an AWGN channel.

set, we obtained ,
resulting in a code rate of (and ). As we
can see from Fig. 2, the code constructed from the maximal
set of slopes is 2.8 dB away from its respective Shannon
limit, while the code constructed using the polynomial time
algorithm is 3.4 dB away from its respective Shannon limit,
which is not bad for such short codes. In this particular case,
the code constructed from the set with a maximal cardinality
slope set has better performance. However, we do not have
enough evidence to state this as a general conclusion.

The next simulation result gives the BER perfor-
mance of girth-eight codes obtained from rectangular
integer lattices in an AWGN channel. Fig. 3 shows the
comparison of girth-eight codes with randomly con-
structed codes with column weights three and four, re-
spectively. Girth-eight LDPC code with column weight
three ( ), code rate , with set of slopes

and
girth-eight code with parameters and are used.
The result shows that girth-eight codes constructed using the
above algorithm perform quite close to random codes. Random
codes are generated such that cycles of length four are omitted.

V. CONCLUSION

We have given a simple construction of girth-eight codes
using integer lattices. The construction is based on a judicious
selection of sets of parallel lines in the lattice subgeometry. The
construction gives a set of codes with a wide range of lengths
and rates. The algorithm used to create girth-eight codes can
be readily generalized to higher girths. In , we have an
explicit construction using arithmetic sequences.

if is odd

if is even.



APPENDIX

PROOF OF THEOREM 3.1

Proof

Fan [23] derived the condition for occurrence of a cycle in a
particular class of Tanner graphs whose parity-check matrix
has the structure defined in Remark 3.1. For the specific case of
eliminating cycles of length six with , the condition in
[23] reduces to the following triangle condition:

(1)

where and (the indexes are associated
with the submatrices ) such that

and (2)

For , since , we have the obvious inequality

(3)

Thus, the set of slopes must be a subset of the earliest se-
quence defined above. An arithmetic progression, where, for
example, , corresponds to the case ,

.
Now we shall prove that cannot contain values bigger that

.
Let be the potential slope considered to be included in .
and are two elements already in .
We can add to a number made out of zeros

and ones as digits, in the way that sum is a number that is made
out of zeros and ones. We do that simply by taking a digit of

to be one when a corresponding digit of is two. Note that
. If does not have any two as a digit, we

take to be zero. This result can be seen as a negative of a
number that has only ones and zeros as digits, and is smaller then

. We constructed , thus eliminating . This construction
corresponds to , .
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