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High-Rate Interpolation of Random Signals
From Nonideal Samples

Tomer Michaeli and Yonina C. Eldar, Senior Member, IEEE

Abstract—We address the problem of reconstructing a random
signal from samples of its filtered version using a given interpola-
tion kernel. In order to reduce the mean squared error (MSE) when
using a nonoptimal kernel, we propose a high rate interpolation
scheme in which the interpolation grid is finer than the sampling
grid. A digital correction system that processes the samples prior
to their multiplication with the shifts of the interpolation kernel is
developed. This system is constructed such that the reconstructed
signal is the linear minimum MSE (LMMSE) estimate of the orig-
inal signal given its samples. An analytic expression for the MSE
as a function of the interpolation rate is provided, which leads to
an explicit condition such that the optimal MSE is achieved with
the given nonoptimal kernel. Simulations confirm the reduction in
MSE with respect to a system with equal sampling and reconstruc-
tion rates.

Index Terms—Estimation, generalized sampling, interpolation,
random processes, Wiener filtering.

I. INTRODUCTION

W
E treat the problem of reconstructing a random signal

from a sequence of its nonideal samples. The study of

sampling random signals was initiated in the late 1950s by Bal-

akrishnan [1]. His well known sampling theorem states that a

bandlimited wide sense stationary (WSS) random signal

can be perfectly reconstructed in a mean squared error (MSE)

sense from its ideal samples whenever the sampling rate ex-

ceeds twice the signal’s bandwidth. Reconstruction is achieved

by using the sinc function as an interpolation kernel. In prac-

tice, though, the signal is never perfectly bandlimited and the

sampling device is not ideal, i.e., it does not produce the exact

values of the signal at the sampling points. A common situa-

tion is that the sampling device integrates the signal, usually

over small neighborhoods around the sampling locations. Fur-

thermore, use of the sinc kernel for reconstruction is usually not

feasible due to its slow decay.

Balakrishnan’s result was later extended by several authors to

account for some of its practical limitations. In [2], a sampling
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theorem for bandpass and multiple-pass WSS signals was de-

veloped. It was shown that under certain conditions on the sup-

port of the signal’s spectrum , perfect reconstruction in

an MSE sense is possible using an interpolation filter with the

same support. This was a first departure from the bandlimited

case to broader classes of random signals.

A more general setup is considered in [3], where no limitation

on the signal’s spectrum is imposed and the sampling device

produces nonideal samples, i.e., samples of a filtered version of

the signal. Clearly this setting does not always allow for perfect

reconstruction. The strategy proposed in [3] is to minimize the

MSE between the original and reconstructed signals. A similar

setup is also treated in [4] in which a random signal is

estimated from the samples of another random signal . We

refer to this system as the hybrid Wiener filter as it operates on

a discrete-time signal whereas its output is a continuous-time

signal. Reconstruction in the hybrid Wiener setup is obtained

by modulating the shifts of a properly designed interpolation

kernel with the samples of the signal.

A related problem was treated in [5] where the authors ad-

dress the problem of designing the interpolation kernel, but from

a purely deterministic viewpoint. In this deterministic setting,

prior knowledge on the characteristic behavior of the signal is

incorporated in the form of a regularization term, which is anal-

ogous to the signal’s spectrum in the stochastic framework. In-

terestingly, the reconstruction filter derived in [5] is functionally

related to the hybrid Wiener filter, where the inverse of the regu-

larization operator in [5] plays the role of the signal’s spectrum

in the stochastic formulation.

The expression for the optimal interpolation kernel in the dif-

ferent settings is typically given in the frequency domain, and

usually does not have a closed form in the time domain. This

limits the applicability of this approach to situations where the

kernel needs to be calculated only on a discrete set of points. In

this case, the discrete Fourier transform (DFT) can be used to ap-

proximate the desired values. Consequently, the hybrid Wiener

filter seems to have been used in the image processing com-

munity only as a means of enlarging an image by an integer

factor [6], [7]. More general geometrical transformations, such

as rotation, lens distortion correction, and scaling by an arbitrary

factor, were not tackled using this method.

To overcome the difficulties in implementing the hybrid

Wiener filter, one may resort to a system that uses a predefined

interpolation kernel. In order to obtain a “good” reconstruc-

tion in this setup, the signal’s samples are processed with a

digital correction system prior to reconstruction, as depicted

in Fig. 1. Note that the sampling filter in the figure is

not necessarily bandlimited so that the correction system has

to compensate both for the aliasing that occurs in the sampling
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Fig. 1. Sampling and reconstruction setup.

process and for the nonideal interpolation filter. This scheme

was first introduced in [8] where the authors considered a

stochastic setting. A rigorous treatment of this scheme from a

deterministic viewpoint was given in [9]–[12]. In [13] several

approaches to design the digital correction filter were devel-

oped and compared, including both deterministic and stochastic

formulations.

The constraint to a predefined interpolation kernel may lead

to severe degradation in the MSE of the reconstruction. This em-

phasizes the fundamental tradeoff between performance and im-

plementation considerations. An intriguing question that arises,

then, is whether one can improve the MSE of such a sampling-

reconstruction system by modifying the reconstruction mecha-

nism. In this paper, we suggest compensating for the nonideal

behavior of the given interpolation kernel by using a higher re-

construction rate. Specifically, we consider a reconstruction rate

that is an integer multiple of the sampling rate . This

new setting no longer allows the use of a linear time-invariant

(LTI) digital correction system but rather forces the use of a mul-

tirate digital scheme.

Our proposed framework can be viewed as a generalization

of the widely practiced methods for sampling rate conversion,

known as first and second order approximation [14]. These

methods correspond to a rectangular and a triangular interpo-

lation filter, respectively, and a correction system in the form

of a polyphase filter structure. However, besides extending

the discussion to general interpolation filters, in this paper,

we also relax the standard assumption that the input signal is

bandlimited. Furthermore, as stated above, we take a stochastic

viewpoint so that we design a correction system that is best

adapted to the input signal’s spectrum.

Our approach somewhat resembles a scheme proposed in [8],

where a multirate digital correction system in the form of an

up-sampler followed by a predefined digital filter was designed.

However, our work differs from [8] in several aspects. First, we

do not pose any restrictions on the digital correction system.

Second, in [8] the minimization criterion involves the Fourier

transforms of the input and output signals, which is not defined

for stationary processes (as a typical realization of a stationary

signal is not in ). This is only possible in [8] since they

consider an optical system with a finite-size sensor. Finally, in

this paper, we thoroughly study the statistical properties of the

reconstructed signal and the effect of the reconstruction rate on

the MSE, and show when this scheme produces the optimal hy-

brid Wiener filter solution.

The paper is organized as follows. In Section II we briefly

present the hybrid Wiener filtering problem and its solution. The

exposition is different from the classical viewpoint as it is devel-

oped in a way that enables the comparison to our approach. We

also present the high-rate interpolation strategy and compare it

to the hybrid Wiener filter. In Section III we discuss the prob-

lematic nature of the MSE as a measure to be minimized in our

framework. This motivates the use of an alternative error mea-

sure called the average MSE. We further address the well known

phenomena of artifacts in the reconstructed signal, caused as a

side effect of minimizing the MSE. This is done by studying the

statistical properties of the reconstructed signal. In Section IV an

explicit expression for the digital correction system as a function

of the sampling and reconstruction filters and the signal’s spec-

trum is derived. An error analysis of our scheme is presented in

Section V. As a special case we obtain expressions for the MSE

in the standard sampling scheme both with a predefined and with

the optimal reconstruction kernels. This enables us to address

several important issues. First, we derive the optimal sampling

filter to be used with a given interpolation kernel. Second, we

obtain necessary and sufficient conditions for perfect recovery

of a signal from its nonideal samples. Third, we show in what

cases our system completely compensates for the nonideal inter-

polation kernel and produces the minimum MSE solution. We

conclude the paper in Section VI, with simulations on synthetic

as well as real-world data.

II. THE HYBRID WIENER FILTER AND THE HIGH-RATE

INTERPOLATION SCHEME

A. The Hybrid Wiener Filter

We begin by reviewing the hybrid Wiener solution and dis-

cuss its application to the recovery of a random signal from its

nonideal samples.

The hybrid Wiener filtering problem, in its most general form,

is the following. We wish to linearly estimate the WSS random

signal given the equidistant samples of another random

signal . The estimate is chosen such that the MSE

is minimized for every . The spectrum of

and the cross spectrum of and are assumed to be known

and are denoted by and respectively.1 The term

“hybrid” refers to the fact that the input to the estimator is the

discrete-time signal , , whereas the output is a con-

tinuous-time signal , . For notational convenience,

we use a normalized sampling period of throughout the

paper.

Interestingly, the solution to this problem highly resembles

the standard Wiener filter [15] and is given by [4]

(1)

where is an analog filter whose frequency response is

(2)

assuming the denominator is nonzero, and

(3)

1The cross-spectrum � ��� of two jointly WSS signals is the Fourier trans-

form of the cross-correlation function � ��� � ��������� � ���. Setting
���� � ����, leads to the definition of the spectrum � ���.
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As can be seen in (1), the hybrid Wiener solution amounts to

a shift-invariant interpolation in between the samples of

using the kernel (2). The denominator of (2) is the discrete-

time Fourier transform (DTFT) of the autocorrelation sequence

of the samples , i.e., the spectrum2 of the

discrete-time process . This term replaces the spectrum of

the continuous-time signal , which appears in the standard

Wiener problem of estimating from [15]. We use

the notation to emphasize that the DTFT of a sequence

is -periodic.

In our setup, a signal is sampled after prefiltering by

a filter , which corresponds to the impulse response of

the nonideal sampling device. This is described by setting

. Substituting the appropriate expressions

for and in (2), the optimal reconstruction kernel

is

(4)

It is easy to verify that can be chosen arbitrarily for fre-

quencies where the denominator vanishes.

The hybrid Wiener interpolation scheme can be represented

in the form of Fig. 1 by choosing the analog filter [5]

(5)

and the digital filter

(6)

where, again, can be chosen arbitrarily for frequen-

cies at which the denominator is zero.

This representation is not unique because multiplication of

by any nonvanishing -periodic function can be com-

pensated for by dividing by the same function. It is, thus,

apparent that by inserting the digital correction filter block to

the sampling scheme, we effectively create a set of optimal in-

terpolation kernels, instead of just one. Formally stated, an in-

terpolation filter is optimal if there exists a nonvanishing

-periodic function such that

(7)

where is defined by

(8)

It can be shown that even if the restriction that the correction

system be LTI is removed then (7) is still a necessary condition.

A concise statement of this property along with a proof is given

in Appendix A.

Equation (7) relates the support of to that of

, or equivalently, to the support of the spec-

trum of , as .

Specifically, to attain the minimal MSE,

2The spectrum � �� � of a WSS discrete-time signal ���� is the DTFT of

the autocorrelation sequence � ��� � ��������� � ���.

Fig. 2. High rate reconstruction setup.

. This implies that the re-

constructed signal can only contain frequency components

that are present in . Thus, the hybrid Wiener filter does not

reproduce any content of the input , that is zeroed out by

the sampling filter .

In Section V we show that when using a high interpolation

rate, condition (7) is relaxed, meaning that the set of optimal

interpolation kernels is enlarged.

B. High-Rate Interpolation Scheme

The optimal interpolation filter (5) usually does not admit a

closed form in the time domain. We now discuss when this poses

a practical problem, and describe an efficient strategy to tackle

it.

Consider first resampling applications, such as image en-

largement. Here, needs to be evaluated on a regular grid

of points , where is the magnification factor. In

this case (1) becomes

(9)

If is an integer, then only a discrete set of samples of

plays a role in (9). Thus, is the result of

upsampling by a factor of and then applying the digital

filter . To calculate , we can apply

any standard digital filter design method to its Fourier trans-

form . The simplest approach

would be to sample on a regular grid of frequencies

, and apply the inverse DFT.

For large enough, the resulting sequence is a good approx-

imation of . This method can also be extended to

the case where is a rational number but with an increase of

complexity.

If is not a rational number then the above method cannot

be used directly. However, it can easily be modified to get an

approximation of . This is done by first evaluating on

a dense grid, namely computing with a large

integer , and then interpolating in between the grid points

using some simple kernel . Commonly, nearest neighbor

or linear interpolation are used. These strategies are called first

and second order approximation respectively [14]. The resulting

scheme is shown in Fig. 2, where the multirate correction system

is a -rate up-sampler followed by the digital filter

, as depicted in Fig. 3 (right). This multirate system

can equivalently be implemented in a polyphase filter structure

as shown in Fig. 3 (left). The filter is related to the

polyphase filters via [14]

(10)
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Fig. 3. Two alternative representations of the multirate digital correction
system. For every input sample, the commutator in the polyphase structure
(left) goes through all� positions, generating� output samples.

Clearly, as tends to infinity this solution approaches the

optimal one for any reasonable choice of kernel . However,

this system is not optimal in the nonasymptotic regime, as the

correction filter does not compensate for the interpolation

to follow. Our goal in this paper is to derive an optimal multi-

rate correction system. This scheme should take into account,

not only the signal’s spectrum and sampling filter

(as in the unconstrained hybrid Wiener filter (5)), but also the

predefined reconstruction filter .

We remark that the optimal discrete-time compensation filter

will usually not have a closed form in the time domain.

Thus to compute , one must use some digital filter design

method, as in the case when resampling by an integer factor. The

benefit is in being able to handle arbitrary resampling factors by

using a simple analog reconstruction filter .

III. DEFINITION OF AN ERROR MEASURE

As a first step towards deriving a solution to the high-rate

reconstruction problem, we first study the statistical properties

of the reconstructed signal in the standard case of . This

step is crucial in order to pose a proper definition of the error to

be minimized.

In [13] the authors show that for a general interpolation

kernel, there is no digital correction filter that can minimize

the MSE for every . In fact, it can be shown that if a filter is

designed to minimize the MSE at a certain time instance then

it also minimizes the MSE at times but not over

the whole continuum. Furthermore, we show in this section

that generally there does not exist any linear digital correction

system (not necessarily a filter) that minimizes the MSE for

every .

A. Average MSE Criterion

The signal in our setup is assumed to be WSS and, as

a consequence, the sequence in Fig. 1 is a discrete WSS

random process. Therefore, if the correction system is a digital

filter, as used in [8], [13], then is also WSS.

The reconstructed signal in our system is given by

(11)

Signals of this type have been studied extensively in the commu-

nication literature in the context of pulse amplitude modulation

(PAM). It is a known fact that if the sequence in (11) is a

WSS process then is generally not WSS but rather wide

Fig. 4. A stationary 2D random process (left) was downsampled by a factor of
3 and then reconstructed using a rectangular kernel (middle) and the sinc kernel
(right).

sense cyclostationary with period 1 [16]. The nonstationary be-

havior of is the reason why the pointwise MSE can gener-

ally not be minimized for every . To overcome this obstacle we

can average the pointwise MSE over one sampling period, as

done in [17]. Our error measure is thus the sampling-period-av-

erage-MSE, which is defined as

(12)

An important property of the above definition is that in situations

where the pointwise MSE can be minimized for every , the

minimization of (12) leads to the same solution. This follows

from the fact that the pointwise MSE is nonnegative for every .

In Section IV we show that the correction system resulting from

the minimization of (12) is independent of .

We note that when the signals of interest are natural images or

audio signals, there is not a one-to-one correspondence between

the MSE of the reconstruction and its quality, as subjectively

perceived by the human visual or auditory system. One type of

effect which may drastically degrade the subjective quality of

the reconstructed signal is due to the nonstationarity of . In

fact, if an interpolation scheme outputs a cyclostationary signal

when fed with a stationary input, then it will commonly produce

reconstructions with degraded subjective quality also when ap-

plied to real world signals. We illustrate this in Fig. 4, where a

stationary 2D function is downsampled by a factor of 3 and then

reconstructed using a rectangular kernel and the sinc kernel.

Both interpolation methods lead to the exact same MSE, how-

ever the rectangular interpolation filter introduces block struc-

ture in the reconstructed image, an artifact which is unpleasant

to the human observer. We stress that it is not the scope of this

paper to battle these undesired effects. We are merely concerned

with the minimization of the MSE. However, it is of interest to

study when such artifacts occur. Specifically, we wish to obtain

necessary and sufficient conditions on the interpolation kernel

and the correction system such that in (11) is WSS.

B. Stationarity of the Reconstruction

One example of a WSS PAM signal (11) is when is WSS

and is the bandlimited filter [16]. An im-

portant question is whether this is the only case. We now show

that indeed every WSS PAM process is -bandlimited. Specifi-

cally, for to be WSS, the following must hold:

1) the sequence can contain a nonstationary component

only if its frequency content is entirely zeroed out by

;
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Fig. 5. Left: The spectrum of a WSS process. Middle: The spectrum of ���� formed by a WSS sequence ���� with nonvanishing spectrum. Right: The spectrum
of ���� formed by a ������-bandlimited WSS sequence ����.

2) the filter can extend beyond only at frequencies

that are not excited by the sequence .

To obtain necessary and sufficient conditions on the sequence

and the filter such that is WSS, we compare the

two-dimensional spectrum of with that of a WSS process.

We use and to denote the

two-dimensional auto-correlation function of a random signal

and its Fourier transform. If the signal is WSS, then the one-

dimensional autocorrelation is denoted

and its Fourier transform is . It is easily verified that for

a WSS process, takes on the form

(13)

Similarly, for a discrete-time WSS signal , the two dimen-

sional spectrum is of the form

(14)

Now, to determine the conditions for in (11) to be WSS,

we need to identify those cases in which its two-dimensional

spectrum is of the form (13). Using (11),

(15)

Hence, the spectrum of can be computed as

(16)

In order for in (16) to be of the form (13),

must be equal to wherever

, for some function . However, the func-

tion is -periodic in each axis as it is a DTFT.

Therefore we can only impose

in the domain . The definition of

on the rest of is then obtained by periodic expansion. This

means that must be of the form

(17)

where and are arbitrary -periodic func-

tions. The top row of (17) is exactly the form of the spectrum

of a discrete-time WSS process (14). We conclude that a neces-

sary condition for to be a WSS continuous-time signal is

that be of the form

(18)

where is a WSS sequence whose passband is

and is an arbitrary (not necessarily sta-

tionary) random sequence whose passband is .

In words, may exhibit nonstationarity only at frequencies

for which vanishes. These frequency components do

not affect the reconstructed signal . Therefore, to study the

behavior of , we assume in the sequel without loss of

generality that .

Since is assumed to be a WSS sequence, its spectrum

obeys (14) and thus (16) can be written as

(19)

Fig. 5 (left) depicts the spectrum of a continuous-time WSS

signal (13) and that of the reconstructed signal (19) (middle). It

is clear that in order for to possess the form in (13), the

impulses outside the line have to be suppressed. This

happens only if vanishes outside , in which case

the content outside the dashed rectangle is supressed. In Fig. 5

(right) we show the spectrum of formed by a -ban-

dlimited WSS sequence . It can be seen that in this case

is WSS if and only if the support of is contained in

. More generally,

if is -bandlimited (where ) then the suppression of

the undesired impulses can happen only if vanishes out-

side the set

(20)

where and the superscript denotes the

complementary of the set. In this case, the reconstructed signal’s

spectrum is .

Fig. 6 demonstrates a concrete example of a pair

, that forms a WSS signal. In this example

the support of (top) in the interval is

and, hence,

. The support of (bottom) then must be

contained in the union of and translates of

.

The following theorem summarizes the results.
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Fig. 6. Example of a pair � ���, � �� � that forms a WSS signal.

Theorem 1: Consider the signal in (11). Then is a

continuous-time WSS process if and only if the following hold:

1) the sequence can be written as , where

is a WSS sequence whose passband is

and is an arbitrary random sequence with zero power

in ;

2) the support of the reconstruction filter is contained

in the set , where is the

bandwidth of and is the complementary set of the

support of .

When increasing the reconstruction rate by a factor of , the

support of need only be contained in (as-

suming ), thus a greater class of kernels leads to sta-

tionary reconstruction.

Note that the optimal reconstruction kernel of the

hybrid Wiener solution (5) generally does not satisfy condition

2. Therefore is not guaranteed to be stationary when using

it. As demonstrated in Fig. 4, this can cause undesired effects in

the recovered signal.

IV. DIGITAL CORRECTION SYSTEM

In this section we derive an explicit expression for the digital

correction system using the error measure (12).

The reconstructed signal in Fig. 2 can be written as

(21)

where

(22)

is the output of the th filter in Fig. 3. Substituting (22) into

(21) leads to

(23)

where we have defined

(24)

The average MSE criterion measures the deviation of the

process from only in the interval . Let us

define an inner product between random processes , as

(25)

The induced norm is then . We see that the average

MSE (12) can be interpreted as the norm of the error process

. The signal is a linear combination of .

Therefore the error is minimized if and only if the orthogonality

principle is satisfied, which implies that for

every , . Defining the signals and

by

(26)

(27)

we can write the orthogonality condition explicitly as

(28)

In the following theorem, we show that by converting (28)

into the frequency domain, the frequency responses of the

correction filters can be obtained as the solution of a linear

system of equations, which is independent of .

Theorem 2: Let be the vector consisting of the fre-

quency responses of the correction filters

(29)

Then the vector minimizing the average MSE (12) is

independent of and is given by

(30)

Here is a matrix whose th element is

(31)

is the vector whose elements are

(32)

and .

Proof: Substituting of (23) into (27), we have

(33)
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where we defined

(34)

Now, substituting (24) into this expression, it is shown

in Appendix B that is a Toeplitz sequence, i.e.,

. Therefore the inner sum in (33)

reduces to a convolution between and

(35)

This enables us to write (28) in the frequency domain as

(36)

Explicit expressions for and are derived in

Appendix B, where it is shown that they are both independent

of and are given by (31) and (32), respectively. Writing (36)

in matrix form leads to (30).

A. Explicit Formula for the Polyphase Filters

Next we show that it is possible to obtain a closed form solu-

tion to (30) by using an orthogonal decomposition of the equa-

tions. We also investigate existence and uniqueness of the so-

lution. The explicit expressions for the frequency responses of

the correction filters allows us to obtain a closed form for the

MSE of the reconstruction in Section V.

From (31) we see that the matrix can be written as

(37)

where the frequency dependent vector is defined by

(38)

Therefore is an infinite weighted sum of rank-one ma-

trices. Similarly, using (32) the vector can be cast as an

infinite weighted sum of vectors

(39)

The vector has two interesting properties. First, it is

-periodic in . In particular, for every two integers and

we have . Second, for every the vectors

, form an orthogonal set:

. These two facts enable us to decompose into a

multiplication of three matrices

(40)

where is the orthogonal matrix defined by

(41)

is a diagonal matrix containing the values

(42)

and is the scalar

(43)

Similarly, the vector can be written as

(44)

where the elements of the vector are given by

(45)

Using (40) and (44), we see that is the solution to

(46)

Proposition 1: There exists a solution to (46) for every re-

gardless of the specific choices of sampling filter , recon-

struction filter and spectrum .

Proof: A solution to (46) exists if and only if lies in

the range space of . Let us begin by considering the scalar

in (43). If this value vanishes for some then

is the zero matrix. In this case, though,

for every and, thus, for every , meaning

that is the zero vector. Therefore, in these situations any

is a solution to (46). Since is the spectrum of

the discrete-time process entering the correction filters, ob-

viously at frequencies where the frequency re-

sponses of the correction filters have no effect on the output

signal and can be chosen arbitrarily.

Suppose next that . From (40) and (44) it can

be seen that lies in the range space of if and

only if for every index where

. However, looking at (42), we see that if

then for every , which in turn leads to

(45). Therefore, the system of equations (46) is

guaranteed to have a solution in this case as well.

Note that there may be frequencies in which there are infin-

itely many choices of that satisfy the equations. In the

following derivations we choose the vector with min-

imal Euclidian norm among all possible solutions.

Using (40) and (44), the minimum norm solution of equation

(30) is

(47)
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where we used the fact that is a unitary matrix.

The matrix is a diagonal matrix whose th

diagonal value is given by

(48)

where is the set of frequencies for which the denominator

does not vanish

(49)

Combining (48) and (47) and using the expressions for

(45) and (41), we obtain the following theorem.

Theorem 3: Consider the setup of Theorem 2. Then

(50)

where the fraction should be replaced by for frequencies at

which the denominator vanishes.

There is an interesting resemblance between (50) and the cor-

rection filter developed in [13] for the setup of equal rates of

sampling and reconstruction [see (51)]. In (50), the replicas of

and are apart, whereas in

the standard scheme they are apart. This is due to the in-

crease in interpolation rate by a factor of .

As stated in Section II, an equivalent representation for the

multirate correction system is a -rate up-sampler followed by

a digital filter . An explicit formula for can be ob-

tained by substituting (50) in (10).

The special case of reconstruction rate that equals the sam-

pling rate can be easily obtained from (50) by setting . In

this case, the (single) correction filter is

(51)

This filter coincides with that developed in [13].

V. ERROR ANALYSIS

We now analyze the error of the high-rate interpolation

scheme. Specifically, we derive a closed form formula for the

average MSE of the reconstruction as a function of the inter-

polation rate , the filters and and the signal’s

spectrum . As a special case, our formula can be used

to compute the average MSE in the standard sampling scheme

both for a given interpolation filter and for the

optimal one .

The average MSE of the reconstruction is given by

(52)

where we used the fact that is orthogonal to the error

. Using (23), the second term in (52) becomes

(53)

where is defined by (26). Using Parseval’s relation

(54)

Substituting (54) into the expression for the MSE (52)

(55)

The second term in (55) can be further simplified using the re-

lations (40) and (44):

(56)

where we used the fact that is diagonal (48).

The fraction in (56) should be replaced by 0 wherever the de-

nominator vanishes. Substituting (56) into (55) we obtain the

final expression for the MSE of our interpolation system.

A. The Standard Sampling Setup With a Predefined Kernel

The standard sampling setup corresponding to was

considered in [13] however no explicit formula was given for
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the resulting MSE. Setting in (56) and using (55), the

MSE is given by

(57)

In [17, theorem 3] the average MSE of a system with equal rates

of sampling and interpolation is analyzed. This scheme com-

prises given sampling and interpolation filters but, unlike our

setup, no digital correction system. Formula (57) can be shown

to coincide with [17, theorem 3] if we incorporate the effect of

the correction filter into the interpolation kernel and define an

effective reconstruction filter as .

We note that an alternative way of deriving the optimal inter-

polation filter of (5), is to minimize (57) with respect

to . This can be done by applying the Cauchy-Schwartz

inequality to the numerator of the integrand in (57). Similarly,

(57) can be used to determine the optimal sampling filter, when

using a predefined interpolation kernel.

Corollary 4: Consider estimating a WSS signal from

samples of its filtered version using the in-

terpolation filer . Then the minimal MSE is attained if

, where is an arbitrary -periodic

nonvanishing function.

Proof: To minimize (57) we have to maximize the inte-

grand with respect to . Using the Cauchy-Schwartz in-

equality

(58)

and thus the integrand in (57) is bounded from above by

(59)

It is easily verified that this bound is attained if

, where .

B. The Hybrid Wiener Filter

The MSE of the hybrid Wiener filter can be calculated from

(57) by substituting the optimal reconstruction kernel (5) for

, resulting in

(60)

The integrand in (60) should be replaced by 0 outside the set

defined in (8). In [4] an expression for the pointwise MSE

of the hybrid Wiener filter is derived. The for-

mula given in [4] is different than (60) for two reasons. First,

recall that (60) gives the average MSE and not the pointwise

MSE. Second, the expression given in [4] is incorrect, since in

the derivations of the MSE the author made the implicit assump-

tion that the pointwise MSE is time independent and substituted

. Practically, the formula in [4] gives the pointwise MSE

at integer times i.e. , , but not for the

entire continuum.

Equation (60) can be used to study when the high-rate scheme

attains the optimal MSE, as done in the next subsection. It can

also be used to study in which cases . Not surpris-

ingly, this gives rise to a condition on the passband of , as

described in the following corollary.

Corollary 5: A WSS signal with spectrum can

be linearly perfectly reconstructed from samples of its filtered

version if and only if the following hold:

1) for every ;

2) distinct -shifted replicas of do not overlap, i.e.,

, for every .

Proof: Interchanging the order of integration and summa-

tion in the numerator in (60), and making a change of variables

, can be written as

(61)

It is easily verified that the integrand in (61) is nonnegative for

every and thus if and only if

(62)

This condition is trivially satisfied for

as both sides equal zero in this case. For frequencies in

we must demand otherwise the

right-hand side of (62) would vanish but the left-hand side will

not. Now, assuming this condition holds we must have

(63)

for every . Separating out the term ,

(63) is satisfied if and only if

for every . But since in

, this condition becomes

(64)

completing the proof.

A necessary and sufficient condition that allows to perfectly

recover a WSS signal from its ideal samples was given in [2].

This condition can be obtained as a special case of Corollary

5 by choosing . In this case the only requirement is

that -translates of the spectrum are disjoint. When

the sampling is not ideal we have the additional condition that

the sampling filter does not zero out any frequency components

contained in .

C. Optimal Reconstruction Using High Interpolation Rate

An interesting question is when our high-rate interpolation

scheme (with a prespecified interpolation filter ) attains
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the optimal MSE. In such cases, our scheme allows to bypass

the need for designing the analog interpolation filter without any

increase in MSE.

Theorem 6: The high-rate interpolation scheme depicted in

Figs. 2 and 3 with correction filters given in (50) attains the min-

imal average MSE attainable by any linear system if and only

if there exists a nonvanishing -periodic function

such that

(65)

where is defined by (8).

Proof: From (55), (56), and (60) it can be seen that the

difference equals zero if and only if for every

the following identity holds:

(66)

Splitting the sum in the left hand term into sums, we have

(67)

where we denoted and

. From the Cauchy-Schwarz inequality

we know that each of the terms in this sum are nonnegative.

Therefore the sum equals zero if and only if each of the

terms equals zero. The Cauchy-Schwarz theorem also states

that equality is attained if and only if the sequences and

are linearly dependent. This means that there exist

nonvanishing functions , such that

(68)

for every . Condition (68) is identical to (65).

Condition (65) is a generalization of (7), which was devel-

oped for . This condition implies that an interpolation

filter is optimal if and only if it is the product of

and some nonvanishing periodic function.

This gives the essential justification of using the high-rate

reconstruction scheme. Specifically, the set of optimal kernels

becomes larger as the interpolation rate is increased. In practice,

for a large enough rate one may use almost any reasonable

interpolation kernel and attain an MSE which is very close to

.

When satisfies (65), the high-rate interpolation scheme

not only minimizes the average MSE but also the pointwise

MSE. This can be shown by repeating the proof of Theorem

7 in Appendix A, for the high rate case.

To illustrate the strength of our method, consider the case in

which the input signal is -bandlimited, i.e. ,

, where may be greater than . In this case the

optimal interpolation kernel of the hybrid Wiener

filter is a lowpass filter with cutoff frequency . Now, suppose

that is hard to implement. From (65) we see that any

-bandlimited reconstruction filter can be used to attain

the minimal MSE given that it does not vanish in the support of

and that the interpolation rate satisfies .

This is because in this case and thus any such

can be written as a multiplication of and

a nonvanishing periodic function. We conclude that for

bandlimited input signals it is possible to attain the minimal

MSE with any bandlimited reconstruction kernel that does not

vanish in the support of , simply by increasing the

reconstruction rate.

VI. SIMULATIONS

A. Synthetic Data

In order to confirm the efficiency of our proposed scheme,

we generated a discrete-time Gaussian random process , fil-

tered it with a prefilter and then down sampled it with

sampling period to obtain a sequence of samples .

The spectrum of the signal is shown in Fig. 7(a)

on a frequency axis scaled to . This spectrum con-

tains 5% of its energy outside the interval , which means

that no significant aliasing occurs in the sampling process. The

sampling filter used was a rectangular filter of length , as de-

picted in Fig. 7(b). This filter is a good model for an optical

system in which the effect of the point spread function (PSF) of

the lens is negligible with respect to pixel size.

Our purpose was to reconstruct the original signal using the

prespecified interpolation kernel shown in Fig. 8(a), which

corresponds to linear terpolation with period . The filter

has a fast decay with respect to the optimal interpolation kernel,

which is depicted in Fig. 8(b). Fig. 9(a) shows the MMSE recon-

struction with an interpolation period that equals the sampling

period (i.e., ) and with the correction filter (51), as pro-

posed in [13]. Fig. 9(b)–(d), depict the reconstructions obtained

by the high-rate interpolation scheme proposed in this paper for

, and respectively. It can be seen that

for low reconstruction rates, the interpolated signal exhibits ar-

tifacts in the form of noncontinuity of its derivative. As the re-

construction rate increases, these undesired effects become less

dominant. The result in Fig. 9 is exactly identical to the recon-

struction that is obtained using the optimal interpolation kernel

(with a reconstruction period of ).

Fig. 10(a) shows the average MSE attained by the high-rate

interpolation scheme as a function of . The dashed line is

of the hybrid Wiener filter. The MSE of the standard

sampling scheme is roughly 30% higher than .

However, an increase of the interpolation rate by a factor of

is enough to close most of the gap in this case.

Fig. 10(b) shows the pointwise MSE of the hybrid Wiener

filter as a function of time. This figure illustrates that even when

using the optimal interpolation kernel, the reconstructed signal

may be highly nonstationary. In this case the pointwise MSE at

times is lower than the pointwise MSE at times

by a factor of 18. As explained in Section III, this

can cause undesired artifacts in images or audio signals. One

could eliminate this effect by using an interpolation kernel that is

-bandlimited. Nevertheless, while suppressing nonstationarity,

this would result in a higher MSE.
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Fig. 7. (a) Spectrum of ���� on a frequency axis scaled to ������ ����. An amount of 5% of the energy is concentrated at frequencies above �. (b) Sampling
filter.

Fig. 8. (a) Given interpolation kernel. This kernel corresponds to linear interpolation for an interpolation rate that equals the sampling rate � . (b) Optimal inter-
polation kernel.

The behavior of the sequence MSE can be characterized

by two properties: its asymptotic value and its rate of conver-

gence to this value. One factor that has a significant contri-

bution to the asymptotic value is the extent to which

aliasing occurs. To illustrate this we repeated the above exper-

iment with a signal whose portion of energy outside the

frequency set is 20% (as opposed to 5% in the first ex-

ample). Fig. 11(a) depicts , where it can be seen that

has increased substantially with respect to Fig. 10.

While the asymptotic value has changed in this last

example, the rate of convergence was not affected. The factor

that most affects the convergence rate is the resemblance of

the prespecified interpolation filter to the optimal one

. To show this we repeated the first experiment with

a rectangular interpolation filter, which is identical to the sam-

pling filter shown in Fig. 7(b). This filter clearly has less resem-

blance to the optimal filter shown in Fig. 8(b) than the linear in-

terpolation used in the last example. Fig. 11(b) depicts

in this case. It can be seen that the initial value MSE(1) has in-

creased and the rate of convergence has decreased with respect

to Fig. 10(a). In this situation, a value of at least is needed

to close most of the gap to the optimal interpolation.

B. Image Interpolation

We now demonstrate our approach in the context of image

interpolation. This requires the specification of the spectrum of

the underlying (continuous-space) image. In [6] and [7] it has

been found that natural images can be quite accurately modelled

as Matern processes. We adopt this assumption here and use the

isotropic 2-D Matern spectrum, given by

(69)

where is the 2-D frequency, is proportional to the vari-

ance of the process, defines the effective autocovariance range

and controls the smoothness of the signal. The parameters of

the model can be estimated from the digital image at hand (the

sampled signal ), as done in [6] and [7]. However, we have

found that using and works quite well

for natural images. Note that the scaling does not affect the

correction filters (50). These values are very similar to the ones

reported in [6] and [7].

The second ingredient needed for our system is the sampling

filter . We assume that the value of each pixel is the integra-

tion of the continuous-space image over a rectangular domain.

Thus, we model as the 2-D version of the filter in Fig. 7(b).

Using the above assumptions, the hybrid Wiener interpola-

tion kernel (5) can be calculated in the frequency do-

main, however it does not have a closed form in the space do-

main. This poses no limitation if the reconstructed image is to

be evaluated only on a regular grid of points spaced apart

from one another, where is an integer. Then, the kernel

need only be calculated at a discrete set of points, which can

be done approximately using DFT. This is the situation when
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Fig. 9. Reconstructed signal for various interpolation rates. The solid line is the original signal and the circles are the nonideal samples. The dotted and dashed
lines correspond to the hybrid Wiener solution and the high rate scheme with the kernel in Fig. 8(a). (a)� � �. (b)� � �. (c)� � �. (d)� � ��. In this case
the high rate solution coincides with the hybrid Wiener.

enlarging an image by an integer factor, as studied in [6], [7].

However, to apply more general geometrical transformations,

such as rotation and scaling by an arbitrary factor, a method to

calculate at arbitrary points is needed. In the absence of

such method, we must resort to using a predefined interpolation

kernel, whose formula in the space domain is available.

One very common alternative to the hybrid Wiener filter is

bicubic interpolation. Fig. 12(b) shows the result of enlarging

the Mandrill image in Fig. 12(a) by a factor of

using bicubic interpolation. It can be seen that this method tends

to blur the fine textures and sharp edges in the image.

Another approach to tackling the problem is to use first or

second order approximation [14] to the hybrid Wiener filter.

This means we first evaluate the hybrid Wiener solution on a

finer grid (i.e. enlarge the image by an integer factor with the

kernel ) and then use nearest neighbor or linear inter-

polation to obtain the reconstructed signal at the desired loca-

tions. The drawback of this method is that the first stage does

not take into account the interpolation to be preformed in the

second stage. Fig. 12(c) shows the result of using second order

approximation to the Wiener solution evaluated at a grid with

0.5 pixel spacing. As can be seen, the result bears overwhelming

resemblance to that in Fig. 12(b). Therefore, in practice, this ap-

proach fails to enjoy the advantages of the hybrid Wiener filter.

The high-rate interpolation system proposed in this paper is

designed to optimally take into account the interpolation filter.

We used our approach with interpolation period of 0.5 pixels

and with a kernel corresponding to linear interpolation in the

fine resolution. The result is shown in Fig. 12(d). As can be seen,

the edges are sharper and the texture is better preserved.

VII. CONCLUSION

In this paper, we suggested a scheme for reconstruction of

WSS random signals from their nonideal samples using a pre-

specified interpolation kernel. Our scheme uses an interpolation

rate which is higher than the sampling rate in order to com-

pensate for the nonideal interpolation kernel. A multirate dig-

ital system that processes the samples prior to multiplying the

shifts of the interpolation kernel was developed. We compared

the performance of our proposed scheme to the hybrid Wiener

filter scheme (in which one is allowed to design the interpola-

tion kernel). This was done by deriving closed form expressions

for the MSE of both methods. Specifically, we showed that in

our scheme the class of interpolation kernels that allow to attain

of the hybrid Wiener filter becomes larger as the recon-

struction rate is increased. This means that practically, almost

any reasonable interpolation kernel can be used provided that

the reconstruction rate is high enough. We also derived neces-

sary and sufficient conditions that allow for perfect reconstruc-

tion (in an MSE sense). This result generalizes a known theorem

for ideal samples.
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Fig. 10. (a) Average MSE as a function of � for a signal with the spectrum depicted in Fig. 7(a) (1% aliasing) and interpolation filter shown in Fig. 8(b)
(b) Pointwise MSE as a function of time for interpolation with the optimal reconstruction kernel.

Fig. 11. Average MSE as a function of � for two different setups. (a) A signal with 20% concentration of energy above the frequency � and the interpolation
filter shown in Fig. 8(a). (b) A signal with 5% concentration of energy above the frequency � and the interpolation filter shown in Fig. 7(b).

APPENDIX A

NON-LTI DIGITAL CORRECTION SYSTEMS

Theorem 7: Let , where the se-

quence is the output of a linear

system operating on the samples .

Then the pointwise MSE between and is minimized

for every if and only if the following hold:

1) there exists a nonvanishing -periodic function

such that for every ,

with given by (8);

2) the correction system can be written as

, where corresponds to an LTI system

for every , and

is an arbitrary (not necessarily LTI) system that

satisfies for every and arbitrary .

Before providing a proof, note that Theorem 7 implies that

the nonstationary component of can only contain frequen-

cies that are suppressed by and, thus, do not affect .

The simplest way of enforcing condition 2 is confining the dis-

cussion to LTI systems for which . In this case,

condition 1 coincides with (7).

Proof: A necessary and sufficient condition for the signal

to minimize the pointwise MSE to is that the orthog-

onality principle is satisfied for every . Specifically, the error

has to be orthogonal to each of the nonideal sam-

ples , i.e.

(70)

Substituting the expression for in terms of , this condi-

tion becomes

(71)

where is the cross-correlation se-

quence of the processes and . In Appendix B, it is

shown that . Substituting

this term into (71) and taking the continuous-time Fourier trans-

form (with respect to ) we get

(72)
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Fig. 12. (a) Original Mandrill image of size 256 � 256. (b) Enlargement by a factor of ��� with bicubic interpolation. (c) Second-order approximation with a
grid of 0.5 pixel spacing. (d) Our approach with a grid of 0.5 pixel spacing and linear interpolation.

where denotes the discrete-time Fourier

transform of with respect to at frequency . Now,

taking the discrete Fourier transform of both sides of (72) with

respect to leads to

(73)

Since is the output of a linear system operating on the

WSS sequence , the cross spectrum can be

expressed in terms of and the transfer function of the

system, leading to

(74)

Taking into account that the left-hand side of (74) is zero unless

, we may write it as

(75)

We first note that if for some frequency the

term vanishes for every

then and (75) is satisfied. Hence, for fre-

quencies outside defined in (8), we have the freedom to

choose and arbitrarily. Next, due to the

periodicity of , it can be seen from (74) that for

frequencies in the filter must be chosen such that
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for some nonvanishing -peri-

odic function . The transfer function , then,

must possess the form

(76)

This expression has the structure of the frequency response of

an LTI system. We conclude that in order for the pointwise MSE

between and to be minimized, the correction system

can only contain a time-varying component whose frequency

response is nonzero outside .

APPENDIX B

DERIVATION OF THE MATRIX AND VECTOR

In this appendix, we derive the expressions for and

in (30). Throughout the derivations we make use of the

following identity:

(77)

A. The Matrix

The entry in the infinite matrix depends on the

signals and via (34). The definition of is

given by (24)

(78)

where the sequence , which depends on the continuous

parameter and on the integer index , is defined as

(79)

Substituting (78) in (34) leads to

(80)

It is evident from (80) that is an infinite Toeplitz matrix as

its entry is only a function of . As such, it corresponds

to convolution with the sequence defined by

(81)

Let us write an explicit expression for the DTFT of

(82)

Using (77),

(83)

The Fourier transform of is given by

(84)

where the last row is, again, obtained from (77). Finally

(85)

where we used the identity

(86)

Substituting (83) and (85) into (82) we have

(87)

B. The Vector

The th element in the sequence is given by (26). Substi-

tuting (24) of into (26) leads to

(88)

This expression depends on the cross correlation of and

, which is given by

(89)
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where is a sequence which depends on a continuous

parameter . Using (89) we may write (88) in terms of a dis-

crete-time convolution

(90)

Now the DTFT of the sequence can be written explicitly

(91)

where we used (77). Substituting the expression for

from (84)

(92)

where we used (86).
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