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ABSTRACT OF THE DISSERTATION

High-Rate Optimized Quantization Structures and Speaker-Dependent Wideband

Speech Coding

by

Ethan Robert Duni

Doctor of Philosophy in Electrical Engineering

(Signal and Image Processing)

University of California, San Diego, 2007

Professor Bhaskar D. Rao, Chair

Modern coding applications, such as wideband speech, are characterized

by sources with large dimensions and unknown statistics, complicated distortion

measures, and the need for high-quality quantization. However, the complexity

of quantization systems must be kept in check as the dimension grows, requiring

flexible quantization structures. These structures, in turn, require an automatic

training method that can infer statistics from example data and balance the various

factors to optimize performance. The development of efficient, flexible quantiza-

tion structures also opens up new coding applications, such as speaker-dependent

coding. This approach promises improved performance but presents a variety of

implementational challenges.
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The first part of this dissertation presents a variety of structured quan-

tizers which strike different balances between complexity and performance. This

includes the scalar transform coder, which is augmented with a flexible compand-

ing scalar quantizer based on Gaussian Mixtures. Next, a variety of extensions to

the Gaussian Mixture Vector Quantizer (GMVQ) system for recursive coding are

examined. Training techniques for these systems are developed based on High-

Rate quantization theory, which provides a tractable objective function for use

in automatic design. This replaces ad-hoc methods used for design of structured

quantizers with a data-driven approach which is able to incorporate various dis-

tortion measures and structures. The performance of the systems is demonstrated

on the problem of wideband speech spectrum coding.

The second part of this dissertation considers speaker-dependent wide-

band speech coding. Using the GMVQ system and training approach developed

in the first portion, a study of the performance benefits of speaker-dependent

coding in the CELP framework is undertaken. The three main types of CELP pa-

rameters (spectrum, adaptive codebook and fixed codebook) are all investigated,

and the gains quantified. Next, a number of implementational issues related to

speaker-dependent coding are addressed. A safety-net approach is utilized to pro-

vide robustness, and its implementation in the context of GMVQ is explored. A

variety of online training architectures are presented which strike different bal-

ances between training complexity, communications overhead and performance.

As components of these architectures, techniques for training on quantized data

and recursive learning are examined.

xiv



1 Introduction

This dissertation considers a variety of quantization structures and ex-

amines their performance in the context of wideband speech coding. Increases in

available computational power and communications resources have created inter-

est in more demanding coding applications such as wideband speech and video.

These applications require high-quality quantization of high-dimensional sources

with complicated statistics, under complex distortion measures. Because the com-

plexity of unstructured vector quantization grows exponentially with the source

dimension, however, it is necessary to utilize structured quantizers to keep the

complexity within reason. Quantizers with structure necessarily exhibit subopti-

mal performance due to limited ability to exploit source statistics and complex dis-

tortion measures, as well as inefficiencies in the spatial arrangement of codepoints.

In light of this, a variety of quantization structures are examined, which strike dif-

ferent balances between complexity and performance. In order to ensure the best

possible performance of a structured quantizer, design methods are required which

balance the effects of source statistics, distortion measure and quantizer structure.

To this end, training methods based on high-rate quantization theory are devel-

oped. These systems and methods are demonstrated in the context of wideband

speech spectrum coding, under the Log Spectral Distortion (LSD) measure. Next,

these coding tools are utilized to examine speaker-dependent wideband speech cod-

ing. In speaker-dependent coding, a separate coder is designed for each individual

speaker, allowing improved performance by exploiting statistical variations be-

tween speakers. A number of issues arise in utilizing this potential, however. The

1
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speaker-dependent coders must necessarily be designed in an online fashion, and

the resultant designs distributed to other parts of the communications network.

Also, robustness against incorrect speakers is required. The performance benefit of

speaker-dependent coding in a CELP framework is first experimentally quantified,

and a collection of methods for coping with the various implementational challenges

is presented. This chapter is organized as follows: Section 1.1 provides relevant

background on the topics of speech coding and quantization. Section 1.2 contains

a more detailed introduction to our work on structured quantizers and high-rate

training, including relevant background on high-rate quantization. Section 1.3 pro-

vides a detailed introduction to our work on speaker-dependent wideband speech

coding.

1.1 Background

This dissertation considers a variety of problems in speech coding and

quantization, and so a brief background on each of these topics is provided here.

1.1.1 Speech Coding and Spectrum Quantization

Most approaches to speech coding are based on an excitation/filter model,

also known as Linear Predictive Coding (LPC). That is, the coder operates by first

breaking the incoming speech signal into frames, typically with lengths around

20ms, and then modeling the contents of each frame as the response of an all-pole

filter to some excitation signal. The parameters of this filter, known as the LPC co-

efficients, are computed using the well-known Levinson-Durbin algorithm to solve

the Normal Equation. Thus, for each frame, there are two types of parameters

to be coded: the filter parameters and the excitation parameters. A variety of

techniques have been employed in each case, and a good overview of the various

approaches and related theory can be found in [57]. Generally, fixed-rate quanti-

zation schemes (wherein every codeword has the same length) are used for speech
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coding, reflecting the need for constant delay in a telecommunications setting. Tra-

ditional speech coding systems limit the input signal bandwidth to around 4 kHz,

which is sufficient for intelligibility but results in degraded clarity and presence.

In recent years, interest has grown in wideband speech coding, which utilizes a

bandwidth of 8 kHz, producing improved audio quality. This extra bandwidth, in

turn, requires that the order of the all-pole filter model increase to 16, compared to

10 in the traditional narrowband case. The increased sample rate likewise requires

more complex excitation coding schemes. While the issue of excitation coding

will be considered in Chapter 4, the majority of this dissertation will focus on the

quantization of the filter parameters, also known as spectrum coding.

In most modern speech coders, the LPC coefficients are parameterized as

Line Spectral Frequencies (LSFs), which have a variety of desirable properties. For

example, it is simple to check the stability of a filter expressed in terms of LSFs,

and the process of interpolation is well-behaved. The error between a spectrum and

its quantized version is typically measured using Log Spectral Distortion (LSD),

given as:

LSD =

√√√√ 1

2π

∫ π

−π

(
10 log10

(
1

|A(ω)|2
)
− 10 log10

(
1

|Â(ω)|2

))2

dω

where 1
A(ω)

is the frequency response of the all-pole filter described by

the LSF coefficients, and 1

Â(ω)
is the frequency response of the quantized version.

This measure has been found to be a good approximation of perceptual quality,

and is widely used. The problem of wideband speech LSF quantization under

the LSD measure is used to illustrate the performance of the proposed systems

throughout this dissertation. This problem, and the similar narrowband case, have

been studied extensively. See [9], [10], [11], [12], [13] or [14] for the narrowband case.

An LSF quantization system is said to achieve transparent quality if it produces an

average LSD of no more than 1dB, less than 1% of outliers in the 2-4dB range, and

negligible larger outliers. It should be noted that some authors (such as [16]) utilize
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a less strict definition of transparent quality in the context of wideband speech,

typically allowing more outliers and a higher average distortion. While this work

utilizes a strict definition in order to ensure that the results are applicable to a wide

range of speech coding systems, results will be reported for a range of operating

rates to accommodate differing transparency criteria. In [15], Gosset lattices are

utilized for wideband speech LSF quantization, attaining transparent quality at

around 45 bits per frame. In [16], MSVQ is employed and results in transparent

quality at around 50 bits per frame. Both of these works consider only memoryless

systems. In contrast, [17] presents a Pyramid VQ-based approach that exploits

correlation between successive LSF vectors, attaining transparent quality around

44 bits per frame. It is noteworthy that essentially all authors have found that

rates around 40 bits per vector (or higher, in the memoryless case) are required for

high quality quantization of wideband LSF vectors. In such a regime, full-search

VQ is impractical, both in terms of storage and complexity, and even training.

Indeed, the usual requirement for speech coding systems is that they operate in

real time, and with minimal storage, which requires the use of a quantizer with

some special structure.

1.1.2 Background on Quantization

This section gives a brief introduction to the subject of fixed-rate quan-

tization, a process through which a continuous-valued source is represented in

terms of some finite number of codepoints. A general overview of many aspects of

quantization can be found in [7] or [8]. Consider the fixed-rate quantization of a

source x ∈ R
d, with a probability density function fx(x). Generally, a fixed-rate

quantizer is defined by a codebook {x̂1, . . . , x̂N}, where N = 2rd is the number of

codepoints and r is the rate, in bits per dimension, and a mapping Q(x), called

the encoder which maps each input vector to a codepoint. Associated with each

codepoint x̂i, then, is a Voronoi region Ri consisting of all input points that Q

maps to the i-th codepoint: Ri = {x ∈ R
d|Q(x) = x̂i}. Thus, a quantizer al-
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lows the input to be represented using a binary index of length rd, at the price of

some error. The performance of a quantizer is measured using a distortion measure

d(x,Q(x)), which is required to be smooth and greater than or equal to zero except

when Q(x) = x. The most prevalent distortion measure is Mean Squared Error

(MSE), given by d(x,Q(x)) = ||x − Q(x)||2. A more flexible class of distortion

measures is input-weighted squared error, given as d(x,Q(x)) = ||x − Q(x)||2S(x),

which incorporates a variable sensitivity matrix S(x). Here, S(x) is a symmet-

ric, positive-definite matrix, called the sensitivity matrix. Analysis of quantization

under input-weighted distortion measures can be found in [20] and [21], for the

fixed-rate case, and in [22] and [23] for the variable-rate case. Further results re-

lating to its application in speech coding can be found in [26]. A wide variety of

distortion measures, and in particular Log Spectral Distortion, can be accurately

approximated at high rates in this fashion, which can be seen by appeal to a Taylor

series argument. Details of the calculation of the sensitivity matrix for LSD on

LSF vectors are given in [20]; notably, S(x) is diagonal in this case. More recently,

the sensitivity matrix has been utilized to incorporate advanced auditory models

into signal processing and coding applications (see [55]).

The goal in quantizer design, then, is to minimize the expected distor-

tion Ex d(x,Q(x)). For an optimal quantizer, two conditions can be derived: the

Nearest Neighbor Rule and the Centroid Condition. The Nearest Neighbor Con-

dition states that, given a fixed codebook, the optimal encoder Q(x) should map

each input to the codepoint with the smallest distortion. The Centroid Condition

states that, given a fixed encoder, each codepoint should be the centroid of its

Voronoi region, in the sense of minimizing the average distortion. The well-known

Lloyd algorithm alternatingly applies the Centroid Condition and Nearest Neigh-

bor Rule to produce an iterative quantizer design method, resulting in a quantizer

that reflects the source statistics and distortion measure. However, this method

is suitable only for unstructured quantizers, where one is free to move each code-

point independently, and so has limited application to the design of structured
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quantizers.

1.2 High-Rate Training of Structured Quantizers

For quantizers without structure, implementing the Nearest Neighbor

Rule requires computing the distortion of every possible codepoint. However, since

the number of codepoints grows exponentially with the rate and dimension, this

quickly becomes untenable for high-quality quantization of sources with large di-

mension. For example, wideband speech spectrum coding requires codebooks with

trillions of codepoints to quantize spectrum vectors with d = 16 at sufficient qual-

ity. Such a codebook is too large to even store, let alone search in a reasonable

time, and so structured quantizers must be employed to bring down the search

and storage complexity. A structured quantizer works by introducing constraints

on the allowed arrangements of codepoints, allowing reduced-complexity encod-

ing. Furthermore, a structured quantizer is typically specified by a small set of

parameters, easing the storage requirements. That is, the codebook is implicitly

defined by the parameters and choice of structure, rather than stored explicitly as

in unstructured quantization. The structures considered here are all based on the

scalar transform coder, where each coefficient of a transformed input vector source

is quantized independently, resulting in a complexity that grows linearly with the

dimension of the source vector. Furthermore, if the scalar quantizers are imple-

mented with companders, this type of quantizer can have complexity which does

not depend on the rate. However, the constraints imposed by the structure lead

to losses in performance. This can be extended to a more flexible structure using

the Gaussian Mixture Vector Quantizer (GMVQ) approach, wherein M different

scalar transform coders are operated in parallel, and the best output is selected

using a vector quantizer. This approach is able to reflect more complex statistics

and distortion measures, as well as improve the cell shapes, with a complexity that

is linear in d and M . A variety of extensions of the basic transform coder and the
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GMVQ are presented which extend their capabilities. In the case of the transform

coder, a more flexible scalar quantizer called a Gaussian Mixture Compander is

introduced, which allows flexible scalar quantizers with rate-independent complex-

ity. For the GMVQ, methods using Hidden Markov Models are employed to build

high-performance recursive quantizers, which are able to exploit dependence on

previously-quantized source vectors.

For all of these structured quantizers, a design method is needed that will

balance the various factors, including source statistics, distortion measure and cell

shapes, to minimize the expected distortion. The Lloyd algorithm cannot be used

here, because it does not take into account the constraints imposed by the struc-

tures. Moreover, any Lloyd-style method which depends on computing updates for

individual codepoints will prove impractical, due to the huge codebooks of inter-

est. What is required, then, is an expression for the expected distortion in terms

of the parameters of the quantization structure, which are far less numerous and

often independent of the rate. This is provided by the High-Rate theory, which

gives a simplified expression for quantizer performance when the rate becomes

large. This allows the design of structured quantizers to be performed through

minimization of the high-rate distortion. While this is analytically tractable in

certain special cases (i.e., a scalar transform coder operating on a Gaussian source

under MSE distortion), a data-driven approach is adopted in which statistics are

inferred directly from training data, and the various performance factors are auto-

matically balanced to minimize high-rate distortion. The remainder of this section

provides background on the high-rate analysis, with an eye towards use in training

of structured quantizers.

Denote the parameters of a structured quantizer by θ ∈ Θ. That is, any

particular setting θ implies a sequence of fixed-rate quantizers, one for each possible

rate. One wishes to select the parameters so as to minimize the distortion incurred

at any particular rate or, equivalently, to minimize the rate required to transmit

with a particular distortion. The high rate analysis of quantizers is based on the
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assumption that the rate r is sufficiently high that fx(x) can be approximated as a

constant over any cell in the quantizer. For input-weighted squared error, it is also

necessary to assume that S(x) is constant over any cell. Under these conditions,

the expected distortion of an rate-r quantizer is given by Bennett’s Integral [1]:

Dθ(r) ≈ 2−2r E
(
mθ(S,X)λ

−2/d
θ (X)

)
(1.1)

Where mθ(S, x), called the inertial profile, and λθ(x), called the point

density, describe the fine and coarse structures of the class of quantizers, respec-

tively. Specifically, if R(x) denotes the cell containing x, and V (x) its volume

(Lebesgue integral):

λ(x) ∼= 2−rd

V (x)
(1.2)

m(S, x) ∼=
∫
R(x)

(x− y)TS(x)(x− y) dy

V (x)1+ 2
d

(1.3)

That is, the inertial profile describes the local shape of the quantizer cells

and sensitivity matrix, and the point density describes the inverse of the local cell

volume. The denominator in Eq. (1.3) ensures that m(x) is insensitive to scaling

of R(x). Notice that the dependence on r in Eq. (1.1) is entirely in the exponential

term, while the dependence on θ is entirely in the coefficient. Thus, the problem

of finding the optimal θ becomes, for the high-rate case, that of minimizing the

distortion coefficient :

min
θ∈Θ

E
(
mθ(S,X)λ

−2/d
θ (X)

)
(1.4)

The standard approach to quantizer analysis is to first deal with the in-

ertial profile, and then to handle the point density. For example, in [20], it is

conjectured that an optimal quantizer will have cells that are well-approximated

by ellipsoids aligned with the eigenvectors of S(x), and having elongations pro-

portional to its eigenvalues. This results in mopt(x) = d
d+2

κ
−2/d
d |S(x)|1/d, where κd
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is the volume of a d-dimensional unit sphere. Using this expression results in an

asymptotically tight lower bound on the performance of optimal quantizers. Using

this approximation, one can then solve for the optimal point density, which is:

λopt(x) ∝ |S(x)|1/df
d

d+2
x (x)

Substituting these expressions into Eq. (1.1) results in an approximation

of the distortion of an optimal quantizer under source density fx(x) and distortion

sensitivity S(x):

Dopt(r) ≈ 2−2r d

d+ 2
κ
−2/d
d

(∫

Rd

(
|S(x)| 1

dfx(x)
) d

d+2

dx

) d+2
d

In the case of quantizers with structure, analysis of the inertial profile is

more complex, because the cells may take on irregular shapes and the shapes may

vary throughout the space. Moreover, the inertial profile for a structured quantizer

typically depends on the parameters θ, as opposed to an optimal quantizer, wherein

the inertial profile is determined entirely by the distortion measure and source

dimension. The inertial profiles for various scalar quantizers, such as the transform

coder, are given in [1]. Moreover, for a quantizer with a suboptimal inertial profile,

the best point density may depart from λopt(x) as the arrangement of codepoints

should vary to compensate for the fine structure. Thus, to utilize the high-rate

approximation in training of structured quantizers, it is first necessary to derive

expressions for the inertial profile and point density of the system in question as

functions of the parameters. These expressions are then substituted into Eq. (1.4)

to result in the high-rate training problem.

The High-Rate analysis for scalar transform coders under input-weighted

squared error is presented in Chap. 2, along with the associated data-driven high-

rate training algorithm, which is similar to the approaches used in Independent

Components Analysis. Similarly, the high-rate analysis for GMVQ is explored

in Chap. 3, and the training problem is considered. In this case, the resulting
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algorithm is closely related to the well-known EM algorithm. This approach is then

extended to handle the recursive case, using HMMs. Various implementational

details of the systems are discussed, and their performance on the wideband speech

spectrum problem is explored. In particular, HMM-based recursive quantizers

using the GMVQ framework are able to achieve substantial savings compared to

other approaches in the literature.

1.3 Speaker-Dependent Wideband Speech Coding

Traditional approaches to coding of speech (and, indeed, most sources)

operate in a speaker-independent manner. That is, a single coder is designed and

used for every speaker. This has a number of advantages, notably that only a single

design process need be performed, which can be carried out ahead of time using

a large multi-speaker database. However, because of variations in statistics be-

tween speakers, improved performance can be obtained by using speaker-dependent

coders. The impact of speaker-dependence is well-known in other realms of speech

processing, particularly speech recognition (see [2]) and enhancement (see [44]),

and also very-low rate coding see [46], [43]). In the more traditional realm of

CELP-based speech coding, however, this potential remains unexplored. One rea-

son for this is that training for speaker-dependent coding must be performed in

the field, where the systems have access to example input data from the individ-

ual speakers in question, requiring online training architectures. Furthermore, the

resulting coder designs must be distributed to the other users to enable commu-

nication. Also, there is the requirement of robustness, which is to say that wild

fluctuations in quality should be avoided when the speaker-dependent coder does

not match the current user. This issue would arise if, for example, the user of a

speaker-dependent coder were to hand his phone to a friend in the middle of a call.

Chapter 4 considers issues related to speaker-dependent coding in a com-

prehensive fashion, first experimentally quantifying the gains available from speaker-
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dependent coding in a CELP framework, and then addressing the various system

implementation issues. A CELP coder has three types of parameters which must

be quantized in each frame: spectrum parameters, adaptive codebook parame-

ters and fixed codebook parameters. Additionally, different distortion measures

are appropriate to each type of parameter. In order to test the performance gains

available in each type of parameter, then, a sufficiently flexible quantization scheme

is required which can accurately reflect the variations in statistics under the ap-

propriate distortion measures. The high-rate optimized GMVQ framework meets

this requirement nicely, and so is employed to quantify the benefits of speaker-

dependent coding. Gains of around 10% are found for the coding of LSF param-

eters, while it is shown that there is little benefit to coding of adaptive codebook

parameters. The potential benefits are most dramatic in the case of the fixed

codebook parameters, where savings amounting to 10-20% of the total bitrate are

demonstrated. It should be noted that speaker-dependence is only one aspect that

would affect performance in a real-world telecommunications system. One can also

consider user-dependence, which would include not only the effects of the speaker,

but also differences in background noise, acoustic environment and end-user equip-

ment. However, due to the lack of any accepted models for such variations, and the

difficulties inherent in collecting sufficient example data to quantify these effects,

this work seeks only to quantify benefits due to variations in the speaker. This can

be seen as a first step in quantifying the benefits in the full user-dependent case,

providing a baseline estimate. Moreover, the various techniques for implementation

that are presented would apply directly to the user-dependent case.

The most pressing challenge for speaker-dependent systems is the require-

ment for online training and dissemination of the resulting coder designs. In light

of this, a variety of training architectures are presented, which strike different bal-

ances between training complexity, transmission overhead, and performance. An

important problem in this context is learning on quantized data, which allows the

training to be carried out in locations remote from the end user. Quantizers us-
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ing scalar transform coders, and in particular the GMVQ, can cause problems in

the context of learning on quantized data, as they often place codepoints in sub-

spaces. To correct this, a modification to the decoder is presented which avoids

this problem. Then, the penalty for using quantized data in learning is quantified

as a function of the encoding rate, and found to be small for rates of interest in

spectrum coding. Another important technique is recursive learning, wherein the

learning takes place on a frame-by-frame basis. This eliminates the storage com-

plexity associated with the learning process, and also enables adaptive operation.

Techniques for recursive learning of GMVQ systems are presented, and shown to

achieve the same performance as traditional batch learning. In order to provide

robustness against incorrect speaker models, a safety-net quantization approach

is examined. This method can be naturally incorporated into the GMVQ frame-

work, and a modification to the GMVQ learning methods is presented which allows

precise trade-off between robustness and performance.



2 High-Rate Design of

Transform Coders with Gaussian

Mixture Companders

This chapter considers the problem of designing fixed-rate scalar trans-

form coders. Transform coding is a popular method for quantizing vectors of data

using only scalar quantizers. As a result of this structure, transform coders have a

number of desirable properties, such as small storage requirements and low coding

complexity. The price for these features is that the transform coder suffers from

inferior performance as compared to a full-search VQ, or other more flexible quan-

tizers. Figure 2.1 illustrates the structure of a transform coder using companding

scalar quantizers.

Many approaches to transform coding depend on fixing the transform in

some way, often by assuming the source is Gaussian (see [1], [2], [3]), in which

case the Karhunen-Loeve Transform (KLT) is the optimal transform, at least at

high rates. In other cases, only certain convenient transforms are considered: an

example would be the DCT in image coding [4]. While the problem of designing

such a structure (i.e., selecting T , Ki’s, gi’s and hi’s) is well-understood for the

case of multivariate Gaussian data and Mean Squared Error (MSE) distortion

measure, this paper considers a more general problem in which the distribution

is unknown, and presumably non-Gaussian. As discussed in [5], the KLT may be

13
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Figure 2.1: Transform coder using companding scalar quantizers. T is an orthogo-

nal matrix, gi and hi are (nonlinear) compressor and expander functions, and the

parameters Ki specify the allocation of codepoints between the scalar companders.

a very poor choice for non-Gaussian sources. Additionally, this paper considers

more general input-weighted distortion measures, which can approximate a wide

variety of practical distortion measures such as Log Spectral Distortion (LSD).

To accommodate these concerns, an algorithm is developed to set the parameters

of the system using a data-driven design technique that automatically balances

the source statistics, distortion measure, and structure of the transform coder to

minimize high-rate distortion. To allow for unknown source statistics, a flexible

compander system based on Gaussian Mixtures is presented. Modifications to the

scheme for operation at moderate rates, utilizing unstructured scalar quantizers,

are also discussed.

The problem of designing a transform coder for minimum distortion from

a database has also been considered by Archer and Leen in [6]. There are several

distinctions between that work and the ideas presented here. First, this chapter

focuses on fixed-rate systems, whereas [6] covers the variable-rate case. Next, this

work considers a more general distortion measure, where Archer and Leen focused

only on MSE (although their work could be extended in a straightforward way).
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Finally, this system is rate-independent in that it admits operation at arbitrary

rates with no additional storage or training requirements, whereas the approach in

[6] must be repeated for every distinct operating rate. The problem of learning the

optimal transform for a variable-rate transform coder was also considered in [3] for a

Gaussian source with unknown covariance. In this work, however, Gaussianity will

not be assumed. Another similar previous work is [4], which considers the variable-

rate transform coding of images and uses Gaussian mixtures to model the marginal

source densities. In that work, however, the transform is considered as fixed and

only the problem of learning the component scalar quantizers is addressed.

To illustrate the performance of the proposed system, this chapter first

presents a toy problem. This problem is similar to Example V.2 in [5] (which

demonstrates the suboptimality of the KLT), and demonstrates that the high-

rate design scheme will identify the optimal transform coder settings, including

the effects of both the statistics and distortion measure. To examine real-world

performance, the example of wideband speech LSF quantization with the LSD

measure, is then considered. The transform coder has many desirable implementa-

tional properties, as one need only store the system parameters, which are typically

far less numerous than the aggregate number of codepoints in the corresponding

codebook. As will be seen in Section 2.5, optimized transform coder systems

are able to achieve comparable performance to MSVQ. Furthermore, if the scalar

quantizers are implemented with companders the encoding complexity becomes

rate-independent. Since the parameters of the system are also independent of the

rate of operation, the companding transform coder is able to operate at practically

arbitrary rates with no additional storage or complexity requirements. Addition-

ally, the performance of transform coders with high-rate optimized transforms and

allocations, but Lloyd-optimized codebooks, is examined. Such systems offer su-

perior average distortion performance as compared to companders, but turn out

to result in degraded outlier performance. Their application also demonstrates the

utility of high-rate design of the transform at moderate rates where companders
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suffer from poor performance.

This chapter is organized as follows: Section 2.1 reviews the high-rate

analysis of transform coders. Previous results are extended to the case of input-

weighted squared error, and the implications for the design problem are discussed.

Section 2.2 details the data-driven design algorithm, which designs the system by

minimizing estimated high-rate distortion. Section 2.3 describes modifications to

the coding and training schemes for operation at moderate rates, using unstruc-

tured scalar quantizers. Section 2.4 details the implementation of the proposed

systems, with a special emphasis on the GM compander. Section 2.5 presents ex-

perimental results utilizing the proposed system and associated design algorithm

for a toy problem and for wideband speech LSF quantization. Section 2.6 contains

a discussion of the system and its performance, while Section 2.7 gives the details

of an integral that is utilized in the high-rate analysis of Section 2.1.

2.1 Scalar Quantizers and Transform Coders

As discussed in Chapter 1, the first step in high-rate analysis is to consider

the inertial profile. For many systems of intermediate complexity, no closed-form

expression is available for the inertial profile. However, certain strongly structured

quantizers are simple enough to allow closed-form analysis. One such case is the

transform coder, in which all cells are hyperrectangles. Due to this structure, the

transform coder suffers from space-filling loss, oblongitis, and a limited ability to

exploit dependence between the elements of X (see [25] for a detailed explanation).

The high-rate approximation for a transform coder under MSE is given

in [1]. Here, this analysis is reviewed and extended to the case of input-weighted

squared error. First, consider the case of a product quantizer, or the special case of

a transform coder with T = I. Such a quantizer has cells that are hyperrectangles,

aligned with the coordinate axes: R = R1 × . . . × Rd. If λθi
(yi) are the point

densities of the scalar quantizers, and Ki are the numbers of levels assigned to
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each of them, the high-rate approximation is that a cell centered at a point y,

denoted R(y), has side lengths given by Ri(yi) = (Kiλθi
(yi))

−1. The volume of

a such a cell, then, is V (y) =
∏d

i=1(Kiλθi
(yi))

−1 = (Kλθ(y))
−1, where K is the

total number of codepoints (i.e., 2dr) and λθ(y) is the total point density. Using

the result in Section 2.7 to evaluate the numerator of Eq. (1.3), the inertial profile

for a product quantizer is given by:

mθ(S, y) =
(Kλθ(y))

2/d

12

d∑

i=1

sii(y) (Kiλθi
(yi))

−2 (2.1)

Where sii(y) is the i-th diagonal element of S(y). This paper will param-

eterize the level allocations in terms of new variables βi as follows:

Ki = K1/dβi

(
d∏

j=1

βj

)−1/d

Where βi > 0, insuring that Ki > 0. Notice that the form of this

parametrization insures that
∏d

i=1Ki = K. For training purposes, the constraint

that the Ki’s must be integers is ignored. This is done because such a constraint

is difficult to include in the estimation procedure, and because it would make the

training depend on the exact rate of operation. Instead, a pruning algorithm is ap-

plied to meet the constraint when implementing the coder, as described in Section

2.4. Combining these results, and substituting into Eq. (1.1) gives:

Dprod
∼= 2−2r 1

12

(
d∏

j=1

βj

)2/d d∑

i=1

β−2
i E

(
sii(Y )λ−2

θi
(Yi)

)
(2.2)

As described in [1], this analysis can easily be extended to the transform

coder by defining Y = TTX and noticing that, since T is orthogonal, λθ(x) =

λθ(Ty) and λθi
(yi) = λθi

(tTi x), where ti is the i-th column of T . As discussed

in [26], it is easily seen that S(y) = TTS(x)T , and so sii(y) = ||ti||2S(x). Substituting

these relations into Eq. (2.2) gives the approximation for a transform coder:



18

Dθ
∼= 2−2r 1

12

(
d∏

j=1

βj

)2/d d∑

i=1

β−2
i E

(
||ti||2S(X)λ

−2
θi

(tTi X)
)

(2.3)

Notice that this objective function is similar to one used in Independent

Components Analysis or Blind Source Separation (see [27]). In those settings, one

seeks to minimize the sum of the marginal entropies of the transformed components

(and, hence, their mutual information):

min
θ,T

d∑

i=1

E
(
log λ−1

θi
(tTi X)

)

In that case, the density functions λθi
are interpreted as the (model)

probability densities of the components, rather than as the point densities of scalar

quantizers applied to them. Moreover, the transform coder design case has the

added elements of level allocation (the βi terms) and weighting due to the distortion

measure. Nevertheless, the basic structure of the objective function is similar

in both cases: a sum of expectations of a decreasing, convex function of each

transform coefficient’s density. The differences between the two objective functions

emphasize that in fixed-rate transform coder design, unlike ICA, one does not

necessarily seek a transform which results in the components being independent

in the usual statistical sense, but rather one which results in the components

being amenable to independent quantization. The similarity between the two

objective functions, on the other hand, suggests that their respective solutions

may be similar, and informs the widespread intuition that independent transform

coefficients are desirable in fixed-rate transform coding.

2.1.1 Point Densities

To facilitate a variational design algorithm, this work utilizes a specific

parametric form for the point densities implemented by the scalar quantizers (i.e.,

the compressor and expander functions). It would be ideal for optimization pur-

poses if the point densities were such that they resulted in a positive quadratic
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when taken to the power −2, as in Eq. (2.8). However, the function (C + x2)−1/2

does not have a finite integral over R, and so there is no point density that would

result in such a quadratic. As will become apparent in the next section, this com-

plicates the estimation problem. In the case of a transform coder operating in the

large-d case, it could be argued that the optimal point densities should be Gaus-

sian, since the Central Limit Theorem would imply that tTi X would approach a

Gaussian for each i. However, it is not clear that T = I, or something close to it,

is not the optimal setting for some distributions fx(x) (see [5]), in which case the

Central Limit Theorem would not be in effect. Moreover, simulation results have

shown that the marginal densities of 16-dimensional speech spectrum vectors fail

statistical tests for Gaussianity, both for naive and optimized settings of T . To

allow for unknown statistics, this work employs a flexible class of point densities

which are mixtures:

λθi
(yi) =

M∑

m=1

αimλim(yi)

This class of point densities can, as M grows large, approximate a wide

variety of densities. Even for low values of M , mixtures are able to model fea-

tures such as multimodality and skew. As will be discussed in Section 2.4, mix-

ture point densities require an iterative decoder in order to operate a compan-

der. This work will also assume that the component point densities are Gaussian:

λim(yi) = N(yi|µim, σ
2
im) Thus, we have θ = {T, β, α, µ, σ2} where TTT = I,

βi > 0,
∑M

m=1 αim = 1 and σ2
im > 0. An important point to note is that the use of

Gaussian Mixtures implies that the tails of the point densities will be Gaussian.

In situations where the data has heavier tails, this is inappropriate. However, for

sources with finite support, such as images or speech spectrum vectors, this issue

is of less concern. While the Gaussian Mixture point densities will always place

some finite mass outside the support region, this effect quickly becomes negligible

as M increases, as will be seen in Section 2.5.
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2.2 Data-Driven Transform Coder Design

The problem at hand is to minimize the high-rate distortion of a transform

coder, as given in Eq. (2.8). As described in the preceding subsection, mixture

point densities are assumed. Suppose that one has no knowledge of the distribution

except for a set of samples {x1, . . . , xN}, drawn i.i.d. from fx(x). In this case, the

Strong Law of Large Numbers can be invoked to replace the expectations in Eq.

(2.8) with averages over the data. After dropping terms that do not depend on

the parameters, the data-driven high-rate design problem is given by:

min
θ∈Θ

(
d∏

j=1

βj

)2/d d∑

i=1

β−2
i

N∑

n=1

||ti||2S(xn)

(
M∑

m=1

αimλim(tTi xn)

)−2

(2.4)

where the quantity being minimized is now an estimate of the distortion

coefficient. In order for this approximation to be valid, it must satisfy a number

of requirements. First, the expected distortion must be finite for any θ under

consideration. Moreover, one would like the variance of the integrands in Eq.

(2.8) be finite, although this is not strictly necessary. Practically speaking, these

requirements mean that one will need to use good initializers. While it can be

difficult to ensure these requirements are met in the general case, for sources with

finite support regions (such as speech spectrum vectors or images), a sufficient

condition is that the point densities be greater than 0 over the support. Note that

this is satisfied by the Gaussian Mixture point densities considered here. While

this property guarantees the analytical validity of the approximation, one still

requires good initializers to keep the quantities inside numerical resolution, and

to aid in finding a global optimum. Lastly, one should use large enough sets of

training data to avoid overtraining. Note that this design procedure is intended

to be carried out off-line, and so its complexity does not come to bear on the

operation of the resulting transform coder. Also, while successive LSF frames are

actually correlated, this dependence is ignored here, as all of the systems under

consideration are memoryless; only intra-frame dependencies are exploited.
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It is difficult to directly optimize Eq. (2.9) over all parts of θ simulta-

neously. As such, this chapter proposes an iterative algorithm that alternatingly

optimizes over subsets of parameters while holding the others fixed. Specifically,

each iteration first optimizes over the transform, then over the point density pa-

rameters, and then over the level allocations. For the transform, this work utilizes

the steepest descent approach proposed by Manton in [28], which is briefly reviewed

in Section 2.2.1. The point density parameters are optimized with an extension

of the EM algorithm, which is presented in Section 2.2.2. The level allocation pa-

rameters are handled by a standard Lagrange multiplier approach, as discussed in

Section 2.2.3. The overall optimization algorithm in summarized in Section 2.2.4.

2.2.1 Transform Optimization

First, consider the problem of optimizing the transform T . While ana-

lytically tractable in the case that X is a multivariate Gaussian and MSE is the

distortion measure, it is not known generally how T ought to be set [5]. Thus, this

work proposes an iterative numerical approach. The problem in this case is:

min
TTT=I

d∑

i=1

β−2
i

N∑

n=1

||ti||2S(xn)

(
M∑

m=1

αimN(tTi xn|µim, σ
2
im)

)−2

(2.5)

To solve this problem, one can turn to the generic algorithms for opti-

mization over unitary matrices presented in [28]. Specifically, this paper utilizes

the constrained steepest-descent method, which requires evaluation of the deriva-

tive of the objective function. Noting that the objective is a sum of d terms, each

of which depends only on a single column ti, one may write each column of the

derivative G as follows:

Gi = 2β−2
i

N∑

n=1

(
M∑

m=1

αimN(tTi xn|µim, σ
2
im)

)−2

×
{
S(xn)ti + ||ti||2S(xn)

M∑

m=1

(
rmn

tTi xn − µim

σ2
im

)
xn

}
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Where rmn is as defined in Eq. (2.7). Having evaluated this derivative

at the current estimate T , one then finds Z, the steepest descent direction in the

tangent space to the constraint manifold at T , as follows:

Z = TGTT −G

An improved estimate T̂ , then, is found via a projected linesearch ap-

proach along the descent direction Z. That is, one begins with some stepsize γ,

which implies a new estimate of T + γZ. However, this new matrix may not be

orthonormal, so it is projected it onto the Stiefel manifold utilizing an SVD. That

is, if UΣV T = T + γZ, the projection is T̂ = UV T. The stepsize is then varied

and the process repeated until a suitable stepsize is identified (i.e., small enough

to ensure convergence, but large enough that convergence is not too slow). To

save computation, the Frobenius norm of Z is checked at each iteration and, if it

is found to be small, no update is performed.

2.2.2 Point Density Optimization

Notice that, due to the structure of the transform coder, the overall ob-

jective function, Eq. (2.9), is a sum over functions of the different scalar quantizers,

and so they may be optimized independently. For the i-th scalar quantizer, the

optimization problem is:

min
θi

N∑

n=1

||ti||2S(xn)

(
M∑

m=1

αimλim(tTi xn)

)−2

(2.6)

Such a problem can be approached with an extension of the EM algo-

rithm. Where conventional EM applies Jensen’s inequality to a logarithm to con-

struct a bound on the objective function (see [29]), this work does the same with

the power function (·)−2. That is, let rmn be some positive numbers such that
∑M

m=1 rmn = 1 , ∀n. Then:
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N∑

n=1

||ti||2S(xn)

(
M∑

m=1

αimλim(tTi xn)

)−2

=
N∑

n=1

||ti||2S(xn)

(
M∑

m=1

rmn
αimλim(tTi xn)

rmn

)−2

≤
N∑

n=1

||ti||2S(xn)

M∑

m=1

rmn

(
αimλim(tTi xn)

rmn

)−2

=
N∑

n=1

||ti||2S(xn)

M∑

m=1

r3
mn

(
αimλim(tTi xn)

)−2

Notice that the bound is in the form of a sum over m, which will ease the

optimization problem. The idea is to use this construction iteratively, selecting

rmn based on a previous estimate θ̂i. One would like to set the bound as tightly

as possible; specifically, one would like to attain equality in the second line above

when θi = θ̂i. It can easily be seen that this criterion is met by the same setting

as in conventional EM:

rmn =
αimλim(tTi xn)

∑M
p=1 αipλip(tTi xn)

(2.7)

It can also be shown that using Eq. (2.7) results in the bound having

the same derivative as the underlying objective function at θi = θ̂i. Thus, one

may construct an iterative optimization procedure for θi by starting with some

initial guess θ0
i and then alternating between applying Eq. (2.7) and selecting

a new estimate by optimizing the resulting bound. The next two subsubsections

discuss optimization of the bound over the mixture weights and density parameters,

respectively.

Mixture Weights

Recalling the constraint
∑M

m=1 αim = 1, form the usual Lagrange multi-

pliers objective:

f(αi) =

M∑

m=1

α−2
imcim + λ

M∑

m=1

αim
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Taking the derivative and setting it to zero results in the following rela-

tions:

αim =
3

√
2cim
λ

, ∀m

Substituting these results into the constraint and solving for λ results in

the optimal setting for αi:

αim =
3
√
cim∑M

p=1
3
√
cip

, ∀m

=

3

√
σ2

im

∑N
n=1 ||ti||2S(xn)r

3
mne

σ−2
im (xn−µm)2

∑M
p=1

3

√
σ2

ip

∑N
n=1 ||ti||2S(xn)r

3
pne

σ−2
ip

(xn−µp)2
, ∀m (2.8)

Component Means and Variances

Optimization of the means and variances of each component is not pos-

sible in closed form for the Gaussian case. It has been observed in practice that

Newton’s method works fine on both problems, provided a reasonable initializer

is used. Applying Newton’s method gives the following update iteration for µim,

based on the previous guess µ̂im:

µim = µ̂im +

∑N
n=1 ||ti||2S(xn)r

3
mne

σ−2
im

(xn−µ̂im)2(xn − µ̂im)
∑N

n=1 ||ti||2S(xn)r
3
mne

σ−2
im (xn−µ̂im)2

(
1 + 2σ−2

im (xn − µ̂im)2
) (2.9)

Similarly, we obtain a recursion for σ2
im in terms of σ̂2

im:

σ2
im = σ̂2

im

(
1 − γ

∑N
n=1 ||ti||2S(xn)r

3
mne

σ̂−2
im (xn−µim)2(1 − σ̂−2

im (xn − µim)2)
∑N

n=1 ||ti||2S(xn)r
3
mne

σ̂−2
im (xn−µim)2 σ̂−2

im (xn − µim)2

)
(2.10)

Here, γ is a stepsize parameter, initialized to be 1, that is used to search

for positive settings of σ2
im. That is, it is iteratively multiplied by 1

2
until the

resulting value of σ2
im is positive.
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2.2.3 Level Allocation Optimization

This subsection considers the problem of optimizing the level allocation β.

With the other parameters fixed, the problem becomes (after taking the logarithm):

min
β>0

2

d

d∑

j=1

log βj + log

d∑

i=1

ciβ
−2
i

Taking the derivative of this expression and setting it to zero gives the

following equations:

β−2
i ci∑d

j=1 β
−2
j cj

=
1

d
, ∀i

In other words, one should choose the allocation that balances the distor-

tion of each coefficient in the sense that β−2
1 c1 = β−2

2 c2 = . . . = β−2
d cd. This can be

accomplished by setting β1 = 1 and then applying the equation βi =
√

ci

c1
, ∀i ≥ 2.

That is:

β∗
i =






1 , i = 1√
∑n

n=1 ||ti||
2
S(xn)(

∑M
m=1 αimN(tTi xn|µim,σ2

im))
−2

∑n
n=1 ||t1||2S(xn)(

∑M
m=1 α1mN(tT1xn|µ1m,σ2

1m))
−2 , i ∈ {2, . . . , d}

(2.11)

Thus, an optimal allocation results in each coefficient contributing equally

to the total distortion. It is instructive to consider the distribution of β’s, which

indicates the energy compaction of the transform coder. This property, which is

typical of the KLT, refers to instances in which most of the energy is confined to a

small number of the transform coefficients. While energy compaction is generally

considered beneficial in coding problems, it also comes to bear on the rates at

which the high-rate assumptions are appropriate. Recall that the derivations in

Section 2.1 assumed that all of the scalar quantizers were operating at high rates.

With low energy compaction, each quantizer will receive around the same number

of levels, so an overall rate of r > 3 (or possibly lower) should be sufficient. In
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cases where energy compaction is large, a higher rate is required to ensure that

most (if not all) quantizers are in high-rate.

2.2.4 Summary of Data-Driven Transform Coder Design Algorithm

The minimum high-rate distortion design algorithm is summarized below:

1. Start with an initial guess of the transform T .

2. Initialize the other parameters as follows:

• Compute the transformed data Y = TTX

• For each transform coefficient i, initialize the point density parameters

by applying the K-means algorithm to the set of scalar data {yi}.

• Set all βi’s to 1.

3. Optimize the transform by applying the steepest descent method described

in Section 2.2.1

4. Optimize the point density and level allocation parameters as follows:

• Compute the transformed data Y = TTX

• Perform one or more iterations of the extended EM algorithm of Section

2.2.2 to optimize the point densities:

– Compute rmn using Eq. (2.7)

– Update mixture weights using Eq. (2.8)

– (Optional) Recompute rmn using Eq. (2.7) to reflect updated weights

– Update component means using one or more iterations of Eq. (2.9)

– (Optional) Recompute rmn using Eq. (2.7) to reflect updated means

– Update component variances using one or more iterations of Eq.

(2.10)

• Update level allocation (βi’s) using Eq. (2.11)
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5. Return to Step 3 unless convergence has been reached.

To initialize the algorithm, one needs an initial guess of the transform.

Two obvious choices are the KLT and identity matrices, which will always be

included in this work. One can easily generate more guesses by creating random

Givens rotations and applying them to other initializers, to each other, or just using

them as initializers directly. It will be especially important to try a wide variety of

initializers for this problem, as the flexibility of the mixture point densities will give

rise to many local minima. Given an initial transform, the K-means algorithm is

applied to each dimension of the transformed data to initialize the point densities.

Specifically, the mixture weights are set according to the proportion of points

assigned to each cluster, and the means are initialized as the sample means of

each cluster. The variances are initialized as 3 times the sample variances of each

cluster, as one expects the optimal point density should have larger variance than

the probability density.

It should be noted that using very flexible point densities (i.e., large M)

leads to the proliferation of local optima. That is, once the point densities have

become tightly optimized for a particular choice of T , one will be ”stuck” with that

that transform. This is because changing T while leaving the point densities fixed

will result in mismatch between the transformed data’s marginal statistics and the

point densities. This is a drawback of the alternating minimization approach, and

suggests that one perform only a single iteration of the point density optimization

step at each iteration. The hope is that if the procedure takes only incremental

steps during each part of the iteration, it will more closely approximate joint

optimization of the parameters, which is not as sensitive to these effects. Further,

it is often useful to initialize training in a hierarchical manner. That is, first

perform the training for the case of M = 1, which has much less sensitivity to

local minima, then utilize the resulting transform to initialize the M = 2, along

with the above-described initializers, and so on with the higher orders.
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2.3 Modifications for Operation at Moderate Rates

While the high-rate approach described in the previous sections has a

number of advantages, it is often the case in practice that the desired operat-

ing rate is below the high-rate regime. This is of particular concern in the case

of transform coders with high energy compaction, as described in Section 2.2.3.

A major source of loss at lower rates is the performance of quantizers based on

companders. At moderate rates, better performance can be achieved by unstruc-

tured scalar quantizers. Utilizing such a system makes the operational complexity

rate-dependent and, crucially, requires a rate-dependent training algorithm. It is

important to note that the high-rate training scheme provided in the previous sec-

tions does not directly determine the codebooks of the scalar quantizers, but rather

their high-rate structures (i.e., point densities). It is only through the additional

assumption of a compander implementation that the design algorithm specifies an

actual codebook. In the case of unstructured scalar quantizers, the high-rate de-

sign algorithm gives us an idea of how the optimal scalar quantizers ought to look,

but does not specify the actual codebooks. This begs the question of how such a

system ought to be designed.

The major tool for unstructured quantizer design is the well-known Lloyd

algorithm. As described below, a weighted Lloyd algorithm can be employed

to train the scalar quantizers with the other parameters fixed. However, it is

unclear how to simultaneously optimize the codebooks, transform and level al-

location in a rate-dependent fashion. One could construct a brute-force search

algorithm, which evaluates various combinations of transforms, allocations and

Lloyd-optimized codebooks, but such an approach is beyond the scope of this pa-

per. Instead, a hybrid approach is suggested, wherein the estimation is initially

carried out using the high-rate approach detailed in the Section 2.2, and then the

scalar quantizers are optimized using the weighted Lloyd algorithm. The trans-

form and allocation are left fixed at their high-rate optimized values, and the
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compander codebooks are used as initializers in the Lloyd process. The primary

advantage to using the high-rate approach in training the transform and alloca-

tion is that it provides a simple parametric expression for the expected distortion,

enabling gradient-based techniques to be applied to the transform optimization

process. Additionally, the process of optimizing the point densities and estimating

their associated distortions is much less computationally intensive than the Lloyd

optimization procedure.

2.3.1 Input-Weighted Lloyd Algorithm for Scalar Quantizers

Note that, as indicated in Eq. (2.8), the objective function in the scalar

quantizer design is affected by an input-weighting term. That is, the objective

function for the i-th scalar quantizer is:

N∑

n=1

||ti||2S(xn)

(
tTi xn −QKi

(tTi xn)
)2

The notation QKi
(·) denotes the output of a Ki-point scalar quantizer,

characterized by Ki codepoints ŷik. It has been established in [30] that the gen-

eralized Lloyd algorithm will converge in this case. This section, then, simply

reviews the Nearest-Neighbor and Centroid relations as they apply in the input-

weighted squared error case. For a scalar quantizer, there is no change to the classic

Nearest-Neighbor result: input points should be quantized to the codepoint near-

est to them (in the usual Euclidean sense). To handle input-weighted distortion,

a simple weighting term is included in the Centroid step:

ŷik =

∑
n∈Rik

||ti||2S(xn)t
T
i xn∑

n∈Rk
||ti||2S(xn)

where the notation n ∈ Rik indicates that the i-th transform coefficient

of xn has been quantized to the k-th codepoint of the i-th codebook.
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2.4 Implementation of GM Transform Coder

This section discusses the implementation of a transform coder with GM

point densities. In particular, this work uses a compander implementation, which

results in a complexity that is independent of the rate r. Note that the overall

coding complexity of the transform coder is quite low, consisting of a linear trans-

form, a bank of scalar companders, and final inverse linear transform. To operate

such a system, one first must compute the level allocation for the desired rate.

2.4.1 Level Allocation

To compute the level allocation, the pruning scheme presented in [31] is

used, and so is reviewed here. One first computes the unconstrained level alloca-

tions, and rounds them up:

K̂i =




K1/dβi

(
d∏

j=1

βj

)1/d




A pruning algorithm is then applied to make the resulting total number of

codepoints as close to K as possible without exceeding it. The pruning algorithm

works as follows: suppose that the dimensions have been ordered in increasing βi.

Then, beginning with the first dimension, calculate the total number of codepoints

that have been assigned, K̂ =
∏d

i=1 K̂i, and an adjustment for the current dimen-

sion i: K̂i = K̂i −
⌊
K̂i

(
1 − K

K̂

)⌋
. This process is then repeated in turn for each of

the dimensions, and then one level is subtracted from the last dimension, resulting

in an allocation that is guaranteed to be less than the total allowed. While itera-

tive algorithms can, in principle, achieve superior allocations, it has been observed

that this method, which requires only a single pass, results in good allocations in

practice. In particular, the proportion of ”wasted” codepoints becomes very small

as K becomes large.
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2.4.2 Transform Coder

The transform coder operates by first applying the transform to the input

vector X: Y = TTX. Next, the coder quantizes each component of Y with a

companding scalar quantizer with point density λi(yi). A compander works by

first applying a nonlinear compressor function:

zi = g(yi) =

∫ yi

−∞

λi(τ) dτ

The resulting zi is then quantized with a uniform (on [0, 1]) scalar quan-

tizer resulting in ẑi. Since a uniform scalar quantizer can be implemented without

any searches, using rounding operations, the resultant system has rate-independent

complexity. The quantized value is then input to the inverse of the compressor

function, called the expander function:

ŷi = h(ẑi) = g−1(ẑi)

Finally, then, the quantized vector is given by applying the inverse trans-

form:

X̂ = T Ŷ

2.4.3 Evaluating the Compander Functions

In the classical case of Gaussian point densities, it is easy enough to

compute the compressor and expander functions, as they are the Gaussian cdf and

its inverse, respectively, which are very standard in numerical libraries. For the

case of a GM density, the compressor function is easy to evaluate:

g(yi) =

∫ yi

−∞

M∑

m=1

αimN(τ |µim, σ
2
im) dτ

=
M∑

m=1

αimΦim(yi)
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where Φim(yi) denotes the cdf of the im-th Normal. Also, let Nim(yi) =

N(yi|µim, σ
2
im) denote the pdf of the im-th component. However, the expander

function is difficult to evaluate, since one cannot interchange the inverse with the

summation.

Iterative Decoder

To get around the difficulty with the expander function, this work pro-

poses an iterative procedure for computing h(zi). Such a procedure will begin

with an initial guess y0
i and then perform a number of iterations to improve this

estimate. As is well known, Newton’s method provides quadratic convergence if

one supplies a suitable initializer. Thus, a simple method for selecting a suitable

initializer for any possible value of zi is needed. Such an initializer can be provided

by partitioning g(yi) into concave and convex regions, and assigning a different

initializer depending on which region zi falls into. The method of partitioning is

shown in Figure 2.2. Details of this scheme are found below.

The basic problem is, given some zi ∈ [0, 1], to find yi such that:

κ(yi) ,
M∑

m=1

αimΦim(yi) − zi = 0 (2.12)

Note that κ(yi) is a monotonically-increasing function, and so only a

single y∗i will exist that satisfies the above. A classic technique for solving such

a root-finding problem is Newton’s Method, in which one constructs an iterative

algorithm starting with an initial guess y0
i . The function κ(yi) is then approximated

by a line tangent to κ(y0
i ). One then constructs a new guess by solving for the root

of the line:

yk+1
i = yk

i − κ(yk
i )

κ′(yk
i )

(2.13)

In this case:

κ′(yi) =
M∑

m=1

αimNim(yi)
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Figure 2.2: Illustration of the expander initialization scheme, showing (a) GM

CDF and (b) its Second Derivative. Given some z ∈ [0, 1] to decode, the initializer

is formed by finding the partition that contains z (the dashed lines) and using the

inflection point y within that region (the dotted lines).
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Furthermore, when κ is a monotonically-increasing function, Newton’s

method can be shown to converge quadratically (and monotonically) under the

following conditions:

(y0
i − y∗i )κ

′′(γy0
i + (1 − γ)y∗i ) > 0, ∀γ ∈ (0, 1]

Which is to say, if κ(yi) is either convex or concave on the interval between

the initial guess and the optimal value, and the sign of (y0
i − y∗i ) matches that of

the second derivative. So, a simple method for determining such an initializer, for

any possible value of zi, is required. This motivates an examination of the second

derivative of κ(yi):

κ′′(yi) = −
M∑

m=1

αimNim(yi)
1

σ2
im

(yi − µim)

Observe that this function is strictly positive for yi < minm{µim} and

strictly negative for yi > maxm{µim}, implying that it has an odd number of roots.

It is simple to see that the maximum number of roots is 2M − 1 (well-separated

case) and the minimum is 1 (equal-means case). Having fixed the parameters at

the end of the training process, it is simple to determine graphically the exact

number of such inflection points, Li, their locations yinf
il , and the corresponding

values zil =
∑

m αimΦim(yinf
il ), where l ∈ {1, . . . , Li}. Then, given a value of zi to

decode, one can easily determine whether the solution y∗i lies in a convex or concave

region of κ(yi). In the former case, one initializes with the next-largest inflection

point, which will make y0
i − y∗i > 0 and thus guarantee monotonic, quadratic

convergence. In the latter case, one initializes with the next-smallest inflection

point, which makes y0
i −y∗i < 0 and again guarantees convergence. In other words,

the initialization scheme is a simple quantizer for zi, using the negative-going

inflections as codepoints, and the positive-going inflections as cell boundaries. To

find the initializer for a given zi, then, one applies this quantizer to it, and sets y0
i

to be the inflection point that corresponds to the result. This initialization process

is illustrated in Figure 2.2.
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Thus, given a stored table of the inflection points, of which there are no

more than (2M − 1), and another of point density parameters, of which there are

3M , routines for evaluating scalar Gaussian pdf’s and cdf’s, and simple arithmetic,

one can construct an iterative decoder for the mixture Gaussian expander function.

This decoder is guaranteed to converge quadratically, for any value of zi, which is

of great practical value, since one does not wish to perform thousands of iterations

in the case of high-rate operation, which will require very tight tolerance in the

decoding error. For speech signals, it has been observed that ten iterations of this

algorithm are sufficient to result in an average decoding error on the order of 10−32,

with a maximum decoding error on the order of 10−31. This is sufficient accuracy

for rates up to approximately 30 bits per dimension, which is extremely high. For

more moderate rates, five or so iterations should be sufficient.

2.5 Practical Results

2.5.1 A Toy Problem

This toy problem is included to demonstrate the utility of the proposed

transform coder design algorithm and compander system. The idea is to consider

a case in which the optimal settings for the transform coder are known, both for

MSE and input-weighted distortion, and show that the proposed design algorithm

can successfully recover the correct parameters in each case. Consider a variable

x ∈ R
2 that is uniformly distributed on a unit square, [0, 1] × [0, 1], with the

following sensitivity matrix:

S(x) = g(x)I

Where g(x) is a probability density with all (or almost all) of its mass

inside the unit square. In this case, because the sensitivity is proportional to

the identity matrix, the problem becomes equivalent to that of an MSE quantizer

under a probability density g(x). Suppose that g(x) is a Gaussian Mixture density
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with 4 components, as illustrated in Figure 2.3. In this case, each cluster has a

covariance of (24π
√

3)−1I and equal weighting. This toy problem is inspired by

Example V.2 in [5], which demonstrates the suboptimality of the KLT. In this

situation, one can specify the optimal transform coder for both MSE and input-

weighted squared error. In the MSE case, the optimal transform coder would be

as follows: the transform should be the trivial setting T = I; the level allocation

should be equal for each coefficient, βi = 1 , ∀i; and the point densities should be

uniform, λi(y) = 1[0,1](y). The high-rate distortion coefficient for these settings is

equal to 1/6, for both the MSE and input-weighted distortion measures. For the

input-weighted squared error case, the optimal transform should rotate the input

by π/4 radians, as discussed in [5]. The level allocation should again be equal

for each coefficient: βi = 1. Treating the Gaussian components of g(x) as well-

separated, we see that the optimal point densities should be 2-component Gaussian

Mixture densities. The high-rate distortion coefficient for these settings is equal to

1/24. Notice that the optimal input-weighted settings result in 1/4 the high-rate

distortion of the MSE settings, implying a savings of 1 bit per dimension.

In order to demonstrate the utility of the design algorithm and compander

system, we performed a variety of experiments using this example problem. First,

100,000 2-dimensional vectors were generated, distributed uniformly on the unit

square. Next, a transform coder was designed from the data to minimize MSE.

Although the optimal transform coder for this case calls for uniform point densities,

and hence does not require a compander, GM point densities of order 2 were

used. As expected, the resulting transform was extremely close to the identity

matrix, and the level allocation was extremely close to equal across coefficients.

An example point density obtained through this design is seen in Figure 2.4a, along

with a histogram of the corresponding transform coefficient, and an estimate of

the optimal point density based on the histogram. Note that point densities much

closer to uniform can be achieved by using a larger value of M ; however, we utilize

M = 2 here for easy comparison to later parts of this example.
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Figure 2.3: Illustration of Distortion Sensitivity

Next, the sensitivity matrix for each point in the database was computed

and the design process was repeated under input-weighted squared error. In this

case, the resulting parameters were very close to the expected values: the transform

was approximately a π/4 rotation, the level allocation was close to equal, and the

point densities were as shown in Figure 2.4b. In this case, each histogram bin has

been weighted by the sum of the sensitivities for elements in that bin, and then

the entire histogram is normalized. Notice that the point density designed by our

algorithm is very close to the estimated optimal point density, as expected. This

outcome shows that the design algorithm is able to incorporate the data statistics

and the sensitivity matrix to arrive at the proper transform coder parameters.

Finally, both of the systems designed above were operated on the data,

under the input-weighted distortion measure. The results are shown in Figure

2.5. Notice that for both the MSE-assumption and optimized systems, the actual

performance and high-rate estimates converge around 3 bits per dimension. The

theoretical curves are slightly inaccurate in this case because, in the MSE case,
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Figure 2.5: Theoretical, Estimated and Actual Performance on the Toy Problem

for MSE and Input-Weighted Designs.

they assume uniform point densities and, in the input-weighted case, they assume

perfect separation of the clusters and infinite support. The result of this is that the

optimized system saves slightly less than the predicted 1 bit per dimension over the

MSE-assumption system. Nevertheless, it is clear that the high-rate estimate is a

good predictor of true high-rate performance, and that the algorithm is successful

at exploiting both statistics and distortion sensitivity in designing the system.
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2.5.2 Speech Spectrum Quantization

Next, the problem of wideband speech spectrum coding, under the Log

Spectral Distortion measure, is considered. To facilitate this experiment, a training

set of 300,000 wideband speech LSF vectors of order 16 was gathered, and the LSD-

sensitivity matrix was evaluated for each vector using the method described in [20].

It should be noted that, for the high-rate analysis, LSD is measured in dB2 in order

to correspond to input-weighted squared error, and so high-rate approximations

use this metric (Figure 2.6, specifically). However, when calculating operating

point and outlier statistics (as in Tables 2.1-3), the more conventional approach of

measuring in dB is used. For testing purposes, an independent database of 65,000

LSF vectors was employed. First, a transform coder was designed using single

Gaussian scalar quantizers. To initialize the parameters, the data was assumed to

be Gaussian and so the sample mean and covariance were used to set the param-

eters to be optimal under the MSE assumption. This initial setting is intended to

represent a ”naive” design, which ignores the details of the statistics and distortion

measure. The data-driven transform coder design algorithm described in Section

2.2 was then applied to optimize over the actual statistics and distortion measure.

After trying a variety of other initializers (T = I, and many random transforms),

it was determined that this result was indeed the best possible.

The performance before and after optimization, both actual and pre-

dicted, is seen in Figure 2.6 and Table 2.1. Notice that, at high rates, optimization

resulted in a large savings of around 8 bits per dimension (128 bits per frame in

this case). However, this is only applicable at very high rates, above 20 bits per

dimension. At lower rates, the non-optimized coder does better than the high-

rate predictions, diminishing the advantage of the optimized system. Notice that

the performance of the optimized system matches the high-rate predictions over

a wide range of rates. It is generally expected that an optimal system will fulfill

the high-rate assumptions at a lower rate than a suboptimal system, since it is

better matched to the source. The magnitude and direction of the discrepancy
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Table 2.1: Spectral Distortion performance of Gaussian Transform coder (M = 1)
LSD-Optimized MSE-Optimized Non-Optimized

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4dB > 4dB (in dB) 2-4dB > 4dB (in dB) 2-4dB > 4dB

51 1.218 2.708 0.008 1.301 4.835 0.015 1.204 2.677 0.008

52 1.175 2.117 0.003 1.153 2.312 0.005 1.165 2.355 0.009

53 1.135 1.687 0.006 1.113 1.870 0.006 1.059 1.351 0.003

54 1.040 1.072 0.003 1.094 1.589 0.006 1.020 1.105 0.005

55 0.984 0.759 0.000 1.035 1.374 0.003 0.981 0.843 0.005

56 0.964 0.656 0.002 0.949 0.764 0.000 0.965 0.797 0.003

between actual and predicted performance are difficult to anticipate, and depend

heavily on the source and the nature of the suboptimality (compare with results

in Section 2.5.1, for example). At very low rates, the non-optimized system per-

forms slightly better. This makes sense in that, for a rate of 0 bits, the coder

should be centered at the data mean, which it is in the non-optimized case. Since

the optimization has moved the center of the transform code to improve high-rate

performance (by adjusting for skew in the marginal distributions of the transform

coefficients), it necessarily suffers a small loss at very low rates. As it turns out,

the desired operating point of 1dB LSD lies in the intermediate range, where nei-

ther system has a clear advantage. Notice that, while the average performance of

the systems are very similar, the optimized system produces fewer outliers. It is

also noteworthy that, while the transform departs from the exact KLT during the

optimization process, the result is still a ”KLT-like” transform, in that most of the

energy is compacted into a small number of coefficients, and the covariance of the

transformed data is close to diagonal.

Next, since the transform coefficients are clearly non-Gaussian (see Figure

2.7), the number of Gaussians used in each scalar quantizer was increased. At each

stage, M was doubled, using the result from the previous stage to initialize via

a simple splitting scheme. As above, a variety of other initializers were tried,

but the former method was found to work best. No significant gains in the high

rate distortion were observed for M > 2, and so a mixture of 2 Gaussians are
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Table 2.2: Spectral Distortion Performance of Optimized GMM Transform Coder

(M = 2)

LSD-Optimized MSE-Optimized

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

50 1.232 2.520 0.008 1.218 2.973 0.006

51 1.189 2.029 0.005 1.175 2.418 0.005

52 1.148 1.656 0.008 1.096 1.571 0.008

53 1.109 1.342 0.005 1.094 1.621 0.006

54 1.018 0.813 0.003 1.059 1.360 0.005

55 0.980 0.650 0.005 0.975 0.860 0.002

56 0.942 0.538 0.005 0.937 0.727 0.000

used for each companding scalar quantizer. This resulted in a reduction in high-

rate distortion of 10% over the M = 1 case. The performance of this system,

including outlier statistics, is listed in Table 2.2 (these curves are not pictured

in Figure 2.6 because, at this scale, it is difficult to distinguish from the M =

1 curves). Comparing to the other tables, there is an improvement in average

distortion, corresponding to a savings of roughly one-half a bit per frame compared

to the single-Gaussian case. Note that the outlier statistics have improved by an

even greater margin. While high-rate optimization of the companding transform

coder may produce only modest improvements in average distortion at rates of

interest, it can produce significant reductions in outliers. The point densities of

two of the optimized component scalar quantizers, along with the estimated pdf’s

of the corresponding transform coefficients, are seen in Figure 2.5. Notice that

the GM compander is able to account for multimodality and skew, and so closely

approximates the estimated optimal point densities.

Next, the importance of including the LSD sensitivity in the training
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Table 2.3: Spectral Distortion Performance of Unstructured Transform Coder

Optimized Transform KLT

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

50 1.081 2.167 0.025 1.122 2.637 0.032

51 1.046 1.987 0.019 1.076 2.240 0.026

52 1.009 1.715 0.017 1.048 2.104 0.035

53 0.977 1.536 0.019 1.009 1.768 0.025

54 0.918 0.975 0.015 0.945 1.141 0.011

55 0.887 0.890 0.017 0.925 1.068 0.019

56 0.844 0.681 0.008 0.878 0.898 0.014

process was investigated. As seen in the toy problem of section 2.5.1, it is possible

for the distortion measure to play a strong role in the training process. To check

this, the previous training process was repeated assuming MSE (i.e., setting the

sensitivity as S(x) = I). The performance was still measured in LSD. The resulting

estimated high-rate distortions were essentially equivalent to those in the LSD-

optimized case, and so are not repeated here. The results for M = 1 and M = 2,

at rates of interest, are included in Tables 2.1 and 2.2, respectively. Notice that

the MSE-optimized systems display essentially the same average distortion as the

LSD-optimized systems, but produce significantly more outliers. This implies that

while the transform coder is not capable of exploiting sensitivity to LSD in the

average sense, including LSD in training can nevertheless result in significantly

improved outlier performance.

Finally, it is noted that the desired operating point is not terribly high: a

little more than 3 bits per dimension. Also, all of the transform coders designed in

this subsection exhibit significant energy compaction, with the ratio of the largest

β to the smallest being on the order of ten. Together, these facts suggest that bet-
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ter performance could be achieved by forgoing the use of companders and utilizing

unstructured scalar quantizers instead. To that end, the hybrid training approach

of Section 2.3 was applied to design such an unstructured scalar transform coder.

That is, the high-rate optimized transform and allocation (for M = 2 and LSD)

were utilized, and a bank of scalar quantizers were then trained using the weighted

Lloyd algorithm of Section 2.3.1. The performance of this system is shown in Ta-

ble 2.3. Note that the unstructured system achieves substantially better average

distortion (around 3 bits per frame), but does so at the cost of degraded outlier per-

formance. From this we infer that the compander is producing a more ”uniform”

distribution of codepoints as compared to the unstructured scalar quantizers, re-

sulting in fewer outliers. As a final test of the hybrid training strategy, another

transform coder was designed using the KLT. That is, the transform was left fixed

throughout the training phase, and the high-rate scheme was used only to estimate

the optimal allocation and initialize the scalar quantizers. The scalar quantizers

were again designed using the weighted Lloyd algorithm. The performance of this

system is illustrated in Table 2.3. Notice that its performance lags behind the

system with high-rate optimized transform by about 1 bit per frame, in both the

average and outlier senses, demonstrating the utility of high-rate selection of the

transform, even at moderate rates.

2.6 Discussion

This chapter has presented a flexible companding scalar quantizer based

on Gaussian Mixtures, and a data-driven method for training transform coders

based on these companders that minimizes high-rate distortion. The design al-

gorithm is able to incorporate a wide variety of distortion measures by utilizing

the input-weighted squared error formulation, which is characterized by a variable

sensitivity matrix. Gaussian Mixture companders provide a flexible, extensible

approach to quantizing sources with arbitrary distributions. However, it should be
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noted that some sources, such as the uniform source in the toy problem, are not

well-suited to this type of compander. Additionally, companders suffer from well-

known losses at low-to-moderate rates, and so modifications to the design scheme

were provided to incorporate unstructured scalar quantizers, which are suitable for

operation at moderate rates. The ability of the system and design algorithm to

account for both data statistics and the distortion measure was demonstrated in

a toy problem. The transform coder has remained popular due to its low com-

plexity; however, the very structure that provides this low complexity means that

the transform coder necessarily suffers from performance limitations. This work

seeks to reduce these, both through introducing more flexible scalar companders

and through the use of a minimum-distortion design algorithm.

This system and design algorithm were then applied to the problem of

wideband speech spectrum quantization, using Line Spectral Frequencies under

the Log Spectral Distortion measure. While very large high-rate gains (as much

as 8 bits per dimension) are possible, these results are only applicable at very high

rates. At rates of interest, the compander-based system showed only modest gains,

on the order of 1 bit per frame. Interestingly, application of the design algorithm

resulted in significant improvements in outlier performance. It was also discovered

that including the LSD measure in training made no difference in the average-

distortion performance, but did result in improved outlier performance. Next,

systems employing unstructured scalar quantizers and a hybrid design algorithm

were employed. These systems exhibited significantly better average distortion

performance than their compander-based counterparts (around 3 bits per frame),

but at the cost of degraded outlier performance. It was also demonstrated that

high-rate design of the transform is desirable, even at moderate rates for which

companders perform poorly. In the end, transform coding systems were shown to

achieve transparent quality at rates comparable to MSVQ. While other schemes

have been seen to provide superior rate-distortion performance for wideband speech

LSF quantization, the transform coder may still be attractive for certain applica-
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tions by virtue of its extremely small storage and coding complexities.

2.7 Inertial Moment Integral for Input-Weighted Squared

Error on a Hyperrectangle

Consider a vector x ∈ R
d and a matrix S ∈ R

d×d. Define the origin-

centered rectangle Rd =
∏d

i=1[
−1
2
ci,

1
2
ci]. It is desired to evaluate the following

integral:

∫

Rd

xTSx dx

Since the region of integration is defined by a product, this integral can

always be evaluated by iterated integration. One can easily perform the integral for

low dimensions. Denoting the ij-th element of S as sij, the results of the integral

for d from 1 to 3 are:

d = 1:
s11

12
c31

d = 2:
s11

12
c31c2 +

s22

12
c1c

3
2

d = 3:
s11

12
c31c2c3 +

s22

12
c1c

3
2c3 +

s33

12
c1c2c

3
3

Examining the results, one can hypothesize the solution for arbitrary d:

∫

Rd

xTSx dx =
1

12

(
d∏

i=1

ci

)
d∑

i=1

siic
2
i (2.14)

In fact, one can show that this must be the solution by induction. Since it

has already been shown that the solution is of the form of Eq. (2.14) for d = 1, 2, 3,

one need only show the implication from d− 1 to d. Partition x and S as follows:

x =



 x̂d−1

xd



 , S =



 Ŝd−1 ŝ1

ŝT
2 sdd





Then, the integral can be written as:
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∫

Rd−1

[∫ 1
2
cd

−1
2

cd

x̂T
d−1Ŝd−1x̂d−1 + xd

(
x̂T

d−1ŝ1 + ŝT
2 x̂d−1

)
+ sddx

2
d

]
∂xd ∂x̂d−1 (2.15)

Evaluating the inner integral results in:

∫

Rd−1

[
cdx̂

T
d−1Ŝd−1x̂d−1 +

sdd

12
c3d

]
dx̂d−1 (2.16)

Using the assumption that the d − 1 integral is in the desired form, and

the fact that
∫
Rd−1 dx̂d−1 =

∏d−1
i=1 ci:

∫

Rd

xTSx dx = cd
1

12

(
d−1∏

i=1

ci

)
d−1∑

i=1

siic
2
i +

1

12
sddc

3
d

(
d−1∏

i=1

ci

)

=
1

12

(
d∏

i=1

ci

)
d∑

i=1

siic
2
i (2.17)

Which is the desired result. Notice that no assumptions were made on

the matrix S, and that only its diagonal elements enter into the result. Also, note

that no terms from S appear in the product term, which implies that the usual

cancelations will still occur when this result is used in high-rate analysis.

The text of this chapter is in part a reprint of the material which was coau-

thored with Bhaskar D. Rao and appeared in the March 2007 issue of IEEE Trans-

actions on Audio, Speech and Language Processing under the title “A High-Rate

Optimal Transform Coder with Gaussian Mixture Companders”. The dissertation

author was the primary researcher and author, and the co-author contributed to

or supervised the research which forms the basis for this chapter.



3 High-Rate Optimized

Recursive Vector Quantizers

using Hidden Markov Models

This chapter develops a variety of fixed-rate recursive vector quantiza-

tion systems using Hidden Markov Models offering a wide range of performance

to complexity tradeoffs. These systems build on the idea of Gaussian Mixture

Vector Quantizers (GMVQ), first presented in [12], which exhibit low complexity,

high quality and scalability (see Figure 3.1). GMVQ systems operate M Gaussian

quantizers in parallel (typically with low-complexity structures) and then choose

amongst their outputs with a vector quantizer. In this context, a Gaussian quan-

tizer can be any system that produces a Gaussian point density. Since the number

of component Gaussian quantizers, M , is typically much smaller than the effec-

tive codebook size, 2r, a substantial savings in complexity can be realized. Such

an approach is attractive in applications where large codebooks are required, par-

ticularly in high-dimensional problems such as wideband speech spectrum coding

and image coding. A GMVQ is specified by three sets of parameters: a set of

mixture weights, α̂m, that determine what percentage of the available codepoints

are assigned to the m-th quantizer; a set of mean vectors µ̂m that specify the lo-

cations of each Gaussian quantizer; and a set of covariances Σ̂m that specify their

dispersions. This compact parametric form allows the system to be updated on

the fly. Thus, flexible recursive quantizers can be implemented by altering the pa-

50
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Figure 3.1: The Gaussian Mixture Vector Quantizer system. Each component

quantizer produces a Gaussian point density N(x|µm,Σm). The parameters αm

specify the proportion of codepoints allocated to each component quantizer, re-

sulting in an overall point density of
∑M

m=1 αmN(x|µm,Σm).

rameters at each time step based on previous quantized outputs as in Figure 3.2.

This chapter examines a variety of techniques, based on Hidden Markov Models,

for accomplishing this. The proposed systems are capable of exploiting both linear

and nonlinear dependencies between vectors. The contributions of this chapter are

twofold: first, the high-rate theory for GMVQ systems is developed, leading to

novel system training approaches that minimize distortion. Second, a variety of

practical recursive extensions are presented, and their implementation and com-

plexity are explored. Performance of the proposed systems is demonstrated for the

problem of wideband speech Line Spectral Frequency (LSF) quantization under

the Log Spectral Distortion (LSD) measure.

This chapter first revisits the problem of training the system parameters

based on example data. The classic approach to this problem is known as model-

based training [12], wherein a statistical model of the source is first constructed

using Maximum Likelihood techniques, and then the quantizer parameters are set

based on the model using a closed-form, heuristic approach. Specifically, for an

order-M GMVQ system, an order-M Gaussian Mixture Model (GMM) is used as
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the statistical model. What is generally desired is to set the system parameters

so as to minimize the high-rate distortion incurred by the quantizer. A related

approach called HRO was employed in [13], where the GMM is estimated so as to

minimize the high rate distortion incurred by a codebook that is optimal for the

model density (that work did not employ GMVQ systems). This chapter discusses

the high-rate analysis of GMVQ systems, using random coding. It is shown that the

standard model-based training approach results in minimal high-rate distortion for

the special case of well-separated GMM sources with MSE distortion. Next, an al-

ternate design technique called Weighted Maximum Likelihood (WML) is proposed

that works by equating the model and quantizer parameters; it is shown that this

technique results in minimal high-rate distortion in the case of large dimensions.

WML is suitable for sources with arbitrary statistics and distortion measures, and

can be extended to handle mismatched distortion measures. The relative merits

of these design schemes are compared for a variety of simple examples, and for the

practical problem of wideband speech LSF quantization.

Next, this chapter considers the practical problem of recursive coding.

The GMVQ system can be made recursive by changing the parameters at each

time step based on previous quantized outputs. The goal, then, is to match the

codebook at any given time to the conditional probability density of the source,

given the previous data. Thus, any recursive coding scheme corresponds to a dy-

namic model of the source, and more flexible models will require more complex

recursive updates. The ideal recursive structure would provide a very flexible mech-

anism for exploiting dependence on previous data, while incurring only a modest

increase in complexity. A recursive GMVQ system based on a joint-GMM model

was proposed in [31]. This work seeks to extend these results to more flexible re-

cursive structures, while incurring a minimal increase in complexity. This chapter

first proposes using Hidden Markov Models, which provide a simple mechanism

for recursion by varying the level allocations, α̂m, based on previous data. The

remaining coder parameters (i.e., the means µ̂m and covariances Σ̂m) remain fixed.
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Inspired by the joint-GMM recursive model in [31], a generalized HMM approach

is proposed which is also capable of updating the codebook means µ̂m. All of the

systems considered in this chapter leave the covariances Σ̂m fixed, in order to keep

the complexity low. Note that essentially all structured Gaussian quantizers utilize

the eigendecomposition of Σ̂m, both to obtain the Karhunen-Loeve Transform and

in bit allocation; thus, recursive schemes that leave Σ̂m fixed can avoid the com-

plexity associated with computing the eigendecomposition. This system provides

for inclusion of both strong short-time dependencies and weaker long-time depen-

dencies. The additional encoding complexity of these schemes is minimal, and only

the most recent quantized vector needs to be stored. HMM-based recursive VQ

has also been examined in [32] and [33]. This work is differentiated from [32] in

that it can handle continuous-valued vector sources, and is for fixed-rate operation.

It is differentiated from [33] in that new codebooks are created on-the-fly, rather

than relying on a fixed set of pre-designed codebooks.

A wide variety of performance/complexity tradeoffs can be implemented

by the GMVQ system through selection of the component Gaussian quantizers.

For example, one could use full-search VQs, optimized by the Lloyd algorithm for

synthetic Gaussian sources; this would presumably offer very good performance,

at the cost of large complexity. The most popular structure for implementing

Gaussian coders in this context is the scalar transform coder, which represents

the other end of the spectrum: very low complexity at the cost of performance.

While the high-rate analysis employed in this paper is based on random coders,

the classic transform coder-based GMVQ is not really a random coder. However,

the gap between the two can be bridged by a related class of semi-random Gaus-

sian quantizers that has recently been introduced in [19] and [34], called CURTZ

systems. These systems feature a parameter L that allows them to scale between

a scalar transform coder on one extreme, to what is effectively a Gaussian random

coder on the other. In light of this, GMVQ systems will be considered as random

coders for purposes of analysis and training. Performance arbitrarily close to the
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high rate estimates can then be achieved by appropriate selection of L, at the cost

of increasing complexity.

This chapter is organized as follows: Section 3.1 discusses the theoretical

issues pertaining to the analysis and training of GMVQ systems, using random cod-

ing and Maximum Likelihood techniques. Section 3.2 covers relevant background

on Hidden Markov Models, with an eye towards their application in recursive cod-

ing. Section 3.3 discusses the implementation of the proposed systems. Section 3.4

examines the performance of the proposed recursive quantization systems on the

problem of wideband speech LSF quantization. Section 3.5 contains a discussion

of the results.

3.1 System Training - High Rate Theory and Maximum

Likelihood

This section discusses the problem of setting GMVQ parameters based

on example data. The usual practice, called model-based design and described

in [12], is to first estimate a statistical model of the source, using Maximum Like-

lihood. This model is typically a GMM of order M , the same order as the GMVQ

system being designed. Then, a closed-form procedure is applied to give the quan-

tization system parameters in terms of the model parameters. However, it would

be preferable to design the system so as to minimize the distortion directly. In

light of this, the high-rate theory for GMVQ systems is developed, and its rela-

tionship to Maximum Likelihood is discussed. Specifically, it is shown that the

model-based design approach produces minimal high-rate distortion in the case of

well-separated GMM sources and MSE distortion. Next, it is shown that Weighted

Maximum Likelihood (WML) can be used to find the quantization system param-

eters directly from the data in high dimensional cases, for arbitrary sources and

input-weighted squared error measures. That is, where model-based design splits

the problem into a statistical modeling step and a model-based design step, WML
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fuses the two steps to infer the optimal system parameters directly from example

data. The relationship between model-based design and WML design is explored

for a variety of examples. Finally, it is shown that the two design techniques pro-

duce equivalent high-rate distortion for wideband speech LSFs, and so either may

be used.

3.1.1 High-Rate Analysis of Gaussian Mixture Vector Quantizers

To consider the high-rate analysis of a structured quantizer, one must

examine both the point density and inertial profile, as discussed in Chapter 1.

Derivation of the point density for a GMVQ is straightforward. The total codebook

in a GMVQ system is the union of the component Gaussian codebooks. Thus, as

discussed in [37], a GMVQ system, regardless of its exact component structures,

produces a point density that is also a Gaussian Mixture:

λθ(x) =

M∑

m=1

α̂mN(x|µ̂m, Σ̂m) (3.1)

Here, θ denotes the set of system parameters
{
α̂m, µ̂m, Σ̂m

}M

m=1
. In gen-

eral, it is difficult to analyze the inertial profile of a GMVQ system, for the reason

that the process of selecting amongst the component quantizers has a very compli-

cated effect on the cell shapes of the resultant quantizer. That is, even when the

component Gaussian systems can be analyzed in closed form (such as in the case of

scalar transform coders), no expression is available for the overall inertial profile.

While the encoding in a GMVQ system is optimal provided that the encodings

of the component systems are optimal, the aggregate codebook takes on a ran-

domized character in regions where the component codebooks overlap. Thus, the

codepoints are typically not the centroids of their cells, and any structure in the

component codebooks is disturbed. The exception is the case of random coders: if

random Gaussian coders are utilized, it is intuitively clear that the overall system

will also be a random coder. These effects are illustrated in Figure 3.3. Shown is a
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two-dimensional, two-component GMVQ using a variety of CURTZ systems as the

component quantizers. On one extreme is the scalar transform coder, and on the

other is a CURTZ system with L = 2d = 4, which gives performance equivalent

to random coding. Note that the Voronoi regions of the overall GMVQ system

are very complex in regions where the coders overlap, taking on a randomized

character. However, the disparity between the overall and component cell shapes

disappears as the component codebooks become more randomized.

Thus, the inertial profile of a GMVQ system tends to depart from the

profiles of the underlying coders and become more like that of a random coder.

The severity of this effect depends on the degree of overlap between the component

codebooks. In the case of inefficient component systems, such as scalar transform

coders, this effect tends to result in an improved inertial profile. Conversely, this

implies that the performance of near-optimal Gaussian quantizers will be somewhat

degraded by the mixing process. Thus, random coders can be thought of as a fixed-

point of the mixing process, and so this analysis proceeds under the assumption of

random coders. The classic high-rate results on random coders can be found in [35]

or [36]. Note that these works consider only MSE distortion, and do not utilize

the idea of an inertial profile. It is straightforward to reinterpret their results in

terms of an expected inertial profile, where the expectation is over the codebook

realization, and we further conjecture an extension to input-weighted squared error

along the lines of [20]. That is, the expected inertial profile of a random coder is

given as κ
2/d
d Γ(1+2/d)|S(x)|1/d. Note that in this context, the expected distortion

is an expectation over both the source and codebook realization, although the

variance due to codebook randomness diminishes as the rate grows large. Also

note that the random coder approaches the performance of an optimal quantizer

as d grows large.

The high-rate design problem for GMVQ systems employing random

Gaussian coders is then:
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Figure 3.3: Illustration of GMVQ codebooks for a variety of component Gaussian

systems. Shown are (a) scalar Gaussian transform coders, (b) CURTZ coders

with L = 2, (c) CURTZ with L = 3 and (d) CURTZ with L = 4, which gives

performance equivalent to random coding. Ellipses correspond to equi-density

contours of the two component quantizers, each of which contain equal numbers

of codepoints.
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min
θ

Ex

(
|S(x)|1/dλ

−2/d
θ (x)

)
(3.2)

Notice that this objective function is independent of r, which appeared

only in the exponential term in Eq. (1.1), implying that a single, rate-independent

setting of θ will suffice for any high rate. As discussed in [20], the optimal solution

to this problem is given by:

λopt(x) ∝ |S(x)|1/df
d

d+2
x (x). (3.3)

The extension of high rate theory to the case of recursive systems was

covered in [38], where the conditional point density λ(x|Y ) was introduced. Here,

Y represents all previously observed vectors. The conditional point density is, for

any fixed Y , a density over x, with the same interpretation in terms of the local

cell size. What the conditional point density provides, then, is a description of

the dependence of the quantizer on past data; in the case of GMVQ systems, this

amounts to a mapping from Y to a set of GM parameters. The above results on

high rate theory can be generalized to the recursive case by substituting λ(x|Y )

for λ(x) and fx(x|Y ) for fx(x). In the recursive case, the expectation in Eq. (1.1)

is taken to be an expectation over x and Y .

3.1.2 Relationship Between High-Rate Theory and Maximum Likeli-

hood

Reflecting the dependence of the optimal point density on the probability

density in Eq. (3.3), quantizer design is often built around probability estimation.

It is often desirable to model the source pdf as a GMM, since it is a flexible

model and there exist well-studied techniques for estimating its parameters. One

notable approach is the HRO algorithm developed in [13], which estimates the

GMM parameters so as to minimize the high-rate distortion of a quantizer with

the optimal point density implied by the model. One difficulty in using GMMs

as probability models in the context of GMVQ design is that the optimal point
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density corresponding to the model is not itself a GMM, due to the exponent

in Eq. (3.3), and so the GMVQ system cannot implement it. Nevertheless, it

has been standard practice to design GMVQs by employing a GMM (with the

same number of Gaussians as the quantizer) as a statistical model of the source.

This practice can be theoretically justified in two different cases: well-separated

mixtures and high dimensions, each resulting in a different training scheme. The

following subsections discuss these cases and the relationship between the training

schemes that result.

Well-Separated Mixtures and Model-Based Training

Consider the case that the source density is a well-separated GMM:

fx(x) =
M∑

m=1

αmN(x|µm,Σm)

||µi − µj||Σ−1
i

≫ 1 , ∀i, j ∈ {1, . . . ,M}

The ”well-separated” condition means that the means µm are far apart

relative to the covariances Σm, so that only a single Gaussian is ”active” in any

particular region. Specifically, this property means that the optimal point density

is, for the MSE case (S(x) = I), again a GMM:

λopt(x) ∝
(

M∑

m=1

αmN(x|µm,Σm)

) d
d+2

≈
M∑

m=1

(αmN(x|µm,Σm))
d

d+2

∝
M∑

m=1

α̃mN(x|µm,
d+ 2

d
Σm) (3.4)

α̃m =

(
αm|Σm|1/d

) d
d+2

∑M
p=1 (αp|Σp|1/d)

d
d+2

(3.5)

where the second line follows from the well-separated assumption. An-

other implication of this assumption is that the EM algorithm has a very easy
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time of estimating the true parameters. Employing these assumptions results in

the model-based design technique given in [12]. That is, one begins by training

a GMM from a set of example data using the EM algorithm. This results in the

model parameters αm, µm and Σm. One then sets the system parameters in terms

of the model parameters according to Eqs. (3.4) and (3.5). It should be mentioned

that under the well-separated assumption, the issues discussed in Section 3.1.1

about the inertial profile of a GMVQ do not apply. Since the codebooks will have

negligible overlap, the system simply inherits the inertial profile of whichever com-

ponent Gaussian quantizer is active in a given region. Thus, the design procedure

can be modified to account for this, for example by changing the covariance scaling

in Eq. (3.4) from d+2
d

to 3 in the case of scalar transform coders. In practice, of

course, the source is not actually a well-separated GMM, and so this technique has

only heuristic support as a general training procedure. Also note that this tech-

nique assumes MSE. Nevertheless, it has been seen to work quite well in practice,

and is the standard approach.

To utilize model-based training in the recursive case, one would apply

Maximum Likelihood to estimate the parameters of a dynamic model, such as

an HMM (see Section 3.3). At each time step, then, this model would supply a

conditional density in the form of a GMM of order M , and the coder parameters

would be set in terms of the conditional density parameters using Eqs. (3.4)

and (3.5). To justify the use of model-based training in the recursive case, it is

necessary to assume that every conditional GMM supplied by the dynamic model

is well separated. This assumption is straightforward in the case that the means

x̂m and covariances Σ̂m are fixed, but not for more general dynamic models.

High Dimensions and Weighted ML Training

Notice in Eq. (3.3) that, for MSE distortion, the optimal point density

approaches the probability density as d grows. This fact suggests that, in high

dimensions, the problem of finding the best point density becomes equivalent to
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that of estimating the true probability density, which is conventionally solved via

Maximum Likelihood approaches. This subsection explores the asymptotic con-

nection between Problem (3.2) and the classic minimum cross-entropy problem,

which in turn gives rise to a Weighted Maximum Likelihood (WML) approach. A

thorough discussion of entropy optimization problems, and their relationships to

statistical estimation, can be found in [39]. The results of this section stem from

the following theorem, which applies to any function 0 ≤ f(x) < ∞ and positive

measure p(x) with
∫
p(x) dx <∞:

(∫
p(x)f q(x) dx∫
p(x) dx

)1/q

ց
q→0

exp

(∫
p(x) log f(x) dx∫

p(x) dx

)
(3.6)

where 0 < q < 1 and the downward arrow indicates that the left-hand side

is monotonically decreasing. Details of this theorem can be found in Sections 6.6-8

of [40]. To apply Eq. (3.6) to Bennett’s Integral, one would use Y = λ−1
θ (x), p(x) =

|S(x)|1/dfx(x) and q = 2/d. However, this introduces the complication that p(x)

depends on d via the sensitivity matrix. Rather than invoke further assumptions

on the source parametrization and distortion measure such that |S(x)|1/d would

tend to some fixed function of x, as would be required to obtain a rigorous limit in

Eq. (3.6), we simply state the result as an approximation valid for large d. After

some algebra, the above substitutions result in:

Ex

(
|S(x)|1/dλ

−2/d
θ (x)

)
'
d

Ex

(
|S(x)|1/d

)
exp

(
2

d

Ex

(
|S(x)|1/d log λ−1

θ (x)
)

Ex (|S(x)|1/d)

)
(3.7)

where the symbol '
d

indicates that the right-hand side is a lower bound

that becomes tight as d becomes large. Note that all point densities considered

in this paper are Gaussian Mixtures: this ensures that 0 < λ−1
θ (x) < ∞. Pro-

vided that Ex

(
|S(x)|1/d

)
< ∞, then, for sufficiently large d, problem (3.2) can be

approximated as:

min
θ

Ex

(
|S(X)|1/d log λ−1

θ (x)
)

(3.8)
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This correspondence can also be established directly via Jensen’s Inequal-

ity, as in [24]. Observe that (3.8) is the classic (weighted) Minimum Cross-Entropy

problem: as is well known, the optimal solution to this problem is λWML(x) ∝
|S(x)|1/dfx(x). In the case where the distribution is unknown, and only N samples

xn drawn from it are available, the Strong Law of Large Numbers can be used to

arrive at the Weighted Maximum Likelihood parameter estimation problem:

max
θ

N∑

n=1

|S(xn)|1/d log λθ(xn) (3.9)

Thus, this approximation is very convenient, in that it justifies using the

well-studied tools of ML estimation directly to estimate the system parameters.

Note that for the case of MSE distortion (S(x) = I), the result is exactly the classic

ML problem. In the recursive case, one replaces λθ(xn) with λθ(xn|x1, . . . , xn−1),

again justifying the use of Maximum Likelihood techniques. The WML approach

is differentiated from the model-based design approach in that it considers the

output of the training process as a model for the point density, not the source

probability. Thus, the conditional density parameters supplied by the dynamic

model are used directly in the WML case, bypassing Eqs. (3.4) and (3.5). The

details of Weighted ML estimation for HMMs are discussed in Section 3.2.4. A

drawback to this approach is that the approximation (the right-hand side of Eq.

(3.7)) is a lower bound on the high-rate distortion, and so the issue of the tightness

of the approximation becomes important. The next subsections explore this issue

for the memoryless case.

3.1.3 Examples: Uniform, Gaussian and Well-Separated GMM

To illustrate the dependence of the large-d approximation on the source

distribution, consider three examples: Uniform, Gaussian and Well-Separated

GMM memoryless sources. In each case, the loss incurred by utilizing the large-d

approximation (i.e., maximum likelihood) compared to the exact minimum distor-

tion approach is examined. Said another way, this subsection considers the loss
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incurred by using λWML(x) = fx(x) instead of the optimal λopt(x) ∝ f
d+2

d
x (x). For

these examples, only MSE distortion (S(x) = I) is considered.

Uniform Sources

Notice that for the source distributed uniformly on some support R, there

is no penalty for using the large-d approximation. That is, fx(x) ∝ 1R(x) implies

that f
d

d+2
x (x) ∝ 1R(x), which in turn implies that λWML(x) = λopt(x) = fx(x).

Thus, there is no penalty for using the large-d approximation for uniform sources,

even when d = 1.

Gaussian Sources

For the Gaussian source, the penalty for using the large-d approximation

quickly becomes very small. Suppose that fx(x) = N(x|µ,Σ). The optimal point

density is given as λopt(x) = N(x|µ, d+2
d

Σ), and the WML-optimal point density is

λWML(x) = N(x|µ,Σ). Compare the performance of these two point densities by

examining the logarithm of the ratio of their high-rate distortions:

LWML =
1

2
log2

Ex

(
N(x|µ,Σ)−2/d

)

Ex

(
N(x|µ, d+2

d
Σ)−2/d

)

where the scaling and logarithm base have been chosen so that the re-

sulting loss is expressed in bits per dimension. For the cases d = 1 and d = 2, the

upper expectation diverges, and the loss is infinite. This is expected, as the results

underpinning the WML approach are not generally valid for d = 1 or d = 2, as

indicated in Eq. (3.7). For d ≥ 3, however, the following result holds:

LWML =
d+ 1

2
log2(d) −

d+ 2

4
log2(d+ 2) − d

4
log2(d− 2)

Notice that this result is independent of both µ and Σ. This loss is plotted

as a function of d in Figure 3.4. Examining the plot, it is clear that the loss is

fairly small for dimensions 3 and higher. In particular, for d = 3, the total loss is
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less than 1 bit per vector. For dimensions above d = 15, the total loss is less than

0.1 bits per vector, so the penalty for using maximum likelihood quickly becomes

very small.
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Figure 3.4: Point Density Loss when using WML approximation on a Multivariate

Gaussian source. Plot (a) shows the loss in bits per dimension, and (b) shows loss

in bits per vector. Notice that both approach zero as d increases.

Well-Separated GMM Sources

Finally, consider the case of a well-separated GMM source. As discussed

in Section 3.1.2, the optimal point density in this case is a GM with the covariance

of each Gaussian scaled as in the previous example, and the level allocation given

by Eq. (3.5) in terms of the mixture weights αm and the determinants of the

covariances |Σm|1/d. It has been shown in the previous example that the loss

due to ignoring covariance scaling for a multivariate Gaussian source diminishes

to zero as d grows large. This was expected, as the scaling factor applied to



66

Σ approaches 1 as d grows. However, Eq. (3.8) results in the level allocation

α̂m ∝ αm|Σm|1/d as d grows, rather than the simple α̂m = αm formula obtained

by using the pdf directly as the point density. It remains to evaluate the penalty

for using the mixture weights directly as level allocations. To investigate this

problem, suppose that M = 2, α1 = α2 = 1
2
, Σ1 = I and Σ2 = σ2I. In order

to isolate the effect of the bit allocation from that of covariance scaling, suppose

that the WML system implements optimal covariance scaling. That is, λWML(x) =

1
2
(N(x|µ1,

d+2
d
I) + N(x|µ2,

d+2
d
σ2I)). In this case, the loss of using the WML bit

allocation is given, in bits per dimension, as:

Lα =
1

2
log2

Ex

(
λ
−2/d
WML(x)

)

Ex

(
λ
−2/d
opt (x)

)

≈ 1

2
log2

∫
Rd N(x|µ1,I)( 1

2 N(x|µ1,
d+2

d
I))

−2
d dx+

∫
Rd N(x|µ2,σ2I)( 1

2 N(x|µ2,
d+2

d
σ2I))

−2
d dx

∫
Rd N(x|µ1,I)



 1

1+σ

2d
d+2

N(x|µ1,
d+2

d
I)





−2
d

dx+
∫
Rd N(x|µ2,σ2I)



 σ

2d
d+2

1+σ

2d
d+2

N(x|µ2,
d+2

d
σ2I)





−2
d

dx

=
1

d
+

1

2
log2(1 + σ2) − d+ 2

2d
log2

(
1 + σ

2d
d+2

)

where the second line makes use of the well-separated assumption (||µ1 −
µ2|| ≫ 1). This loss function is plotted in Figure 3.5. An interesting effect arises

here, which is that the loss goes to zero when measured in bits per dimension, but

not when measured in terms of bits per vector. This is a potential drawback to

using the large-d approximation, since practical systems are often operated with

intermediate values of d wherein this loss may still be significant. Also notice that

the loss disappears as σ2 nears 1, as in that case the contribution of the covariance

terms to the optimal bit allocation disappears. In scenarios where there is little

variation in the determinants of the covariances, then, there is little penalty for

using the high-d approximation. This example is easy to generalize to larger values

of M , in which case the maximum loss (in bits per vector) is log2M , corresponding

to the case that a single covariance dominates.
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Figure 3.5: Loss for Ignoring Covariances in Bit Allocation among 2 Well-Separated

Gaussians

3.1.4 Tightness for Wideband Speech

In light of the results of the previous subsections, the tightness of the

large-d approximation needs to be investigated for real-world sources, such as wide-

band speech LSF’s. To that end, this subsection discusses using GMMs trained

from wideband speech data to estimate the loss incurred by using the probability

density as the point density, compared to the optimal distortion for a source with

the model pdf. This subsection will consider only MSE distortion. In this case,

the loss can be expressed as:

LML =
1

2

{
log2

(
E
(
f
− 2

d

M (x)
))

− d+ 2

d
log2

(
E

(
f
− 2

d+2

M (x)

))}
(3.10)

where fM(x) is an order-M GMM that approximates the source density.

Here, the expectations are approximated by averages over data distributed accord-
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ing to fx(x). To this end, an order-16 GMM was trained on wideband speech

LSF vectors of dimension 16 using the EM algorithm; this is fM. Evaluating Eq.

(3.10) on a disjoint test set of 60,000 vectors resulted in a loss of 0.0141 bits per

dimension, or 0.225 bits per vector. In order to confirm this result, the experiment

was repeated on a database of synthetic data drawn from fM(x), and the results

were identical to within double precision.

Another test was performed to check whether the model-based design

technique would work better. In this test, the point density parameters were

set using the model-based approach (Eqs. (3.4) and (3.5)). Then, the previous

experiment was repeated to measure the loss of this point density with respect

to the optimal; this resulted in exactly the same results as for the previous case.

This is not surprising, since the variation in the determinants of the covariances

was found to be small in this case. Taking all the results of this section together,

it is argued that the problem of designing a GMVQ using random coders for 16-

dimensional wideband speech LSF quantization is equivalent to the WML problem

described by Eqs. (3.7-9). The conventional model-based approach can also be

used, and should result in equivalent performance, as evidenced by the results of

this subsection.

3.2 Models for Recursive Coding

This section reviews Hidden Markov Models with an eye towards use in

recursive GMVQ quantizer systems. HMMs are well known, and details can be

found in [41]. In the context of recursive coding with GMVQ systems, the HMM

is used to produce a conditional density in the form of a GMM, which can then

be used by the GMVQ system. For increased flexibility, a generalization of the

conventional HMM is discussed. Finally, it is shown how to extend the Baum-

Welch algorithm to the WML case.
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3.2.1 Conventional HMM

Let sn be a Markov chain taking values in {1, ...,M} and denote the state

transition matrix for sn by A ∈ RM×M , with individual elements denoted by amj =

P (sn = j|sn−1 = m). It is assumed that a sample xn is conditionally independent

of all other samples, given sn: fx(xn|sn = m, xn−1, . . . , x0) = fx(xn|sn = m) =

fm(xn). Let the density associated with state m be fm(x) = N(x|µm,Σm), where

x ∈ R
d. It should be noted that the choice of a Gaussian Mixture Model for each

state’s density would also work, with minor modifications, but this work uses the

single Gaussian case for notational simplicity. Denote by θ the set of parameters

(A, µ,Σ, π), where π is the initial state distribution. This paper will assume that

the Markov chain sn is irreducible and so a stationary distribution ps exists which

can be obtained from the eigendecomposition of A. Further, it is assumed that

π = ps, so that the model defines a stationary process. Notice that an HMM

reduces to a memoryless GMM model in the case that all rows of A are equal.

Denote by αn the a priori state distribution at time n:

αn(m) ≡ P (sn = m|xn−1, xn−2, ..., x0) (3.11)

Let βn denote the a posteriori state distribution:

βn(m) ≡ P (sn = m|xn, xn−1, ..., x0) (3.12)

Given βn−1, αn may be obtained as follows:

αn(m) =

M∑

j=1

ajmβn−1(j) (3.13)

Similarly, given αn and xn, βn is obtained as follows:

βn(m) =
αn(m)N(xn|µm,Σm)
∑M

j=1 αn(j)N(xn|µj,Σj)
(3.14)

To initialize the recursion, α0 is set to the initial state distribution. Fi-
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nally, the density of xn conditioned on all of the previous data is given by:

fx(xn|xn−1, ..., x0) =

M∑

m=1

p(xn, sn = m|xn−1, ..., xn)

=

M∑

m=1

αn(m)N(xn|µm,Σm) (3.15)

Thus, the density of the current data xn, conditioned on all of the pre-

vious data, is an order-M Gaussian Mixture with mixture weights given by the

state priors. Note that only the weights of the mixture components change with

time, while the component means and covariances are fixed. In this sense, the

HMM generalizes the GMM from a sequence of i.i.d. observations to a model with

memory. It is proposed to construct a recursive quantizer based on an HMM by

using a GMVQ with mixture weights updated at each time step. As discussed

in [37], the complexity of the GMVQ system is low enough to permit updating the

parameters in this way. In order to maintain synchronization between the encoder

and decoder without sending side information, it is required that the update to

the mixture weights depend only on past data. Examining the recursions for αn

and βn−1 (Eqs. (3.13) and (3.14)), it is clear that this is indeed the case. Note

that only one previous quantized output needs to be stored in order to implement

these recursions.

3.2.2 Generalized HMM

In [31], a recursive GMVQ system was presented based on a jointly-

Gaussian Mixture Model of the source. That is, it is assumed that each datum xn

is conditionally independent of all previous data except xn−1: fx(xn|xn−1, . . . , x0) =

fx(xn|xn−1). It is also assumed that the joint density of xn and xn−1 is an order-M

GMM. Thus, the conditional density is again an order-M GMM, with the cluster

means and weights depending on xn−1. The conditional covariances are constant.

The ability to move the cluster means based on past data provides a very flexible

mechanism for exploiting information from the previous sample. However, this
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approach has the disadvantage that it ignores any dependence on samples farther

back in time. Conversely, the conventional HMM provides a simple model of the

dependence on all previous data, but is not as flexible in describing the dependence

on the previous sample, which may be significant. It is proposed to generalize the

joint-GMM model by adding on a Hidden Markov structure, much in the same

way that the conventional HMM generalizes the memoryless GMM. The idea is

that the joint-GMM structure can exploit the strong dependence on the previous

sample, while the Markov structure will model longer-term dependency.

This generalized model weakens the usual HMM assumption that a given

sample, xn, is conditionally independent of all other data given the current state

sn. Instead, xn will still depend on xn−1:

fx(xn|sn = m, xn−1, . . . , x0) = N(xn|µ̃m(xn−1),Σm) (3.16)

µ̃m(xn−1) = µx
m + Ωm(xn−1 − µy

m) (3.17)

The parameters Ωm, µx
m and µy

m are discussed in detail in Section 3.2.4.

Adopting this model changes the derivation of the conditional density only slightly.

In particular, the definitions of αn and βn remain the same, and the update formula

for αn (Eq. (3.13)) is unchanged. The conditional covariance matrix, Σm is a

constant. The update formula for βn then becomes:

βn(m) = P (sn = m|xn, xn−1, ..., x0) (3.18)

=
p(sn = m, xn|xn−1, ..., x0)

fx(xn|xn−1, ..., x0)

=
αn(m)N(xn|µ̃m(xn−1),Σm)
∑M

j=1 αn(j)N(xn|µ̃j(xn−1),Σj)

This gives the the conditional density of the current data:

fx(xn|xn−1, ..., x0) =

M∑

m=1

P (sn = m|xn−1, . . . , x0)fx(xn|sn = m, xn−1, . . . , x0)

=
M∑

m=1

αn(m)N(xn|µ̃m(xn−1),Σm) (3.19)
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Thus, the conditional density is again an order-M Gaussian Mixture den-

sity. Note that in this case, the mixture weights are adjusted by the HMM struc-

ture, as before, and that the component means are adjusted at each step by the

jointly-Gaussian structure. Thus, use of this model requires updating the means as

in Eq. (3.17), as well as the mixture weights. Note that, again, only the previous

quantized vector needs to be stored.

3.2.3 Summary of Recursive Procedures

The recursive update and coding procedure is summarized below, for both

the conventional HMM and generalized HMM. Certain steps apply only to the

generalized HMM and are indicated as such. As illustrated in Figure 3.2, the goal

of the recursion is to produce, for each sample xn, an order-M Gaussian Mixture.

That is, an updated set of parameters αn(m) and µ̃m representing the conditional

density of xn given all previous samples. In all cases, the covariances Σm remain

fixed, and in the conventional HMM the means also remain fixed with µ̃m = µm. In

the case that the WML training approach was used, these parameters represent the

conditional point density, and so are used directly as the GMVQ parameters. In

the model-based training framework, the parameters are considered as describing

the conditional probability density of the source, and so Eqs. (3.4) and (3.5) are

then applied to obtain the GMVQ parameters.

• Initialize the parameters and quantize the first sample (i.e., for n = 0).

1. Initialize α0(m) to the stationary distribution ps.

2. (generalized HMM) Initialize µ̃m to µm.

3. Quantize x0 using the initial settings.

• Recursively update the parameters and quantize successive samples (i.e., for

n ∈ {1, 2, . . .}).

1. Use x̂n−1 to compute βn−1 using Eq. (3.14) for conventional HMM or

Eq. (3.18) for generalized HMM.
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2. Use βn−1 and A to compute αn using Eq. (3.13).

3. (generalized HMM) Compute µ̃m using Eq. (3.17).

4. Quantize xn using the updated parameters.

3.2.4 Weighted ML Training for HMMs

In light of the results of Section 3.1, a Weighted Maximum Likelihood

technique (i.e., Eq. (3.9)) is used to set the model parameters. WML is used

instead of regular Maximum Likelihood because it is able to incorporate non-mean-

square distortion measures into the training process. That is, to train a system

based on the regular HMM, we apply the Baum-Welch algorithm to a database of

example vectors. The only modification from the classic Baum-Welch algorithm

is that the contribution of each piece of data xn is weighted by |S(xn)|1/d. This

change has no effect on the E-step of the algorithm, and the forward and backward

variables are computed in the usual way:

αn+1(j) =

[
M∑

i=1

αn(m)amj

]
fj(xn+1) (3.20)

ψn(m) =

M∑

j=1

amjψn+1(j)fj(xn+1) (3.21)

For convenience, define the following two variables:

ξn(m, j) =
αn(m)amjfj(xn+1)ψn+1(j)∑M

m=1

∑M
j=1 αn(m)amjfj(xn+1)ψn+1(j)

(3.22)

γn(m) =

M∑

j=1

ξn(m, j) (3.23)

To incorporate the weightings, the M-step is slightly modified as follows:
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amj =

∑N
n=1 |S(xn)|1/dξn(m, j)∑N
n=1 |S(xn)|1/dγn(m)

(3.24)

µm =

∑N
n=1 |S(xn)|1/dγn(m)xn∑N

n=1 |S(xn)|1/dγn(m)
(3.25)

Σm =

∑N
n=1 |S(xn)|1/dγn(m)(xn − µm)(xn − µm)T

∑N
n=1 |S(xn)|1/dγn(m)

(3.26)

Note that weightings other than |S(xn)!1/d could be used to handle subop-

timal cases. For example, if the GMVQ system were to encode under a mismatched

distortion measure d2(x1, x2) = (x1−x2)
TQ(xn)(x1−x2), the appropriate weighting

would be tr (Q−1(xn)S(xn)), as discussed in [20]. Such a weighting would redis-

tribute the point density in order to compensate for suboptimal encoding. Thus,

WML can be extended to the case of mismatched distortion measures by appropri-

ate choice of weighting terms. Also note that this weighted Baum-Welch algorithm

can easily be specialized to a weighted EM algorithm to handle the memoryless

case.

To handle the generalized HMM, successive samples are ”stacked” into

vectors of dimension 2d, and then the weighted Baum-Welch algorithm is applied

to this new database. That is, the n-th sample in the stacked database is a con-

catenation of xn and xn−1. The weighting term for each sample in the stacked

database is the same as in the previous case, |S(xn)|1/d, as the desired result is a

weighted conditional density for xn. This results in a model of the joint-density of

pairs of successive vectors, which is then converted into the conditional densities,

as described in [31]. That is, the result of the training process is a transition matrix

A, a set of mean vectors νm ∈ R
2d and a set of covariances Φm ∈ R

2d×2d. These

parameters can be partitioned as:
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νm =



 µx
m

µy
m





Φm =



 Σxx
m Σxy

m

Σyx
m Σyy

m





where µx
m, µ

y
m ∈ R

d and Σxx
m ,Σ

yy
m ∈ R

d×d. The desired conditional density

parameters can then be extracted as:

Σm = Σxx
m − Σxy

m (Σyy
m )−1Σyx

m

Ωm = Σxy
m (Σyy

m )−1

Note that Σm is interpreted as a conditional covariance in this context.

Moreover, it will have a smaller determinant than in the fixed-mean case, owing

to the second term above. Thus the conditional densities will be ”tighter” in this

case, reflecting the improved flexibility of the model. Notice that this ”stacked”

approach can be specialized to the training of joint-GMM models in the same way

the Baum-Welch algorithm can be specialized to memoryless GMM models.

3.3 Implementation of Recursive Coders

This section discusses the implementation of GMM-based recursive coders

using HMMs. First, issues related to the basic GMVQ system are discussed; these

issues apply to all of the systems under consideration. Next, specifics of the recur-

sive update process are provided for each of the recursive systems under consider-

ation.

3.3.1 Basic GMVQ Issues

A number of issues arise in implementing the GMVQ system. This paper

utilizes the CURTZ system proposed by Shabestary in [19] and [34] to implement
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the component Gaussian quantizers. This system is an extension of the classic

Gaussian transform coder, and obtains improved performance by incorporating

random coding techniques. It operates by applying a KLT to the input vector,

and then using a bank of scalar Gaussian compressor functions. The compressed

components are then quantized using L rectangular lattices, which are randomly

offset from one another. The outputs of each quantizer are then fed into Gaussian

expander functions (the inverses of the compressor functions), and the inverse KLT

is applied to each of them. Finally, the best of the L candidates is chosen using

a VQ, under input-weighted squared error. For L = 1, this system reduces to the

classic scalar transform coder, and as L approaches 2d, its performance becomes

very close to random coding. Note that the encoding complexity is independent

of the rate of operation, and linear in L. That said, the complexity can become

prohibitively large for high values of L and d. As such, this paper considers only

two cases: L = 2d/2, which represents an intermediate complexity/performance

point, and L = 1 (the regular scalar transform coder), which represents a minimal

complexity. Further details of the implementation of CURTZ systems can be found

in [19] and [34]. In particular, it is demonstrated in [19] that the CURTZ system

attains performance very close to random coding when L = 2d.

In addition to the usual costs of operating these systems in a memoryless

setting, the bit allocation must be recomputed every time the system parameters

are updated. Since the covariance matrices are left constant in all systems under

consideration in this paper, no eigendecompositions or matrix inverses need by

computed during operation. The bit allocation process used in this paper differs

somewhat from that proposed in [19], and so is described here. The first step is

to compute the number of codepoints to be assigned to each component coder,

which is given by Nm = αm2r. Note that this number is likely not an integer;

this issue will be dealt with later in the bit allocation process. The next step is

to allocate levels amongst the d dimensions of each component quantizer. This is

accomplished by dividing Nm by L and applying regular level allocation techniques
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for a transform coder (since the CURTZ system will produce L codepoints for every

one in the underlying transform coder it generalizes). That is, levels are assigned

in proportion to the standard deviations of each dimension:

Nmi =

(
Nm

L

)1/d
σmi

(
∏d

i=1 σmi)1/d
(3.27)

where σ2
mi is the i-th eigenvalue of the Σm. Again, Nmi is not guaranteed

to be an integer. To resolve this issue, a pruning algorithm is applied. The first

step in pruning is to round up each Nmi to the nearest integer. Assuming that the

dimensions are ordered in increasing σmi, a correction is applied to each dimension

in turn:

Nmi = Nmi −
⌊
Nmi

(
1 − Nm

L
∏d

i=1Nmi

)⌋

Finally, Nmd is decremented by 1, ensuring that the total allocation is

less than the target rate r. The total complexity of the bit allocation process is

as follows: Md(d + 2) + M + 1 multiplies, M(2d + 1) additions, 2Md rounding

operations and M power computations.

3.3.2 Recursive Updates

This subsection discusses the complexity of implementing recursive up-

dates. The total complexity is that of the basic GMVQ system, as described above,

plus the additional complexity required to implement the parameter update, de-

scribed in detail below. The complexities of recursive updates are summarized in

Table 3.1.

Conventional HMM

In the case of the conventional HMM, the recursive update procedure

consists of updating αn. To carry out this update, one must store the previously

quantized vector, x̂n−1, and apply Eq. (3.14) to find βn−1. Then, αn is found
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by multiplying βn−1 by A, as in Eq. (3.13). Thus, the total complexity of the

update process consists of M multivariate Gaussian density evaluations, M(M+2)

multiplications and M2 − 1 additions.

Generalized HMM

The generalized HMM inherits all of the structure of the conventional

HMM, and also requires the conditional means to be updated according to Eq.

(3.17). Notice that the means must be updated after the density evaluations, as

in Eq. (3.19). The total complexity of the update for this system is then: M

multivariate Gaussian density evaluations, M(M + 2) + d2 multiplications and

M2 + d2 + d(2M − 1) − 1 additions.

Table 3.1: Additional Complexity for Recursive Systems

Multiplies Additions Density Evaluations

Conventional HMM M(M + 2) M2 − 1 M

Generalized HMM M(M + 2) + d2 M2 + d2 + d(2M − 1) − 1 M

3.4 Practical Results

This section demonstrates the performance of the proposed recursive sys-

tems on the problem of wideband speech spectrum coding, under the Log Spectral

Distortion measure. A training set of 300,000 wideband speech LSF vectors of

order 16 was utilized, and the LSD-sensitivity matrix for each vector was evalu-

ated using the method described in [20]. It should be noted that, for the high-rate

analysis, LSD is measured in dB2, and so predictions and training use this metric.

This is done in order to correspond to a squared-error type of distortion measure,

as is used in the high-rate analysis. However, when calculating operating point

and outlier statistics, the more conventional approach of measuring in dB is used.

For testing purposes, an independent database of 65,000 LSF vectors was utilized.
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Figure 3.6: Performance of (a) Memoryless GMM and (b) joint-GMM Systems.

The dashed lines indicate the high-rate estimates for random coders. The solid

lines indicate the performance using CURTZ systems with L = 2d/2, and the dotted

lines indicate the performance using scalar transform coders.

Memoryless GMVQ

To begin with, a memoryless GMVQ system was constructed. To train

this system, a Weighted EM algorithm was utilized, as described in Section 3.2. It

was found that for model orders above M = 16, there was no significant improve-

ment in performance, and so this order is used throughout the tests. To evaluate

the performance, two systems were used: scalar transform coders (as in [12]) and

CURTZ systems (see [19]) with L = 2d/2 = 256. The estimated high-rate per-

formance of a random coder with the specified point density is also plotted for

comparison. The performance of this system over a wide range of rates is seen in

Figure 3.6a.

Notice that, for high rates (above 3 bits per dimension) the CURTZ

system achieves performance midway between that of the transform coder-based
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Table 3.2: Spectral Distortion Performance of Memoryless Systems Around Oper-

ating Point

CURTZ (L = 2d/2) Transform Coder

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

42 1.108 0.191 0 1.209 1.912 0

43 1.060 0.091 0 1.162 1.208 0

44 1.014 0.062 0 1.117 0.954 0

45 0.970 0.029 0 1.078 0.629 0

46 0.926 0.028 0 1.034 0.410 0.002

47 0.882 0.020 0 0.993 0.316 0

system and a true random coder. Specifically, the CURTZ system achieved around

0.3 bits per dimension of improvement (around 5 bits per vector) on the transform

coder, and is around 0.2 bits per dimension (around 3 bits per vector) behind a

true random coder. This is expected, since an intermediate value of L is utilized.

Also notice that the transform coder system performs better than the CURTZ

system at low rates; it is not known why this effect arises, but it implies that the

savings at rates of interest (around 1dB LSD; a bit less than 3 bits per dimension)

may not be as large as at high rates. The performance of the systems at rates

of interest is shown in Table 3.2. Note that the CURTZ-based system is able to

achieve transparent quality (less than 1dB average distortion, less than 1% small

outliers, and negligible large outliers) between 44 and 45 bits per vector, while the

transform-coder based system requires 46-47 bits per vector, a savings of 1-2 bits

per vector. This is indeed smaller than the 5 bits observed at higher rates, but is

significant nonetheless.
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Figure 3.7: Performance of (a) HMM and (b) Generalized HMM Systems. The

dashed lines indicate the high-rate estimates for random coders. The solid lines

indicate the performance using CURTZ systems with L = 2d/2, and the dotted

lines indicate the performance using conventional transform coders.
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Table 3.3: Spectral Distortion Performance of HMM Systems Around Operating

Point

CURTZ (L = 2d/2) Transform Coder

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

41 1.096 0.238 0 1.230 2.355 0

42 1.044 0.143 0 1.184 1.821 0.003

43 1.001 0.104 0 1.141 1.294 0

44 0.954 0.056 0 1.100 0.912 0

45 0.911 0.036 0 1.056 0.744 0

46 0.873 0.023 0 1.015 0.579 0

47 0.836 0.014 0 0.978 0.405 0

Conventional HMM

Next, an order-16 HMM was trained, again using the Weighted ML tech-

nique of Section 3.2.4. The performance of this system over a wide range of rates

is seen in Figure 3.7a, and the performance around the desired operating point is

tabulated in Table 3.3. Notice that the HMM-based system requires 1-2 bits per

frame fewer than the memoryless GMVQ system to achieve transparent quality

when employing CURTZ coders. The transform coder system did not show as

much improvement, lagging about 3 bits behind the CURTZ system. Note that

in both the GMM and HMM cases, use of the CURTZ system resulted in greatly

improved outlier performance; in particular, the CURTZ-based systems display

roughly one fifth as many outliers around the operating point of 1dB average LSD.

Generalized HMM and Joint-GMM

Finally, two more systems were tested, using the joint-GMM and gener-

alized HMM models. The performance of these systems over a wide range of rates
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Table 3.4: Spectral Distortion Performance of Joint GMM Systems Around Oper-

ating Point

CURTZ (L = 2d/2) Transform Coder

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

34 1.121 1.564 0.002 1.281 4.936 0.023

35 1.070 1.092 0 1.232 3.854 0.019

36 1.022 0.724 0 1.182 2.999 0.020

37 0.975 0.459 0 1.136 2.385 0.011

38 0.931 0.331 0 1.092 1.833 0.015

39 0.888 0.206 0 1.047 1.451 0.011

40 0.847 0.169 0 1.007 1.101 0.014

41 0.810 0.096 0 0.967 0.846 0.011

are shown in Figures 3.6b and 3.7b, respectively. Notice that both of these systems

show a high-rate advantage of 0.5 bits per dimension (8 bits per frame) relative to

their fixed-mean counterparts. The performance of the systems around the desired

operating point is shown in Tables 3.4 and 3.5, respectively. The CURTZ-based

systems achieve transparent quality at 36-37 bits per frame and 36 bits per frame,

respectively, resulting in a 0.5-1 bit gain due to using the HMM structure. The

transform coder-based systems required 40-41 and 39-40 bits per frame, respec-

tively, again consistent with previous results. An interesting effect is that the

difference in outliers between the CURTZ and transform coder based systems is

smaller in this case, suggesting that allowing mean updates has a strong impact

on outlier performance.
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Table 3.5: Spectral Distortion Performance of Generalized HMM Systems Around

Operating Point

CURTZ (L = 2d/2) Transform Coder

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

33 1.153 1.902 0.002 1.285 4.284 0.017

34 1.099 1.297 0 1.235 3.454 0.028

35 1.048 0.820 0 1.187 2.636 0.017

36 1.000 0.553 0 1.139 1.970 0.017

37 0.955 0.324 0 1.095 1.524 0.011

38 0.912 0.219 0 1.051 1.197 0.009

39 0.871 0.137 0 1.011 0.914 0.006

40 0.830 0.085 0 0.970 0.706 0.008

41 0.784 0.046 0 0.925 0.554 0.006
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3.5 Discussion

This chapter presented a framework for extending GMVQ systems to the

recursive case by utilizing HMMs and generalizations. The additional complexity

required by these approaches is minimal, and large increases in performance can

be achieved in the wideband speech LSF quantization problem. The problem of

training the parameters of the systems to minimize estimated high-rate distortion

was investigated, and it was concluded that Maximum Likelihood approaches can

be used to solve this problem in the case of random coders and large dimensions.

A weighted extension to Maximum Likelihood was proposed for dealing with the

case of input-weighted squared error measures, which allows the inclusion of Log

Spectral Distortion.

Motivated by the random coding argument used in justifying the training

approach, CURTZ systems were employed to implement GMVQs with performance

close to that predicted by the high rate estimates. These systems are convenient in

that they allow the user to approach random-coding performance while retaining

rate-independent complexity, which is important in applications that require large

codebooks, such as wideband speech LSF quantization. Since these systems can

scale smoothly between the conventional transform coder and random coding, they

provide a bridge between the estimation results, which assume random coding, and

the popular practice of using transform coders in GMVQ systems.

The proposed systems were applied to the problem of wideband speech

LSF quantization under the Log Spectral Distortion measure. It was found that

employing CURTZ systems results in an improvement in average distortion equiv-

alent to 3 bits per frame relative to transform coders, in both the memoryless and

recursive cases. The outlier performance of the CURTZ systems were seen to be

far superior in the memoryless and HMM case, and were somewhat superior in the

joint-GMM and generalized HMM cases. This implies that allowing mean updates

in the recursive structure can result in strong improvements in outliers, in addition
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to the roughly 8 bits per vector savings apparent in the average distortion. Em-

ploying a Markov structure for updating the mixture weights was found to provide

1-2 bits per frame of improvement, both in the case of fixed means (conventional

HMM) and variable means (generalized HMM). When employing CURTZ coders

and generalized HMM recursion, transparent quality was achieved at a rates of 36

bits per frame.

The text of this chapter is a reprint of a paper coauthored with Bhaskar

D. Rao which has been published in the March 2007 issue of IEEE Transactions

on Audio, Speech and Language Processing under the title “High-Rate Optimized

Recursive Vector Quantization Structures Using Hidden Markov Models”. The

dissertation author was the primary researcher and author, and the co-author

contributed to or supervised the research which forms the basis for this chapter.



4 Speaker-Dependent Wideband

Speech Coding

This chapter examines the problem of speaker-dependent wideband speech

coding. Speaker-dependent systems have been used in a variety of speech process-

ing applications. Most prominent is the field of speech recognition, where their per-

formance advantages relative to speaker-independent systems are well known [42].

They have also been employed in speech enhancement settings (c.f. [44]). In the

realm of coding, they have been applied in the area of low-rate compression, partic-

ularly in the context of phonetic vocoding (see [46], [43]). More recently, speaker-

dependent systems have been applied in the context of concatenative text-to-speech

synthesizers in [45], attaining toll quality output. In this work, we examine the

potential of speaker-dependent systems in the context of CELP (Code Excited

Linear Prediction) coding of wideband speech for telecommunications.

Conventional approaches to speech coding are speaker-independent, em-

ploying a single coder designed to work for any speaker. This conventional ap-

proach has the advantage of simplicity: only one coder needs to be designed, and

the design can be carried out ahead of time using a single large, multispeaker

database. However, since the statistics of various coder parameters vary widely

from speaker to speaker, speaker-dependent coding offers the promise of improved

performance. The recent development of the GMVQ system, discussed in the pre-

vious chapter, provides a flexible coding framework that is able to incorporate

arbitrary source statistics and distortion measures. This framework, then, enables

87
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the study and implementation of speaker-dependent coding. A number of issues

arise in exploiting this potential. Foremost is the profusion of coders required:

a separate design process must be performed for each speaker, and the resulting

coders must be distributed to the appropriate locations to enable communication.

Since it is impractical to collect an example database of every possible speaker,

the training process cannot be carried out ahead of time and must instead be im-

plemented in an on-line fashion. The costs of distributing the speaker-dependent

designs to the required locations must also be carefully considered, lest this over-

head wipe out the gains that speaker-dependent coding provides. Another issue is

robustness with respect to ”incorrect” speakers. This chapter seeks to experimen-

tally quantify the performance gains provided by speaker-dependent coding and

to address these various implementational issues in a comprehensive fashion.

Note that, in a telecommunications setting, the variation in user inputs

will depend not only on differences between the speakers themselves, but also on

differences in background noise, acoustic environment and telephony equipment.

These factors distinguish what can be termed ”user-dependent” gains from purely

speaker-dependent gains, which depend only on variations in speech patterns and

anatomy. One can imagine scenarios in which the user-dependent gains would

be smaller than the speaker-dependent gains. For example, if all users suffered

from background noise of an identical character and level, the statistical varia-

tion between them would decrease, and along with it the user-dependent gains.

Conversely, there are scenarios in which user-dependent gains exceed speaker-

dependent gains. That is, if users are exposed to widely different background noise

or microphone acoustics, the statistical variation between them would increase, and

so the user-dependent gains would exceed the speaker-dependent gains. Unfortu-

nately for our purposes, there do not exist any agreed-upon models for how these

various environmental factors vary with different users, and so we restrict attention

to quantifying the gains due solely to speaker-dependence. While this is only the

first step in understanding the potential gains available in a fully user-dependent
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setting, it should be noted that that various techniques for online learning and

robustness presented here are directly applicable to the broader case.

In order to investigate the performance of speaker-dependent wideband

speech coding, a simplified (and somewhat idealized) CELP framework is utilized,

as described in Section 4.1. This approach allows us to examine the speaker-

dependence of various coder parameters common to a wide variety of speech coders;

namely, the LPC coefficients, adaptive codebook parameters and fixed codebook

parameters. In order to quantify the performance of speaker-independent cod-

ing, we require a sufficiently general class of quantizers to represent the statistical

variations between speakers. To this end, we utilize the Gaussian Mixture Vector

Quantizer (GMVQ) system presented in [12] (see Figure 4.1). In addition to the

ability to represent reasonably arbitrary source statistics, this system has a num-

ber of properties that make it attractive in the speaker-dependent context. Chief

among these is the parametric form of the coder design: only a small number of

rate-independent parameters are required to describe the coder. For a GMVQ of

order M , operating in dimension d, this consists of M(1+d+d(d+1)/2)−1 scalar

parameters. Thus, the number of parameters that must be transmitted and stored

for each speaker is small, and independent on the rate of operation. Additionally,

when the component Gaussian quantizers are implemented using scalar transform

coders (as is common practice), the encoding complexity is linear in d, allowing

operation in large dimensions. This is particularly important for the case of the

fixed excitation, in which case d equals the subframe size. Also, the values of M

typically used in coding are in the range of 10-20, making it feasible to train entire

speaker-dependent systems. Contrast this with the case of speech recognition, in

which much higher model orders are required in, for example, triphone modeling.

The high model order, and the lack of supervised data on which to perform speaker

adaptation, gives rise to suboptimal approaches such as Maximum Likelihood Lin-

ear Transform (MLLT). In such a suboptimal approach, the speaker-dependent

system is produced by applying a linear transformation to a speaker-independent
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Figure 4.1: The Gaussian Mixture Vector Quantizer system. Each component

quantizer produces a Gaussian point density N(x|µm,Σm). The parameters αm

specify the proportion of codepoints allocated to each component quantizer, re-

sulting in an overall point density of
∑M

m=1 αmN(x|µm,Σm).

system. This reduces the number of speaker-dependent parameters which must be

learned and, in the case of cepstrum features, restricts the adaptation to acoustic

features, leaving the underlying language structure (which was learned from la-

beled data) intact. In the coding context, however, the model order is sufficiently

low that the reduction in parameters obtained from MLLT is less dramatic. Fur-

thermore, coder design is typically an unsupervised process, driven entirely by the

input data, and so there is no reason to restrict the scope of speaker-dependent

learning. Moreover, even if a suboptimal approach was required, the benchmark

for performance would be that of the unrestricted approach. For these reasons, we

focus on unrestricted learning of entire coders for each speaker.

In Section 4.1, the GMVQ system is applied to coding of the parameters

of a simplified CELP system in order to quantify the speaker-dependence of each

type of parameter. It is found that the LSF parameters exhibit roughly a 10%

gain in rate-distortion performance (i.e., 4 bits per frame). In voiced frames,

similar gains are achievable for the pitch lags, however, in unvoiced frames, the
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pitch-lag statistics exhibit a nearly-uniform distribution. Furthermore, the pitch

gains exhibit negligible speaker-dependence, and so there may be little benefit to

speaker-dependent coding of the adaptive codebook parameters. Lastly, it is shown

that much larger gains, on the order of 40-50 bits per frame, are achievable with

speaker-dependent coding of the fixed excitation. This makes sense, given that

such a large portion of the bit budget is typically spent on the fixed codebook,

and that in frames where the LPC model is less salient (i.e., unvoiced frames),

most of the burden of representing the input speech falls on the fixed codebook.

Next, Section 4.2 discusses the different ways in which speaker-dependent gains

can be exploited. Besides improvements in the rate-distortion sense, the gains can

be used to reduce coding complexity and storage while leaving the rate-distortion

performance unchanged. Additionally, if speaker-dependent rates are permitted,

uniform quality can be achieved across all speakers. Lastly, the use of a safety-net

approach is considered. Such a system operates a speaker-independent coder in

parallel with the speaker-dependent coder, thereby providing robustness against

”incorrect” speakers. In particular, we show how the safety-net approach can be

naturally incorporated into the GMVQ system and present a modified training

algorithm that allows a precise trade-off of robustness and performance.

Section 4.3 discusses issues pertinent to the training and distribution of

speaker-dependent coders. Three different online training architectures are con-

sidered, each of which strikes a different balance between training complexity,

overhead and performance. As a component of these architectures, methods for

learning on quantized data are presented, which enable the design to be carried

out at remote locations. This allows synchronized learning, obviating the need to

transmit the coder designs explicitly. The benefits and disadvantages of synchro-

nized learning are compared to single-point learning and explicit transmission of

coders. Next, methods for recursive learning are examined. These approaches per-

form the learning process in a frame-by-frame manner, removing the need to store

large training databases and enabling adaptive operation. Section 4.4 contains a
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discussion of the results.

4.1 Performance of Speaker-Dependent Systems

This section demonstrates the performance of the proposed systems on

the problem of wideband speech coding using a CELP framework (see Figure

4.2). Here, A(z) denotes the analysis filter for a given subframe, and W (z) the

corresponding perceptual weighting filter given by W (z) = A(z/0.92)
1−0.68z−1 . A subscript

of 0 denotes a zero-state filter, while a subscript of s denotes a filter with the state

taken from the LPC synthesis filter at the previous subframe. All other filters

are assumed to retain the memory of their input signals as pictured. The CELP

framework has three main types of parameters: LPC parameters (here represented

as LSFs), adaptive codebook parameters, and fixed excitation parameters. We

consider an idealized CELP framework, in which the adaptive codebook consists

of the true residual. This assumption is only accurate in cases were the bit-rate is

large, enabling the decoded speech to be very accurate. The reason for employing

this idealization is to separate speaker-dependent effects in the pitch period from

the fixed excitation. That is, in cases where the adaptive codebook is very different

from the true excitation, the adaptive codebook will not be able to account for all

of the pitch effects, resulting in residual pitch information left over for the fixed

codebook to handle. Since the goal of this chapter is to estimate the speaker-

dependence of the various coder parameters, an idealized adaptive codebook is

utilized to ensure that all pitch effects are accounted for by the adaptive codebook.

To carry out the experiments, a database of 45 speakers (23 male, 22

female) was gathered from the Wall Street Journal corpus. The recordings were

made at the standard wideband speech sampling rate of 16 KHz, and consists of

each of the speakers reading a common set of 140 sentences. The recordings were

preprocessed using a typical wideband speech chain, split into frames of length 20

ms (320 samples), and 16-th order LSF coefficients for each frame were computed,
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Figure 4.2: Idealized CELP coder. Note that the adaptive codebook contains

the true residual signal. The subscript A0 designates a zero-state filter, while the

notation Â denotes a suitably interpolated synthesis filter.
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using 10 ms of symmetric overlap with the adjoining frames. A modified Ham-

ming window was utilized, emphasizing the last 5 ms of each frame, along with

white noise regularization and 60 Hz bandwidth expansion. For each frame, the

open-loop pitch lags were then computed using the method described in [47]. Each

frame was then split into 4 subframes of 5 ms (80 samples), and interpolated LSFs

were computed for each subframe. These interpolated LSFs specify the perceptual

weighting filter as W (z) = Â(z/0.92)
1−0.68z−1 , and are utilized in the closed-loop adaptive

codebook search. Then, the closed-loop pitch lags and gains were computed for

each subframe to minimize ||eaw||, with the constraint that only lags within 40 sam-

ples of the open-loop value are searched. The target signal for the fixed codebook,

then, is eaw, which represents the weighted error in a subframe after the zero-input

response and adaptive codebook contributions have been removed. From each

speaker’s database, the last 5000 frames were set aside for testing purposes and

the remainder were designated as training sets (sizes ranging from 25000 to 50000

frames in each training set, reflecting the different rates of speaking). Additionally,

a speaker-independent training set was constructed using the first 20000 frames

from each speaker’s training set.

4.1.1 Gains from Speaker-Dependent Coding

The following three subsections discuss the gains available in speaker-

dependent coding of the LSF parameters, adaptive codebook parameters, and fixed

excitation, respectively. In the case of LSF quantization, a savings of 4 bits per

frame results, or around 10% of the typical operating rate. During voiced frames,

a savings of 1 bit per subframe is possible on pitch lag parameters, and much less

during unvoiced frames. Moreover, the gains due to speaker-dependent coding of

adaptive gains are found to be negligible, indicating that the adaptive codebook

does not benefit significantly from speaker-dependent coding. Finally, gains of 10-

15 bits per subframe result from speaker-dependent coding of the fixed excitation,

amounting to a significant portion of the overall bit budget in a typical wideband
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speech coder.

LSF quantization

The problem of wideband speech LSF quantization, with the Log Spectral

Distortion measure, is considered first, and utilized later in the chapter to demon-

strate other techniques relevant to speaker-dependent coding. This problem, and

the similar narrowband case, have been studied extensively, and rates of 35-50 bits

per frame are typical (c.f., [15], [12], [16], [17]). To quantify the impact of speaker

dependence on LSF quantization, a GMVQ was designed for each speaker using

the Weighted EM algorithm (see [12] and [18]), as well as a speaker-independent

GMVQ, using the databases described above. The Weighted EM algorithm is able

to incorporate the LSD measure through the use of a sensitivity matrix (see [20])

which represents the local second-order behavior of the distortion measure. The

order of the GMVQs was M = 16, which is a common value in the literature.

Three trials were then performed: first, each speaker-dependent coder

was applied to the corresponding speaker’s test database. The results for each

rate were then averaged over the speakers, giving an average performance curve

for speaker-dependent coding. Next, the speaker-independent coder was applied

to each speaker’s test database, and the results again averaged as above, to indi-

cate the average performance of a speaker-independent system. Finally, for each

speaker’s test database, 10 randomly selected speaker-dependent coders were ap-

plied, and the results were averaged over both the randomly selected coder and the

speaker databases, indicating the average performance of a speaker-dependent sys-

tem which is employing an incorrect speaker model. These results are summarized

in Table 4.1. Notice that the speaker-dependent systems exhibit an improvement

of 4 bits per frame in the sense of average distortion, and 5 bits in the sense of

small outliers, relative to speaker-independent coding. Also note that the speaker

error case shows a comparable disadvantage relative to speaker-independent cod-

ing, highlighting the need for speaker-identification and robustness against speaker
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Table 4.1: Spectral Distortion Performance Around Operating Point
Speaker Dependent Speaker Independent Speaker Error

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4dB > 4dB (in dB) 2-4dB > 4dB (in dB) 2-4dB > 4dB

36 1.073 0.636 0 1.248 2.420 0.001 1.427 13.407 0.249

37 1.034 0.480 0 1.205 1.880 0.001 1.380 11.819 0.237

38 0.996 0.337 0 1.160 1.436 0.000 1.331 10.372 0.213

39 0.960 0.248 0 1.119 1.095 0 1.284 9.125 0.193

40 0.925 0.190 0 1.080 0.841 0 1.241 8.054 0.189

41 0.891 0.136 0 1.039 0.603 0.000 1.200 7.191 0.174

42 0.858 0.109 0 1.002 0.478 0 1.159 6.295 0.163

43 0.826 0.082 0 0.964 0.351 0.000 1.117 5.422 0.153

44 0.796 0.062 0 0.929 0.257 0.000 1.079 4.700 0.146

45 0.765 0.043 0 0.894 0.120 0 1.041 4.127 0.140

error.

Adaptive Codebook

Next, the issue of speaker-dependent coding of adaptive codebook pa-

rameters was considered. A typical wideband speech coder computes 4 pitch lags

per frame (1 in each subframe), which in turn requires about 30 bits per frame for

transmission. These parameters are usually not ”coded” as such, but rather simply

assigned a fixed-length binary index. Typical schemes alternate between an 8 bit

index for odd-numbered subframes and a 7-bit index for even-numbered subframes,

resulting in an average rate of 7.5 bits per pitch lag. In order to estimate the im-

provements offered by speaker-dependent coding, we will consider the entropy of

the pitch-lag distribution. This gives the average length of an optimal variable-

rate code applied to the pitch lag parameters. To this end, histograms showing

the relative frequency of each lag value were produced for each speaker, as well as

for the speaker-independent case. These results are illustrated in Figure 4.3. Note

that, in voiced frames, the individual speakers exhibit an entropy roughly 0.85 bits

less than the speaker-independent case. This amounts to a savings of around 3.5

bits per frame, roughly equal to the savings due to speaker-dependent coding of
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the LSF parameters. In the unvoiced case, the difference is much smaller, with

both speaker-dependent and -independent categories showing entropies of around

7 bits. Furthermore, applying the GMVQ framework to the quantization of the

pitch gains under MSE (i.e., using the same methods as for the LSF quantization

experiment), it was found that the gains for speaker-dependent coding of the pitch

gains are negligible (only a fraction of a bit per frame). Overall, then, there may

be little benefit to speaker-dependent coding of the adaptive codebook parameters,

despite the evident variations in the pitch lag statistics in voiced frames.
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0
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Typical Male Speaker (H = 6.1957)

Figure 4.3: Statistics and Entropy of Pitch Lags in Voiced Frames

Fixed Codebook

Finally, we examine speaker-dependence in the fixed excitation. Although

the fixed codebook is typically implemented in the residual domain (as pictured

in Figure 4.2), the codebook search is normally conducted in the weighted signal
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domain. That is, the goal of the fixed excitation search is to match the target sig-

nal eaw in the sense of minimizing ||efw||. For this reason, we consider the coding

of the fixed excitation directly in the weighted signal domain. While this would

be impractical for a real coder, because the resulting codevector would need to be

run through the inverse of the weighting filter at the decoder (and also through

the analysis filter in order to update the adaptive codebook), the fact that the

search is carried out in the weighted signal domain and that the synthesis and

perceptual weighting filters are invertible implies that the speaker-dependent per-

formance gains should be the same. Thus, we dispense with the separation into

a fixed residual codebook and gains, and instead consider the direct quantization

of eaw using the GMVQ framework. For this experiment, the appropriate quality

measure is the Weighted Segmental Signal-to-Noise Ratio (WSSNR), E
[

||sw||2

||efw||2

]
,

which reflects the masking effects of loud subframes. Note that the signal power

of interest here corresponds to the (weighted) signal power before the adaptive

codebook contribution has been removed. However, utilizing a segmental signal-

to-noise ratio is problematic in the context of quantizer design, which is developed

in terms of expected distortion measures. In the case of the usual (non-segmental)

signal-to-noise ratio, this disparity is easily erased by the use of an inverse trans-

formation

arg max
Q

E[||Y ||2]
E[||X −Q(X)||2] = arg min

Q

E[||X −Q(X)||2]
E[||Y ||2] = arg min

Q
E[||X−Q(X)||2],

that is, by minimizing the noise power, conventional MSE-based quanti-

zation design methods also maximize the signal-to-noise ratio. However, this corre-

spondence is broken in the case of segmental signal-to-noise ratio, as the fraction is

now inside the expectation. Moreover, WSSNR is ill-posed for use in quantizer de-

sign, because the integrand has a singularity at every codepoint. For these reasons,

we instead employ a weighted squared-error distortion measure E
[
||efw||2

||sw||2

]
, which

reflects the principle that the distortion in a given subframe should scale with the
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subframe power. This distortion measure can be related to WSSNR through the

use of Jensen’s inequality:

E−1

[ ||sw||2
||efw||2

]
≤ E

[ ||efw||2
||sw||2

]
, (4.1)

The weighted squared error distortion measure can be incorporated into

GMVQ design using the same weighted EM approach as in the case of LSD on

LSF vectors. The only new element in this instance is the fact that the sensitivity

matrix is parameterized by a side-information ||sw|| instead of deterministically

varying with eaw. Details of high-rate quantization for this case can be found

in [54]; one particular modification here is that the expectations in Eq. (4.1) must

be regarded as over both sw and eaw. Moreover, note that the sensitivity matrix in

this case is a scalar, implying that an MSE encoder is still optimal. However, it is

still necessary to redesign the codebook according to the distortion measure, which

requires placing more of the codepoints in regions correlated with small values of

||sw||2 (i.e., low signal power).

With this setup, an experiment similar to that performed for LSF cod-

ing was performed to quantify the speaker-dependent gains available in the fixed

codebook. The results are pictured in Figure 4.4. A wide variety of coding rates

were utilized, reflecting the large range of fixed codebook sizes used to operate at

different rates. While the performance gains depend on the exact rate of operation,

note that gains 10-15 bits per subframe, in terms of WSSNR, hold over most of

the range of interest. This corresponds to a gain of 40-60 bits per frame or 2-3

kbps, a significant proportion of the typical wideband speech coding rate.

4.2 Exploiting Speaker-Dependence

There are a variety of ways in which the performance gains of speaker-

dependent coding can be exploited. In the simplest case, one would simply reduce

the operating rate, resulting in the same quality as a speaker-independent system
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Figure 4.4: Performance of Fixed Excitation Quantization in terms of a) Weighted

Distortion and b) Weighted Segmental Signal-to-Noise Ratio. The solid lines in-

dicate speaker-dependent performance, while the dashed lines indicate speaker-

independent systems.

on a reduced budget. The extra bits could then be assigned to other portions of

the speech coder in order to improve quality, or the overall bitrate of the coder

could simply be reduced. If speaker-dependent rates are allowed, more interesting

schemes become possible. For example, one could achieve uniform quality over

all speakers. That is, in speaker-independent coding, the rate is set such that

the mean distortion and outliers (averaged over all speakers) meets an appropri-

ate transparency criterion. However, it is the case that some speakers are much

”harder” to code than others. This is illustrated in Figure 4.5, where it can be

seen that the standard deviation of the mean operating rate for LSF coding is

around 2 bits, in both the speaker-dependent and -independent cases. Thus, with
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a single, speaker-independent setting of the operating rate, some speakers enjoy

substantially better than transparent quality, while others suffer from much worse

quality. Using speaker-dependent rates, bits can be shaved from ”easy” speakers

and dedicated to ”difficult” ones, making the transmission quality more consistent.
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Figure 4.5: Variation of Average Distortion over Speakers. Plot (a) illustrates the

speaker-independent case, while plot (b) shows speaker-dependent, both at a rate

of 42 bits per frame. A change in average distortion of 0.04 dB corresponds to 1

bit per frame.

Speaker dependence can also be exploited to reduce complexity, rather

than improve performance in the rate-distortion sense. That is, since speaker-

dependent systems achieve better rate-distortion performance as speaker-independent

systems of the same complexity, one would expect that they could also achieve com-

parable quality with a much lower complexity. To test this hypothesis, the LSF



102

coding experiments of the previous section were repeated for the lower model or-

ders M = 4 and M = 8 (recall that the complexity of the GMVQ is proportional to

M). Figure 4.6 illustrates the performance of speaker-dependent coding at a vari-

ety of complexities, and compares it to speaker-independent coding with M = 16.

Notice that, even with M = 4, the speaker-dependent system still outperforms a

speaker-independent coder with four times the complexity. Lastly, note that all

of the methods for exploiting speaker-dependence can be combined in whichever

proportions are deemed attractive.
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Figure 4.6: Illustration of Speaker-Dependent Performance at a Variety of Com-

plexities
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4.2.1 Safety-Net Systems

As illustrated in Table 4.1, a large penalty is incurred when an incorrect

speaker-dependent model is employed. This represents a serious practical problem:

for example, a user might hand his phone to a friend in the middle of conversation,

causing a wild fluctuation in quality. While perfect speaker robustness is incom-

patible with exploiting speaker-dependent gains, the losses due to speaker errors

can be limited by employing a safety-net approach, as in [17]. Safety-net quan-

tizers ensure robustness by operating two coders in parallel, one of which is fixed.

That is, speaker robustness can be obtained by operating a speaker-independent

coder in parallel with the speaker-dependent coder, and then selecting the final

codepoint by taking the better of the two outputs. It is necessary to reduce the

rates of the two coders such that the overall number of codepoints corresponds to

the desired rate. In the simplest case, this is accomplished by evenly dividing the

codepoints between the two coders. This results in a simple index structure with

a status bit indicating which component coder is active, and the remaining r − 1

bits indexing the codeword from that coder. Such a system, then, should lose 1 bit

of performance when operating on the correct speaker and, in return, ensure that

the performance is within 1 bit of the speaker-independent case when operating

on the wrong speaker.

In order to make a fair comparison between safety-net systems and un-

constrained coders, it is also necessary to match the complexities of the two types

of coders. In the context of GMVQ, this means that the total number of Gaussian

coders employed should match in each case. So, for an unconstrained coder of

order M , the safety-net system should be composed of, for example, a speaker-

dependent GMVQ of order M/2 and a speaker-independent GMVQ of order M/2.

Note that, due to the structure of the GMVQ (see Figure 4.1), the two compo-

nent GMVQs of the safety-net system can then be combined into a single GMVQ

of order M . That is, suppose that the parameters
{
α̂m, µ̂m, Σ̂m

}M/2

m=1
represent a

speaker-independent coder. These parameters can be trained ahead of time and
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fixed. The speaker-independent parameters can then be combined with a set of

speaker-dependent parameters {αm, µm,Σm}M/2
m=1 to construct a safety-net system

of order M as follows:

αsn
m =






1
2
α̂m , 1 ≤ m ≤ M

2

1
2
αm−M/2 , M

2
+ 1 ≤ m ≤M

(4.2)

µsn
m =





µ̂m , 1 ≤ m ≤ M

2

µm−M/2 , M
2

+ 1 ≤ m ≤M
(4.3)

Σsn
m =





Σ̂m , 1 ≤ m ≤ M

2

Σm−M/2 , M
2

+ 1 ≤ m ≤M
(4.4)

The factor of 1
2

in Equation (4.2) is introduced in order to assign approx-

imately half of the codepoints to the speaker-independent portion. Notice that, if

it desired to emphasize the speaker-independent portion of the safety-net system

over the speaker-dependent portion, this factor could be increased to assign more

bits. Likewise, one could dedicate a larger share of the M total Gaussian coders

to the speaker-independent portion to achieve a similar effect.

The next question is how the speaker-dependent portion of the safety-net

system should be trained. The simplest method is to utilize the same speaker-

dependent designs from the previous section, which were designed without refer-

ence to the safety-net system. However, this approach sacrifices performance on

the correct speaker in exchange for better performance under speaker errors. The

reason for this is that, since the speaker-dependent portion of the coder is trained

without reference to the safety net, it expends a portion of its modeling power on

features that are common to all speakers. While this is required for an uncon-

strained speaker-dependent system, this effort is wasted in the safety-net context,

since the speaker-independent portion of the coder already models the common

features. In order to achieve the desired 1 bit penalty/robustness, the training

should be carried out using the entire safety-net GMVQ, which will allow the

speaker-dependent portion to focus its efforts on those speaker-specific features
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not captured by the speaker-independent subcoder. Supposing one already has

the speaker-independent parameters, this can then be accomplished by applying

a slight variation on the EM algorithm to a single-speaker database. The E-step

is unchanged, which is to say it consists of computing rmn = αsn
mN(xn|µsn

m,Σ
sn
m) for

m = {1, . . . ,M} and all time steps n, and then normalizing appropriately. Note

that this step uses the entire set of M parameters, with no distinction between the

speaker-dependent and speaker-independent portions. The M-step, however, must

be modified in order to leave the speaker-independent portion of the parameters

unchanged. To accomplish this, the regular M-step updates are applied only to the

last M/2 parameters, which correspond to the speaker-dependent portion. Lastly,

the speaker-dependent mixture weights must be normalized to sum to 1
2
, as in Eq.

(4.2), in order to meet the constraint.

To demonstrate the performance of safety-net systems, an experiment

similar to the previous one was performed. A safety-net GMVQ of order M = 16

was trained for each speaker in the database. Then, for each speaker’s test

database, the correct safety-net coder was applied, followed by 10 randomly se-

lected incorrect coders. The results were then averaged as above to show the

average performance of safety-net GMVQ, which is summarized in Table 4.2. Com-

paring with Table 4.1, it is clear that the performance of safety-net systems under

speaker error is 1 bit behind speaker-independent coding, and the performance

with the correct speaker is 1 bit behind unconstrained speaker-dependent coding,

as expected. The penalty for a speaker error has been cut from 8 bits in the

unconstrained case to 4 bits in the safety-net case, as desired.

4.3 On-line Training

Because it is impractical to compile training databases of individual

speakers prior to deployment, speaker-dependent systems must be designed in

an on-line fashion. This introduces two new considerations into the system de-
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Table 4.2: Spectral Distortion Performance of Safety-Net Systems Around Oper-

ating Point

Correct Speaker Speaker Error

bits/frame
Avg. LSD Outliers (in %) Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB (in dB) 2-4 dB > 4 dB

36 1.117 0.741 0 1.289 3.961 0.001

37 1.078 0.543 0 1.246 2.999 0.001

38 1.039 0.384 0 1.200 2.274 0.000

39 1.001 0.295 0 1.156 1.748 0.001

40 0.965 0.208 0 1.116 1.334 0.001

41 0.930 0.152 0 1.076 1.028 0.000

42 0.895 0.108 0 1.037 0.790 0.001

43 0.862 0.083 0 0.999 0.611 0.000

44 0.830 0.066 0 0.962 0.456 0.000

45 0.798 0.040 0 0.924 0.340 0.000
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sign: computational resources are required for carrying out the training algorithms,

and communications resources are required in order to disseminate the resulting

speaker-dependent designs to the relevant end-users. This section considers a va-

riety of different training configurations, each of which strikes a different balance

between computational requirements, communications requirements, and perfor-

mance. One feature shared by all of the schemes is that the system initially operates

in a speaker-independent mode. Then, as suitable training data becomes available,

speaker-dependent designs are produced and disseminated, allowing a transition to

speaker-dependent operation. The schemes differ in how they balance end-user re-

sources, communications resources, and how much of the performance advantages

described in Section 4.1 they are able to realize. Three different training configu-

rations are presented in Section 4.3.1, and their relative strengths and weaknesses

are discussed. Section 4.3.2 discusses learning using quantized data, which is re-

quired to enable training configurations with remote learning. A modification to

the GMVQ decoder is presented that avoids singularities in the training process,

and the performance losses due to training on quantized data are experimentally

quantified. Lastly, Section 4.3.3 discusses recursive learning, wherein the training

is conducted in a sample-by-sample manner, eliminating the need to store large

training databases. Recursive learning can be applied to any of the training config-

urations in order to reduce storage requirements, or to enable adaptive operation.

4.3.1 Training Configurations

Consider first the most straightforward training scheme, illustrated in Fig-

ure 4.7. In this Local Learning approach, each end user’s equipment first stores up

a suitably large database of unquantized training data. Then, the standard train-

ing schemes described in Section 4.1 are applied to produce the speaker-dependent

coder design. Finally, the design is transmitted to the required receivers as ex-

plicit side information (either directly or via a centralized database). The primary

advantage to this approach is that training is carried out on unquantized data,
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and so achieves the full measure of performance improvement. Local Learning has

a number of drawbacks: it requires each end-user’s equipment to have sufficient

memory and processing power for the training process (which is generally much

larger than the coding complexity). It also requires the resulting coder parameters

to be sent explicitly as side-information. As discussed in the introduction, the

number of scalar parameters for a GMVQ of order M , operating in dimension d,

is M(1 + d + d(d + 1)/2) − 1. Supposing these parameters are represented with

16-bit fixed-point words, the overhead for transmitting a speaker-dependent LSF

quantizer with M = 16 and d = 16 works out to 38,656 bits, corresponding to a few

seconds worth of wideband speech at typical coding rates. For a speaker-dependent

excitation codebook, with d = 80 and M = 16, the resulting overhead is 850,160

bits, corresponding to a little more than one minute of wideband speech data. Note

that this overhead is incurred multiple times for each user, in order to distribute it

to the other users he wishes to communicate with. Also note that, if a safety-net

coder is employed, the overhead for speaker-dependent parameters is reduced by

one half. Furthermore, the training and distribution of speaker-dependent coders

need not take place during an actual phone call. For example, the system could

train the speaker-dependent coder and then transmit it to the entries in the user’s

address book during times of inactivity.

In situations where the end user’s equipment is not powerful enough to

implement the learning process locally, the design can instead be carried out at

remote locations, as illustrated in Figure 4.8. To enable Remote Learning, training

must be performed on data that has already been quantized (presumably by a

speaker-independent system). Details of learning on quantized data are presented

in Section 4.3.2. The primary advantage of remote learning is that it eases the

complexity requirements for the end users. The only additional complexity required

in the end user’s equipment is the ability to receive and store new coder parameters

and load the resulting systems. In exchange for relocating the training complexity,

a performance loss is incurred due to the use of quantized data in the training phase.
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Figure 4.7: Local Learning. This configuration avoids performance penalties asso-

ciated with training on quantized data.

Additionally, one extra side information transmission is necessary to communicate

the speaker-dependent coder design back to the encoder.

In scenarios where the transmission overhead for distributing the speaker-

dependent models is the limiting factor, Synchronized Learning can be used (see

Figure 4.9). In this method, both the encoder and decoder perform the learning

process in parallel. This allows both ends of the communications system to update

their coders in a synchronized manner, without sending any side-information. In

order to maintain synchronization between the two ends, the encoder must perform

the learning process on quantized data. This method requires every end user to

have sufficient computational power and storage to implement the training process.

Also, note that the cost of adding a decoder to the transmitter side is not onerous

in the case of GMVQ, which computes the output vectors in the encoding process.

Another disadvantage is that the training process would have to be repeated every

time a new user is contacted. Thus, this method represents the other extreme of the

complexity/overhead trade-off: large, redundant training complexity in exchange

for zero transmission overhead. It should be noted, however, that such an approach

is sensitive to transmission errors, which can cause the learning processes to lose
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Figure 4.9: Synchronized Learning. This configuration avoids the use of side in-

formation.

synchronization. In order to overcome this, it will still be necessary, in practice,

to transmit some side-information to guard against loss of synchronization.

4.3.2 Learning from Quantized Data

A number of issues arise when considering learning from quantized data.

First, since the learning process does not have access to clean data, some degrada-

tion in the resulting design is expected. This loss, as a function of encoding rate,

is quantified later in this subsection. Another issue that arises in the context of

GMVQ results from the nature of the quantization error (as opposed to its magni-

tude as such). To see this, recall that the GMVQ utilizes scalar transform coders

to implement each component Gaussian coder. The covariance matrices of the in-

dividual Gaussians tend, in practice, to be fairly oblong. This results in transform

codebooks that, at standard operating rates, lie in subspaces of R
d. That is, only

a single codepoint is allocated to the least significant transform dimension(s), as
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Table 4.3: Level Allocation for Speaker-Independent GMVQ with M = 16 at a

rate of 43 bits per frame (transparent quality). Note that all of the component

transform coders assign a single level to the least significant transform component.

Cluster Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

n
sf

o
rm

C
o
effi

ci
en

t

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 3 1 2 2 2 2 2 2 2 2 2 1

3 3 2 3 3 3 3 2 3 2 2 3 2 4 4 4 3

4 4 4 4 4 3 4 4 3 4 4 4 3 4 4 4 3

5 4 4 5 4 4 4 4 4 4 4 4 4 4 4 5 4

6 4 5 5 4 4 5 4 4 4 5 4 4 5 4 5 4

7 5 5 5 5 4 5 4 5 5 6 4 5 5 5 5 5

8 6 5 5 5 4 6 5 5 5 6 4 6 5 5 6 6

9 7 6 5 5 5 6 6 6 6 7 5 6 5 5 6 6

10 7 7 5 6 5 7 7 6 7 7 6 7 5 6 6 7

11 8 8 6 6 6 7 7 7 7 7 7 8 6 7 6 8

12 10 9 6 6 8 9 8 8 7 8 8 9 6 7 8 10

13 10 10 9 8 9 10 9 10 9 9 10 12 7 9 10 10

14 11 11 11 11 11 11 16 13 10 12 12 13 8 11 10 12

15 15 16 18 14 17 15 17 16 16 13 14 15 10 13 12 16

16 17 16 23 32 37 17 17 16 21 17 31 17 19 16 14 19

illustrated in Table 4.3. Note that the entire GMVQ codebook does not lie in

a subspace, as the subspaces of each component Gaussian coder do not typically

coincide. Nevertheless, attempting to learn a GMVQ of comparable order as was

used to quantize the data results in each component ”locking on” to a correspond-

ing subspace. This leads to a numerical instability wherein the covariances shrink

without bound, derailing the learning process.

To circumvent this problem, a postprocessing can be applied to the quan-

tized data before it is utilized in the learning process. This postprocessing con-

sists of adding Gaussian noise to the quantized data in order to ensure that the

data has full rank. Specifically, noise is added only to those coefficients of the
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ẑd−1zd−1
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Figure 4.10: Transform coder with decoder modified for use in learning. In this

example, the d-th transform component received an allocation of 0 bits; all other

components are coded as normal. The functions gi are the compressor functions

(i.e., cdf’s of Gaussians), the ”USQ” blocks are uniform scalar quantizers (on [0, 1])

and the U(0, 1) block is a random number generator, uniformly distributed on [0, 1].

(transformed) quantized vector which are degenerate (i.e., the dimensions which

received an allocation of 1 codepoint). The encoder-decoder pair for a transform

coder with postprocessing is illustrated in Figure 4.10. The variance of the noise

for each coefficient is set according to the GMVQ used to quantize it. Note that

this postprocessing should not be applied to the actual output of the quantizer

in the operational speech coder, as it amounts to adding extra noise: it is only

intended to be applied to data for use in the learning process.

In order to demonstrate the effectiveness of the postprocessing scheme,

and to quantify the loss due to learning on quantized data, a set of experiments

on LSF quantization were performed. First, the training set for each speaker was

quantized using a speaker-independent GMVQ of order 16 (trained on clean data).

The data was quantized at a rate of 43 bits per frame, resulting in transparent

quality (see Table 4.1). Postprocessing as shown in Figure 4.10 was employed to

ensure that the quantized data was full rank (every cluster had at least one di-

mension with an allocation of 0 bits). For each speaker, then, two coders were

trained: an unconstrained speaker-dependent coder, and a safety-net coder, both

of order M = 16. To assess the performance of the models from quantized data, all



114

three coders (speaker-independent, speaker-dependent and safety-net) were then

operated on each speaker’s test set. Additionally, 10 randomly selected ”incorrect”

safety-net coders were operated on each test set in order to examine the perfor-

mance under speaker error. The results are illustrated in Figure 4.11. Note that,

as before, the safety-net system imposes a 1-bit penalty on speaker-dependent per-

formance and in turn ensures that the performance under speaker error is limited

to 1 bit worse than the speaker-independent case. Comparing with the previous

results using unquantized training data (i.e., Tables 4.1 & 4.2), it becomes appar-

ent that the price of learning from quantized data is about 1 bit. That is, the

performance of the speaker-dependent and safety-net systems have worsened by a

margin of 1 bit. Notice, however, that the performance of the speaker-independent

system, and the safety-net system under a speaker error, have not changed. This

is because the speaker-independent system was trained on unquantized data, and,

because the safety-net system is built around the speaker-independent parameters,

it inherits this performance advantage.

Next, in order to characterize the effects of the encoding rate upon the

learning process, the previous experiment was repeated using a wide variety of

quantization rates. The results are illustrated in Figure 4.12. Note that the oper-

ating point for transparent quality (around 40 bits) lies in a steep section of the

performance curve, which is to say that large gains in the performance of speaker-

dependent systems can be obtained by increasing the bit rate during training.

As the training rate approaches 70-80 bits per frame, the slope levels off. This

reflects the fact that such rates are sufficiently large as to make postprocessing

unnecessary (i.e., all components of all clusters are allocated at least 1 bit). On

the other hand, at very low rates, only a small improvement is possible. In this

regime, many components of every cluster receive allocations of 0 bits, and so

postprocessing is applied to a large proportion of the components. Since the post-

processing is based on the speaker-independent model, it imposes, to some degree,

the speaker-independent statistics onto the training data, resulting in performance
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Figure 4.11: Performance of Speaker-Dependent and -Independent LSF Quantiza-

tion When Learning on Quantized Data.

very close to the speaker-independent case. Moreover, this curve suggests that it

may be beneficial to boost the quantization rate during training, in order to avoid

performance penalties. If the rate at which LSFs are coded can be doubled for a

time, models trained on quantized data will show very little loss. If desired, this

temporary increase in rate could be accomplished without raising the overall rate

of the coder by rededicating bits from the fixed codebook during the LSF learning

phase. A similar reshuffling could then be applied to allow learning of the other

parameters. While this would result in degraded audio quality during the training

phase, it would also result in a much better speaker-dependent model once training

was completed (at which time, the normal bit allocation could be restored).
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Figure 4.12: Performance of Speaker-Dependent LSF Quantizers Trained on Quan-

tized Data, as a function of bit rate. The dashed line shows the performance of

speaker-dependent systems trained on clean data, while the dotted line shows

speaker-independent performance. All of the systems illustrated operated at a

rate of 38 bits per frame.

4.3.3 Recursive Learning

All of the training strategies discussed above have assumed that the train-

ing process, wherever it is carried out, has access to a suitably large database of

training data. That is, the systems operate in a speaker-independent mode un-

til they have amassed enough user-specific training data to perform the training

process. The design is then carried out in a single batch, resulting in the desired

speaker-dependent coders. However, it may be that the requirement of storing a
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speaker-dependent database is prohibitive, particularly when the learning is car-

ried out in the end-user’s equipment. In these cases, recursive learning can be

employed, wherein the learning process utilizes only a single frame at a time, re-

sulting in a sequence of parameter estimates. Such a scheme has very low storage

requirements, needing only the current frame’s data, the parameters, and a few

auxiliary variables used in the recursion. It can also provide for adaptive oper-

ation. In such a case, the training process would continue indefinitely, allowing

the coders to track changes in the speaker or acoustic environment. Note that

adaptive methods incur repeated communications overhead costs in schemes using

explicit coder transmission, and so may be more suited to synchronized learning

approaches.

In the context of learning a GMVQ, the Recursive EM algorithm can

be employed for this purpose. This algorithm, presented by Titterington in [50]

and [51], is based on Stochastic Approximation. That is to say, the parameter

estimate at time step n takes the form:

θn = θn−1 + η(n)T−1
n

[
∂

∂θ
log fθ(xn)

]

θ=θn−1

(4.5)

where η(n) is a step-size parameter and Tn is a conditioning matrix. Given

certain technical conditions, stochastic approximation theory guarantees that such

an estimator is consistent. In particular, it is required that
∑

n η(n) = ∞ and
∑

n η
2(n) = 0, i.e., η(n) = o( 1

n
). Beyond its effects on consistency, the choice

of T (n) determines the relative asymptotic efficiency of the estimation procedure,

with optimal performance achieved by employing the Fischer Information matrix

(i.e., the Hessian of the log-likelihood). However, in nontrivial problems such

as estimation of the parameters of a multivariate GMM, it is very expensive to

compute and, particularly, invert the Fischer Information. A popular alternative,

then, is to use the ”complete-data” Fischer Information matrix, which is much

simpler to compute and invert, although it results in decreased relative efficiency.

This is referred to as the Recursive EM Algorithm, and results in the following



118

update procedure for the case of GMM:

rmn ∝ αm(n−1)N(xn|µm(n−1),Σm(n−1)) (4.6)

αmn = (1 − η(n))αm(n−1) + η(n)rmn (4.7)

= τmn + ρmn (4.8)

µmn =
τmnµm(n−1) + ρmnxn

τmn + ρmn
(4.9)

Σmn =
τmnΣm(n−1) + τmnρmn

τmn+ρmn

〈
xn − µm(n−1)

〉

τmn + ρmn
(4.10)

where 〈.〉 denotes the outer product and τmn can be thought of as the

”prior strength” assigned to the m-th old estimate (as of time n− 1) and ρmn rep-

resents the new information for cluster m at time n. Notice the similarity between

these recursions and the expressions that arise in Sequential MAP estimation of a

GMM with a complete-data conjugate prior (see [48]). In the case that η(n) = 1
n
,

then, the two approaches are equivalent. However, as will be seen shortly, other

choices of η(n) are more appropriate to the recursive learning problem, in which

case the equivalence with MAP estimation does not apply. Also note that the

inverse and determinant of Σmn will also be required in order to compute rmn at

the each time step. Because the update to Σmn in Eq. (4.10) is a rank-one update,

these quantities can be efficiently computed in a recursive manner by applying the

Matrix Inversion Lemma:

Σ−1
mn =

τmn + ρmn

τmn



Σ−1
m(n−1)



I −
ρmn

τmn+ρmn
〈xn − µm(n−1)〉Σ−1

m(n−1)

1 + ρmn

τmn+ρmn
‖xn − µm(n−1)‖2

Σ−1
m(n−1)









(4.11)

|Σmn| =

(
ρmn

τmn + ρmn

)d(
1 +

ρmn

τmn + ρmn
‖xn − µm(n−1)‖2

Σ−1
m(n−1)

) ∣∣Σm(n−1)

∣∣

(4.12)

The last issue to determine is the schedule of the stepsize η(n). The

simplest approach is simply to utilize η(n) = 1
n
, as in [50]. This approach is useful
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in, for example, adaptive settings wherein a good estimate is already available,

and it is desired to update it using new data (c.f. [52]). In such a scenario, the

”prior weight” given to the initial estimate is quite high, and a small stepsize

is desired. Thus, a 1
n

schedule, starting at some fairly large n0 is appropriate.

However, in ”from scratch” estimation problems, the simple 1
n

schedule suffers from

its sensitivity to early data. That is, during the early stages of estimation, when

the old parameter estimate is very inaccurate, employing a 1
n

schedule typically

causes the estimation procedure to diverge. To avoid this problem, one can employ

a modified learning schedule as suggested by Sato in [53]:

η(n) =

(
n∑

t=1

n∏

s=t+1

λ(s)

)−1

(4.13)

λ(n) = 1 − 1

(n− 2)γ + 1
ǫ0

(4.14)

where λ(n) is a ”forgetting factor,” whose schedule is parameterized by

γ, which controls the asymptotic decay rate of η(n), and ǫ0, which sets the initial

length of the ”memory window.” Notice that η(n) can be computed recursively:

η(n) =
1

1 + λ(n)
η(n−1)

(4.15)

Thus, in this approach, the stepsize schedule is separated into three re-

gions. In the range 1 < n < 1
ǫ0

, a rough (but reliable) estimator is formed using a

short memory window. In the second phase, 1
ǫ0
< n < 1

γǫ0
, learning is carried out

with a window length of 1
ǫ0

(i.e., η(n) ≈ 1
ǫ0

). In the final phase, η(n) decays as γ+1
γn

,

ensuring that that the estimator meets the consistency requirements set forth by

stochastic approximation.

In our experiments on learning of speaker-dependent GMVQs for LSF

quantization, we found that the values γ = 0.05 and ǫ0 = 0.001 resulted in reliable

estimation. The learning curves for this problem, averaged over all 45 speakers, are

seen in Figures 4.13. Note the small disparity between the likelihood performance
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and the actual quantization performance. This results from the assumption that

the inertial profile of the quantizers is independent of the parameters (see Chapter

3), which is not really accurate. This is not a major impediment, in that the

variation in the inertial profile is small compared to the changes in likelihood that

are achieved.

4.4 Discussion

This chapter considered the problem of speaker-dependent wideband speech

coding. A simplified CELP framework was considered, which has three types of

parameters: spectrum parameters (here, LSFs), adaptive codebook parameters,

and fixed codebook parameters. In order to quantify the speaker-dependent gains

in each type of parameter, the GMVQ framework was utilized, which is able to

represent the statistics of individual speakers. First, it was found that gains of 4

bits per frame can be realized in the case of spectrum coding under LSD. Next,

the adaptive codebook parameters were considered. While statistical variation be-

tween speakers was evident in the pitch lags in voiced frames, the corresponding

speaker-dependent gains were still modest. Moreover, it was found that the gains

for pitch lags were negligible in unvoiced frames, and that the pitch gains showed

insignificant gains in all types of frames. Thus, there is little to be gained from

speaker-dependent coding of adaptive codebook parameters. Finally, the coding of

the fixed excitation was considered. In order to quantify speaker-dependent gains,

quantization of the fixed excitation was considered in the weighted signal domain,

where the search over fixed codebook parameters normally takes place. A weighted

squared-error measure was used, which corresponds to WSSNR. It was shown that

gains of 10-15 bits per subframe are achievable using speaker-dependent quantiz-

ers, corresponding to a significant portion of a typical wideband speech coder’s bit

budget. These savings can be leveraged in a variety of ways, for example by re-

ducing complexity rather than operating rate. Also, it was shown that significant
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Figure 4.13: Convergence of Online EM Algorithm. Subfigure (a) shows the aver-

age log likelihood while subfigure (b) depicts the average Log Spectral Distortion.

The dashed lines show the performance of speaker-dependent systems trained us-

ing batch methods, while the dotted lines show speaker-independent performance.

Note that the average change in log likelihood is negative at the beginning of the

estimation process, while the average distortion monotonically decreases. Also

note that the final performance achieved by the recursive procedure within 1/4 of

a bit per frame of the batch learning performance.

variations exist in how ”difficult” it is to code a particular speaker, implying that

speaker-dependent settings of the coding rates can result in more uniform quality.

Next, a variety of techniques needed for operation of a speaker-dependent

coding system were presented. First, safety-net systems were considered, which
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attain robustness against incorrect speakers by operating a speaker-independent

quantizer in parallel with the speaker-dependent one. This approach can be in-

corporated naturally into the GMVQ framework, which itself functions by choos-

ing between the outputs of candidate coders. In order to allow precise trade-off

between robustness and performance, a slightly modified EM algorithm was pre-

sented, which includes the effects of the speaker-independent coder.

Next, a variety of online learning architectures were presented, which

strike different balances between complexity, communications costs and perfor-

mance. In Local Learning, the training is carried out at the encoder side using

unquantized data, and then the resulting speaker-dependent coder design is trans-

mitted as side information to the decoder. This configuration requires the end

user’s equipment to have sufficient resources to carry out training, but, because

clean data is used, suffers no performance penalty. Next, Remote Learning was

considered, wherein the learning is carried out at a remote location (for example, a

base station). This removes the onus of training complexity from the end-user, but

incurs a performance penalty because training must be carried out on quantized

data. Finally, Synchronized Learning was considered, wherein both the encoder

and decoder carry out the learning process in tandem, obviating the requirement to

transmit the designs as side-information. In addition to the performance penalty

due to quantized data, this approach also requires redundant training complexity

at both ends of the system, and is sensitive to transmission errors.

Next, the performance impact of training speaker-dependent LSF quan-

tizers using quantized data was considered. In order to permit training on quan-

tized data in the context of GMVQs, a modified decoder was presented which pre-

vents the training data from having deficient rank. For training data that has been

quantized by a speaker-independent GMVQ at transparent quality, the penalty is

approximately 1 bit per frame. The penalty becomes very small at encoding rates

above 60 bits per frame, suggesting that transmitting parameters at elevated rates

during the training phase can erase most of the penalties.
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Finally, recursive learning was considered. In this approach, the learning

process is carried out in a frame-by-frame fashion, obviating the need to store up

large training databases. The approach used here, for GMVQ design, was carried

out using the Recursive EM algorithm, along with robust learning schedule de-

veloped in [53]. It was shown that there is essentially no penalty for using online

learning, implying that the storage required for the training process need not be

significant. It was found that the LSF learning process required approximately

30,000 frames (or 10 minutes worth) of training data to achieve comparable per-

formance to batch methods.

The material in this chapter is in preparation for a submission, coauthored

with Bhaskar D. Rao, for publication in IEEE Transactions on Audio, Speech

and Language Processing under the title “Speaker-Dependent Wideband Speech

Coding”. The dissertation author was the primary researcher and author, and the

co-author contributed to or supervised the research which forms the basis for this

chapter.



5 Conclusions and Future Work

Quantization for modern coding applications provides a variety of chal-

lenges, notably coding of sources with high dimensions, complicated statistics and

diverse distortion measures. On top of this, complexity must be kept under control.

The first part of this dissertation considered a variety of quantization structures

aimed at striking different balances between performance and complexity, and con-

sidered training techniques designed to handle the diverse factors impacting perfor-

mance. Armed with these techniques, the problem of speaker-dependent wideband

speech coding was considered. This consisted of quantifying performance gains due

to speaker-dependence, and providing solutions to a variety of implementational

issues. The various results are discussed in further detail below.

5.1 High-Rate Design of Transform Coders with Gaussian

Mixture Companders

Chapter 2 considered the design of scalar transform coders under un-

known source statistics and input-weighted mean-squared error. While the per-

formance of scalar transform coders is necessarily somewhat limited, the very low,

rate-independent complexity they offer has nevertheless insured that they remain

popular in a variety of applications. Contributions in this area include the follow-

ing:

• The high-rate analysis for scalar transform coders was extended to the case

of input-weighted mean squared error.
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• A flexible scalar quantizer called the Gaussian Mixture Compander was pre-

sented, and details of its implementation were explored. In particular, an

iterative decoder is required, and we presented a scheme for insuring its

rapid convergence.

• A data-driven design algorithm based on the high-rate approximation was

derived, which automatically optimizes the system. As a component of this

algorithm, an extension to the EM algorithm was derived for the problem of

learning scalar point densities under input-weighted squared error.

• The proposed system was demonstrated for the problem of wideband speech

LSF coding. This problem highlights a potential pitfall of high-rate training,

which is that the desired operating rate may be below the high-rate regime,

particularly for heavily structured quantizers. This results in the gains being

significantly smaller than the high-rate estimates would imply. Nevertheless,

the high-rate approach led to improvements in outlier statistics at rates of

interest.

• In light of the above limitations, modifications to the system for operation at

moderate rates were presented. This consists of replacing the GM compan-

ders with unstructured scalar quantizers for coefficients that received small

allocations. The Lloyd algorithm for scalar quantizer design under input-

weighted squared error is presented, and the resulting systems were tested

on the wideband speech spectrum coding problem. This approach did indeed

improve the average distortion, although it exhibited worse outlier perfor-

mance than the compander-based system.
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5.2 High-Rate Optimized Recursive Quantizers Using Hid-

den Markov Models

In Chapter 3, a class of more flexible quantizer structures was examined.

Based on the GMVQ structure of [12], recursive quantizers were developed using

Hidden Markov Models. This chapter revisits the original training techniques

developed for GMVQ in light of the high-rate approach, and goes on to demonstrate

very good performance on wideband speech spectrum coding. The contributions

of this chapter are listed below.

• The High-Rate analysis of GMVQ systems under input-weighted squared

error was considered, leading to connections with random coding. In light

of this, the GMVQ system was considered in the context of CURTZ coders,

which generalize the scalar transform coder and random coders.

• Effects due to large dimensions were considered, in which domain the high-

rate distortion integral takes on the form of a weighted cross-entropy.

• Using the above results, the training of GMVQ was considered. The large-

dimension approach leads to a weighted EM algorithm, which was compared

to the model-based training originally developed for the GMVQ. The con-

vergence of these two approaches was quantified for a variety of example

sources.

• The GMVQ was extended using Hidden Markov Models to a recursive system

which is able to exploit long-term dependencies in the data. The high-rate

training approach was then extended to the recursive case, resulting in a

weighted Baum-Welch algorithm.

• The various systems under consideration were demonstrated for the problem

of wideband speech spectrum quantization, where it was shown that they

lead to significant performance improvements relative to the state-of-the-art.
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5.3 Speaker-Dependent Wideband Speech Coding

In Chapter 4, the problem of speaker-dependent coding in a CELP frame-

work was considered. The flexible GMVQ quantizers and design approach devel-

oped in the previous chapters were leveraged to quantify the gains available in

speaker-dependent coding of the various parameters common to CELP systems.

Then, the various implementational issues, such as online training and robustness,

were addressed. The specific contributions are listed below.

• Gains from speaker-dependent coding of spectrum, adaptive codebook and

fixed excitation parameters were experimentally quantified. It was found that

a reduction of 10% in the bitrate are achievable for spectrum coding, and that

there is very little gain to be had from the adaptive codebook parameters.

Most significant were the gains in the fixed excitation, which amounted to

10-20% of the entire bit budget of a typical wideband speech coder.

• Various methods for exploiting speaker-dependent gains were presented. In

addition to simply reducing the bit-rate, it is possible to instead reduce

coding complexity. Another possibility is to use speaker-dependent rates to

achieve uniform quality over all speakers.

• Safety-net coding was incorporated into the GMVQ framework in order to

provide robustness, and the training algorithm was modified to allow precise

trade-offs between robustness and performance.

• A variety of architectures for online learning were presented, which strike

different balances between performance, training complexity and communi-

cations overhead.

• The problem of learning GMVQ systems from quantized data was considered,

and a modification to the transform coder was developed to avoid problems

in this area. Then, the penalty for learning on quantized data was experi-

mentally quantified.
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• Methods for recursive learning of GMVQ systems were presented, which elim-

inate the storage requirements associated with batch learning and enable

adaptive operation. The convergence of this approach was investigated and

it was demonstrated that performance equivalent to that of batch learning

can be attained.

5.4 Future Work

This section summarizes some of the possible extensions of this disserta-

tion. The first subsection discusses extensions in the realm of structured quantizers,

while the second considers extensions related to speaker-dependent coding.

5.4.1 Improved Recursive Quantizers

The recursive quantization structures presented in Chap. 3 operate by

changing the parameters of a GMVQ at each time step, based on previous data.

However, in order to keep complexity low, the systems under consideration only af-

fect the weights and cluster means, leaving the covariances of each component fixed.

A more flexible, and hence higher-performance, recursive scheme would also modify

the covariances based on previous data. This is similar to the ARCH methods used

in econometrics for predicting changes in volatility (c.f. [58], [59]). Such a method

would allow the clusters to expand in volatile segments, and shrink down in very

predictable segments. However, because the operation of the component coders

in a GMVQ (typically transform coders) depend on the Eigendecompositions of

the covariances, the potential complexity penalty for altering the covariances is

substantial. A promising avenue would be to consider only certain constrained

modifications designed to make the eigendecomposition easy to update. Examples

would be simple scaling, or low-rank updates. Training methods using Maximum

Likelihood are already available for these sorts of models in the ARCH literature,

which could be extended to input-weighted distortion measures through the same
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weighting approach as is used in GMVQ training.

5.4.2 User-Dependent Speech Coding

The results in Chap. 4 consider only performance gains due to speaker-

dependence. Speaker-dependence is a function of anatomy and speaking style,

but ignores other factors such as background noise, acoustic environment and the

response of end-user equipment, all of which will impact performance in a real

telecommunications setting. A user-dependent system would take all of these fac-

tors into account. It is possible for user-dependent gains to be smaller or larger

than speaker-dependent gains, depending on the extent to which the other factors

make the users more or less similar. However, while we have not attempted to

quantify user-dependent gains, the various implementational techniques presented

would apply directly to a user-dependent system. Thus, the way has been cleared

for larger, more expansive experiments that would be able to quantify all of these

various factors. This framework can also be used to aid in developing models of

how the various environmental factors vary from user to user, and from time to

time. In particular, the performance of adaptive systems is of interest here, as a

given user’s environment is subject to fairly rapid change in the context of mobile

communications.
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