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Results from a development campaign, wheremodern additive manufacturingmethods are used to fabricate hybrid

rocket fuel grains with embedded helical ports, are presented. The fuel grains were constructed from acrlyonitrile

butadiene styreneusingcommercially available three-dimensional printer feedstockmaterial.Gaseousoxygen isusedas

the oxidizer for this test campaign.Whencompared to cylindrical fuel ports, significant increases in fuel regression rates

were observed, and these increases in regression rate diminished with time as the helical fuel port burns to become

progressively more cylindrical. Comparisons to the helical pipe flow skin friction correlation developed byMishra and

Gupta indicate that increased skin friction only partially accounts for the increased regression rate. TheMishra–Gupta

correlation underpredicts the regression rate amplification early in the fuel burn and overpredicts that value late in the

burn. The authors conclude that radialwall-blowing due to fuel pyrolysis is suppressed by centrifugal forces introduced

by the helical flow and compresses the boundary-layer flame zone closer to the fuel port wall. Thus, convective heat

transfer is significantly enhanced, and that effect also contributes significantly to the observed regression rate increase.

This effect diminishes with time and is not modeled by the Mishra–Gupta correlation.

Nomenclature

Aburn = fuel grain surface burn area, cm2

Ac = fuel chamber cross-sectional area, cm2

A� = nozzle throat area, sonic choke area, cm2

Cfx
= local skin friction coefficient

D = instantaneous port diameter, cm
Deq = equivalent diameter based on cross-section area, cm
Dfinal = final port diameter, cm
D0 = initial fuel port diameter, cm
d = helix loop diameter, cm
Gox = oxizider mass flux, kg∕s · m2

�Gtotal = longitudinal mean of total fuel port mass flux,
kg∕s · m2

hv = mass-specific enthalpy of gasification of fuel mate-
rial, J∕kg

Isp = specific impulse, s
Lport = fuel port length, m
MW = molecular weight of combustion products, kg∕kg ·

mol
_mfuel = solid fuel grain mass flow rate, kg∕s
_mpropellant = propellant mass flow rate, kg∕s
_mox = oxidizer mass flow rate, kg∕s
N = number of helix rotations
O∕F = oxidizer to fuel mass flow ratio
P = helix pitch length, cm
Pr = Prandtl number
P0 = combustion chamber pressure, kPa
Rc = helix radius of curvature, cm
Re = longitudinal Reynolds number

Reω = rotational Reynolds number
Rg = gas-specific constant, J∕kg · K
_r = fuel grain linear regression rate, cm∕s
�r = longitudinal mean of fuel port radius, cm
�_r = longitudinal mean of fuel grain linear regression

rate, cm∕s
rfinal = fuel port final radius, cm
_rhelix = regression rate for helical fuel port, cm
rinitial = fuel port initial radius, cm
_rstraight = regression rate for straight-bore fuel port, cm
r0 = initial fuel port radius, cm
St = Stanton number
S = helix port centerline arc length, cm
s = total linear regression of fuel grain, cm
T0 = chamber stagnation temperature, K
t = time, s
tburn = burn time, s
Ue = gas velocity at edge of boundary layer, m∕s
Uw = radial velocity of gas emanating from fuel grain

surface, m∕s
β = radial blowing coefficient, ratio of convective

enthalpy to enthalpy of vaporization
Γ = helical port boundary vector, cm
γ = ratio of specific heats or combustion products
Δhflame = specific enthalpy of convection from flame zone to

fuel surface, kJ∕kg
Δhv = specific enthalpy of vaporization of fuel material,

kJ∕kg
Δmfuel = fuel mass consumed, kg
Δmox = oxidizer mass consumed, kg
ηh = 2 · Rc∕D0 initial helical pitch ratio
θ = helix centerline rotation angle, deg
�μ = mean viscosity of combustion byproducts, poise
ρe = gas density at edge of boundary layer, kg∕m3

ρfuel = solid fuel grain material density, kg∕m3

ρpropellant = propellant density, kg∕m3

ρw = density of gas emanating from fuel grain wall,
kg∕m3

ϕ = rotation angle about helix centerline, deg
ω = angular velocity of flow in fuel port, deg

I. Introduction

H YBRID rocket motors, in spite of their well-known safety and
handling advantages [1], have not seenwidespread commercial
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use due to internal motor ballistics [2] that produce fuel regression
rates typically 25–30% lower than solid fuelmotors in the same thrust
and impulse class. These lowered fuel regression rates tend to
produce unacceptably high oxidizer-to-fuel (O∕F) ratios that lead to
potential combustion instability, erosive burning, nozzle erosion, and
reduced motor duty cycles. To achieve O∕F ratios with acceptable
combustion characteristics, traditional cylindrical fuel ports are
fabricated to very long length-to-diameter ratios. These high-aspect-
ratio motors result in poor volumetric efficiency and present the
potential for lateral structural loading issues during high thrust burns.
By increasing the oxidizer mass flux, the fuel regression rate can

theoretically be increased; however, the resulting combustion insta-
bilities at high flux rates limit the effectiveness of this option [3]. To
achieve enhanced fuelmass flows for lower oxidizermass flux levels,
hybrid fuel grain designers have resorted to increasing the fuel grain
surface burn area by casting multiple fuel ports with a large pre-
combustion chamber or multiple injectors or by increasing the fuel
port length. The original AMROC 15-port grain design is a classic
realization of this high-surface-area technique [4]. There are several
disadvantages to themultiple-port approach [5]. First, the overall fuel
regression rate is reduced as the number of ports increases and the
motor diameter size grows accordingly. Second, there is a significant
potential for uneven port burning. Uneven burning presents a
significant potential for compromised fuel grain integrity, especially
toward the end of the burn. Also, multiport fuel grain designs typi-
cally produce unburned mass fraction of greater than 10%. Third,
multiple-port designs present an increased risk of feed-coupling
instabilities related to dynamic flow interactions between the injector
(s), the multiple fuel ports, and the precombustion chamber [3].
Finally, complex casting multiport geometries using conventional
propellants requires the development of extensive tooling and pres-
ents an unavoidable difficulty with removing the tooling once the
grain material is cured. There is often a requirement for an embedded
structure to support the fuel port as it regresses. The presence of this
supporting web adds complexity to the fuel port design and has the
potential to allowvoidswithin the fuel grain structure. Such voids can
contribute to the potential for fuel grain fractures [6].
Other techniques for increasing fuel regression rates, generally

based on increasing the heat transfer from the combustion zone to the
fuel grain surface, have been tested [7]. Unfortunately, most of these
methods suffer significant operational shortcomings. These tech-
niques include adding oxidizing agents to the fuel material [8], add-
ing metal particles to the fuel grain [9], and the use of swirl injection
to increase the local oxidizer surface mass flux [10]. All of these
techniques have demonstrated some ability to enhance regression
rates but have also introduced multiple disadvantages.
Introducing oxidizing materials into the fuel grain reverts to a

quasi-solid propellant design and introduces the potential for pres-
sure coupling during the motor burn [11]. Pressure coupling causes a
significant increase in the fuel regression rate as the motor chamber
pressure increases. Hybrid rocket combustion frequently displays
a sudden amplification of combustion pressures leading into low-
frequency instability that typically occurs in the 10–20 Hz range
[12,13]. Thus, introducing pressure coupling can result is a signif-
icantly increased explosion risk.
Introducing micron-sized metal particles can also introduce

pressure coupling, and the resulting increase in the effective exhaust
product molecular weights results in only marginal end-to-end motor
performance improvements, especially when higher-performance
oxidizers are used [14]. Introducing nanosized metal particles in-
creases motor production costs, and uniform fuel grain material
properties are more difficult to achieve.
Finally, swirl injection has been demonstrated to be effective in

increasing the fuel regression rate [15,16]. Swirl injectors are able to
reduce both thickness and growth of the boundary layer, thus enhanc-
ing heat transfer. The heat transfer variation is reduced, and regres-
sion rate is more uniform. Some effects of swirling must be ad-
dressed, including induced torque and effects of nonaxial flow in the
nozzle (effective throat area and divergence losses). No swirl or
vortex injection hybrid motor has ever been flight-tested. The effects

of motor acceleration upon the swirl effectiveness has yet to be
assessed.
Karabeyoglu et al. [17] have investigated a class of hybrid fuel

materials based on paraffin wax formulations. These paraffin-based
fuels melt before vaporizing, and a properly formulated wax mix
produces a melt layer with a low viscosity and high surface tension.
When the oxidizer flows at high speed over the upper side of the
melting fuel surface, the liquid layer becomes unstable, and minute
surface waves are formed. The resulting fluid boundary layer is
hydrodynamically unstable and allows fuel droplets to be entrained
into the core flow. The entrained fluid droplets significantly increase
the mass flow generated by the ablating fuel but do not increase the
“blowing effect” that suppresses regression rate due to the ablating
radial mass flow. For stable oxidizer flux levels, droplet entrainment
mass flow is significantly greater thanmass flow resulting fromdirect
gasification. Paraffin-based fuels have been developed that burn at
surface regression rates three to four times that of conventional hybrid
fuels [18]. The high regression rate hybrid removes the need for a
complex multiport grain, and most applications up to large boosters
can be designed with a single-port configuration. Karabeyoglu et al.
have ground-tested paraffin fuel hybrid rocket motors large as 60 cm
in diameter [19].
However, because of the fuel drop entrainment, significant un-

burned materials are ejected from the nozzle, and combustion effi-
ciencies for paraffin-based fuels are inherently lower. More signifi-
cantly, the properties that allow the fuel droplet entrainment in
paraffin-based fuels introduce mechanical and structural problems
that reduce the fuel grain integrity as the propellant burns. Solid phase
paraffin is rather brittle and is easily cracked when subjected to
launch vibration loads. As the paraffin melts, thematerial softens and
tends to flow and “sluff” under axial launch loads. Thus, paraffin-
based fuels require either special additives or a support lattice to keep
the grain structure intact under launch loads.
Several strengthening materials have been tested in hybrid motors

[20]. Polyurethane foam (PUF) strengthening structure shows prom-
ising results but leads to heterogeneous fuel formulations that are
difficult to manufacture with any degree of consistency. To avoid this
problem and to ensure paraffin-based formulations with sufficient
elasticity to survive launch vibration levels, a miscible thermoplastic
elastomer styrene-ethylene-butylene-styrene (SEBS) was tested as a
strengthening alternative to PUF. Mixing SEBS into the paraffin fuel
produces a homogenous fuel grain and offers significantly lower
manufacturing costs. During the combustion of the homogeneous
material, the material melts; when using heterogeneous materials,
only the paraffin melts. Unfortunately, both the SEBS fuel additive
and PUF structural support materials reduced the burn effectiveness
and performance of the hybrid motor.
The vast majority of conventional hybrid rocket motor designs use

the isocyanate-cured thermosetting polymers hydroxyl-terminated
polybutadiene (HTPB), polybutadiene acrylonitrile, and glycidyl
azide polymer as the fuel grain material. These fuels are legacy
materials derived from solid propellant and explosive ordnance
manufacture. The U.S. Department of Defense considers these
materials to be environmentally unsustainable for large-scale propel-
lant production and is actively seeking replacement alternatives [21].
The isocyanate curatives present a wide variety of environmental
safety and occupational health risks including irritation of the skin,
mucous membranes, eyes, and respiratory tract; contact and allergic
dermatitis; hypersensitivity pneumonitis; and respiratory sensitiza-
tion. Some studies have demonstrated that isocyanates also exhibit
carcinogenic and detrimental reproductive effects.
In typical thermosetting polymer motor construction, binder

materials are mixed from liquid base components, degassed under
vacuum, and then cast and cured in a fuel grain mold. Because the
base materials must be cast using tooling and mandrels to set the port
geometries, there are limitations to the types of port geometries that
can be developed. These cast-and-curemethods for producing hybrid
fuel grain are necessarily labor intensive, and high production rates
cannot be achieved without a significant manufacturing infra-
structure. Once cured, thermosetting polymers cannot be remanu-
factured into another component or recycled.

8

9

10

2 WHITMORE ETAL.



Whitmore et al. [22] at Utah State University have recently inves-
tigated the use of acrlyonitrile butadiene styrene (ABS) thermoplastic
as a hybrid rocket fuel material. A key outcome of this research was
the demonstrated thermodynamic equivalence of ABS to HTPB
when burned with nitrous oxide (N2O). In a series of comparison
tests, it was discovered that the combustion flame temperature for
N2O∕ABS is slightly cooler than N2O∕HTPB, but the products of
combustion have a lower molecular weight. Thus, ABS achieves
specific impulse Isp and characteristic velocity c� that are nearly
identical to HTPB. ABS and HTPB fuel regression rates for cylin-
drical fuel ports were measured to be statistically identical.
When compared to HTPB, ABS possesses unique material prop-

erties that make it very attractive as a hybrid rocket fuel. ABS is a
noncrystalline material with an amorphous structure. As such, ABS
does not possess a true melting point but exists in a highly softened
semifluid state before vaporizing. Depending on the precise material
formulation, this intermediate fluid state exists over a temperature
range that varies from 120 to 140°C [23]. This property makes ABS
the material of choice for a modern form of additive manufacturing
known as fused deposition modeling (FDM). In FDM, a plastic
filament is unwound from a coil and supplies material to an extrusion
nozzle. The nozzle is heated to melt the material and can move three-
dimensionallywhen controlled by a computer numerically controlled
mechanism. Exploiting the FDM fabrication process for ABS offers
the potential to revolutionize the manufacture of hybrid rocket fuel
grains. FDM can support high production rates and offers the
potential of improving hybrid fuel grain quality, consistency, and
performance, while reducing development and production costs.
Identical grains can be manufactured from a wide range of commer-
cial vendors; thus, FDMprocessing does not require themaintenance
of an application-specific production and assembly line.
Most significantly, using additive manufacturing, ABS fuel grains

can be fabricated with an almost infinite range of fuel port shapes.
These embedded structures offer the potential for significant fluid-
mechanical enhancement and modification of burn properties and
combustion efficiencies [24]. It is this nearly open-ended manu-
facturing capability that will be exploited in the research to be
detailed in this paper.

II. Hybrid Fuel Regression Rate Mechanism Overview

Two fundamentally different processes drive solid and hybrid
fuel grain regression rates. Solid propellants are blended using a
combination of oxidizer and fuel in a mass proportion that delivers
the optimized performance for a givenmission requirement. Because
the propellant mixture ratio is set by this homogeneous propellant
formulation, the O∕F remains constant throughout the burn. Solid-
propellant combustion occurs in avery thin zone near the fuel surface.
The rate of regression is driven by primarily chemical kinetics and is
directly coupled to the combustion chamber pressure through the
well-known St. Robert’s law ([9] Chap. 12).
In contrast to solid rocket motors, where regression rates are

strongly coupled to the chamber pressure, hybrid fuel regression rates
have little or no dependence on chamber pressure. Thus, hybrid fuel
regression ratemodels based on St. Robert’s law are inaccurate. Early
studies by Marxman and Gilbert [25] demonstrated that combustion
processes for hybrid rockets are mostly driven by the boundary-layer
fluid mechanics, where fuel regression rate is a result of turbulent
boundary-layer heat transfer. Fuel regression rate is strongly corre-
lated with the oxidizer mass flow through the combustion chamber.
Marxman et al. [26] proposed an enthalpy-based regression-rate
model, where the convective heat transfer from the combustion flame
layer is balanced by the energy of ablation of the fuel grain surface:

ρfuel _rhv � StρeUeΔhflame (1)

In Eq. (1), _r is the linear regression rate perpendicular to the fuel
surface;Δhflame is the convective enthalpy transfer per unit mass flow
from the flame zone to the fuel surface; hv is the enthalpy of
vaporization (latent heat) of the fuelmaterial; ρfuel is the density of the
solid fuel material; St is the nondimensional Stanton number; and

ρe · Ue ≅ Gox is the oxidizer mass flux at the edge of the boundary
layer. In this model, radiation effects and heat conduction within the
fuel grain are considered negligible.
The Stanton number can be written in terms of the local skin

friction coefficient using the Reynolds–Coburn analogy [27–29]:

St �
Cfx

2
P
−2∕3
r (2)

Substituting Eq. (2) into Eq. (1), the regression rate is written in
terms of the local surface skin friction coefficient:

_r �
�

Gox

2 · P
2∕3
r · ρfuel

�

·

�

Δhflame

hv

�

· Cfx
(3)

In Eqs. (2, and 3),Cfx
is the local skin friction coefficient,Pr is the

nondimensional turbulent Prandtl number, and Gox is the oxidizer
mass flow per unit cross-sectional area at the edge of the boundary
layer.

A. Effect of Surface Skin Friction on Hybrid Rocket Fuel Regression

Rate

Examining Eq. (3), it becomes clear that there exists a nearly
proportional correlation between the local skin friction coefficient
and the regression rate of the hybrid fuel grain. Thus, it is reasonable
to speculate that any fuel port design feature that increases the local
surface skin friction coefficient, such as premanufactured surface
indentations or ridges, would also increase the fuel regression rate.
This conclusion is only partially true. In conventional pipe flow,

boundary-layer mixing allows the oxidizer flow at the center of the
fuel port to directlymixwith vaporizedmaterial leaving the fuel wall.
However, as shown by Fig. 1, for hybrid fuel combustion, the radially
emanating flow from the ablating fuel surface expands the boundary-
layer thickness and pushes the combustion zone away from the wall.
Using Lees’s model [30] for the wall blowing coefficient,

β � ρw · Uw

ρe · Ue · �1∕2�Cfx

(4)

to account for the radially emanating flowfield from the pyrolyzed
fuel, Boardman [31] demonstrates that, for hybrid fuel combustion,
the radial blowing coefficient is equal to the ratio of the convective
heat transfer from the flame zone to the fuel surface and the enthalpy
of gasification of the fuel material:

Fig. 1 Enthalpy balance model for hybrid fuel regression rate.
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β ≈
Δhflame

hv
(5)

and Eq. (3) is modified to account for wall blowing according to

_r �
�

Gox

2 · P
2∕3
r · ρfuel

�

·

�

Δhsurface

hv

�

· Cfx

�

1.27

β0.77

�

�
�

0.635 · Gox

P
2∕3
r · ρfuel

�

·

�

Δhsurface

hv

�

0.23

· Cfx
(6)

In Eq. (4), ρw · Uw is the mass flux resulting from the radial wall
out blowing.
Thus, when flow structures, such as surface roughness, are used to

increase the surface skin friction, as the fuel regression rate increases,
the blowing coefficient β also increases. The result is a flame zone
that is pushed away from the fuel surface and a significantly reduced
convective heat transfer and rate of enthalpy exchange. When fuel
regression rate is initially increased by surface roughness, the addi-
tional radially emanating fuel material reduces the effectiveness of
the heat transfermechanism, and diminishing returns rapidly result. It
is also very likely that any introduced surface protuberances will lead
to erosive burning or be quickly eliminated by the combustion flame.
To significantly increase the fuel regression rate, any proposed port

design feature must increase the nominal surface skin friction while
also minimizing the effects of radial surface blowing. A helical fuel
port structure serves this purpose. Helical fuel ports in a wide variety
of cross-sectional areas can be easily manufactured using ABS fuel
materials manufactured by FDM techniques.

B. Analytical Model of the Helical Fuel Port

The helical structure is defined by three parameters: 1) the nominal
fuel port diameter D, 2) the helix loop diameter d, and 3) the helix
pitch lengthP. The pitch length is defined as the distance between the
centerlines of two consecutive helical wraps. The pitch length is
nominally calculated as the total length of the helix divided by the
total rotation angle (radians) along the length of the helix:

P � L

N
(7)

The total run length of the helix centerline is

S � 2π · N ·

���������������������������������

�

d

2

�

2

�
�

P

2π

�

2

s

(8)

In Eqs. (7, and 8), N is the number of rotations along the helix
length. The radius of curvature of the helical arc is calculated from the
loop diameter and pitch length as

Rc �
d

2
·

�

1�
�

P

π · d

�

2
�

(9)

The initial helical pitch ratio is defined as the two times the radius
of curvature divided by the initial port diameter:

ηh � 2 · Rc

D0

(10)

The polar form of the helical fuel port with a cylindrical cross
section may be derived in three dimensions as

Γ�θ;ϕ� � 1

2
·

�

cos�θ� · �d −D · cos�ϕ��

�D · sin�θ� · sin�ϕ� · P
���������������������������

�π · d�2 � P2
p

�

· i

� 1

2
·

�

sin�θ��d −D · cos�ϕ��

−D · cos�θ� · sin�ϕ� · P
�������������������������

�π · d� � P2
p

�

· j

�
��

P

2 · π

�

· θ� R · sin�ϕ� · π · d
���������������������������

�π · d�2 � P2
p

�

· k (11)

In Eq. (11), Γ�θ;ϕ� is the vector describing the helical port
boundary; θ is the helix centerline rotation angle; ϕ is the rotation
angle about the helix centerline; and fi; j; kg are the unit vectors in
the longitudinal, lateral, and normal vectors. The coordinate system is
aligned with i pointing along the centerline of the helix. The angles θ
and ϕ are rotated from θ � f0; 2π · Ng and ϕ � f0; 2πg to form the
inner boundary of the fuel port. The instantaneous port diameterD is
measured perpendicular to the helix centerline and is related to the
initial port diameter, the fuel regression rate, and the fuel burn time by

D � D0 � 2 · _r · tburn (12)

Based on the model of Eq. (12), it is interesting to note that, for a
linearly regressing fuel grain, the fuel port becomes less and less
helical with time. Figure 2 illustrates this result, where a short-pitch
helical port cross section is shown for three different mean total
regression values, representing the fuel grain as the port burns and
opens up. The plotted port cross sections are for regression ratios
s∕Rc � f0; 1.25; 2.5g. The symbol s is the linear regression of the
fuel port calculated as the difference between the instantaneous and
initial mean fuel port radius. Clearly, the final port cross section is no
longer helical, and the effective radius of curvature becomes very
large. With this large radius of curvature, the helical wall boundary
can no longer support a well-defined rotational flow. This property
means that the helical fuel port regression rate will slow significantly
after a period of burn where the fuel port has become effectively
cylindrical. This property also reduces the potential for unburned fuel
slivers as the port approaches the outerwall boundary. This effect will
be illustrated later in this paper by showing images of the port cross
sections on burned fuel grains.

C. Regression Rate Amplification Model Based on Mishra–Gupta

Skin Friction Correlation

It is well known that helical pipe flows have the effect of
significantly increasing the local skin friction coefficient. Helical

Fig. 2 Fuel port cross sections for three different mean regression

values. .
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flows also introduce a centrifugal component into the flowfield. In
hybrid rocket applications, this centrifugal component will have the
effect of thinning the wall boundary layer, bringing the flame zone
closer to the wall surface and increasing the flame diffusion
efficiency.
There exist several well-known correlations of increasing fidelity

comparing skin friction in helical pipe flows to straight pipe flows.
An early correlation was developed by White [32] for smooth coiled
tubes and was valid over a Reynolds number range from 15,000 to
500,000 (based on pipe diameter). Ito [33] theoretically derived a
similar expression for considerably lower Reynolds numbers than
were investigated by White [32]. Gnielinski [34] extended the range
of validity of Ito’s model for nearly the entire turbulent flow regime.
The models presented byWhite [32], Ito [33], and Gnielinski [34]

were derived for helical coils where the pitch lengthwas significantly
smaller than the coil diameter. Thus, these correlations depend only
upon the ratio of the pipe inner diameter to the coil diameter and not
up on the pitch length of the helix. In a less well-known study,Mishra
and Gupta [35] extended the model to account for longer pitch
lengths by replacing the coil radius by the radius of curvature of the
helix,Rc. Mishra and Gupta investigated awide range of coil geome-
tries for both laminar and turbulent flow conditions and derived a
“universal” flow correlation of the form

Cfhelix
� Cfstraight

� 0.0075 ·

�������������

D

2 · Rc

s

(13)

where Cfhelix
is the skin friction coefficient for the helical coil, and

Cfstraight
is the skin friction coefficient for the straight-bore tube. For

fully developed flow in smooth pipes with short pitch lengths, the
Mishra and Gupta model produces identical results to Ito’s model.
Considering the form of Eq. (13), it is accurate to conclude that the

growth in regression rate of the helical fuel port is proportional to
growth in the end-to-end skin friction coefficient. Thus, using the
Mishra and Gupta model for the helical/straight-bore skin friction
ratio and the Schoenherr–Schlicting model for the straight-bore skin
friction coefficient, the regression rate “amplification factor”, defined
as the ratio of the helical and straight-bore fuel port skin friction
coefficients, can be approximated as

_rhelix �
�

Gox

2 · P
2∕3
r · ρfuel

�

·

�

Δhsurface

hv

�

·

�

Cfstraight
� 0.0075 ·

�������������

D

2 · Rc

s

�

·

�

1.27

β0.77

�

(14)

In the model of Eq. (14),D andRc are the instantaneous mean port
diameter and radius of curvature. Because the model of Eq. (14) is
developed from correlations for conventional pipe flow, this model
does not account for any suppression of radial wall blowing effects.
An order of magnitude analysis of Eq. (14) shows that, for typical

hybrid combustion mass flux rates and Reynolds number, the
magnitude of the helical correction parameter

0.0075 ·

�������������

D

2 · Rc

s

is typically equal to or greater than the magnitude of the local skin
friction coefficient based on the port cross sectionCfstraight

. Thus, there
exists a significant potential for the helical port to significantly
increase the overall fuel regression rate.

D. Previous Helical Fuel Port Studies

Bath [36] at Utah State University investigated the use of three-
dimensional FDM printing to build ABS grains with complex port
geometries and observed the effects of these geometries on the fuel
burn properties. Fuller et al. [24] at Aerospace Corporation have also
achieved success with burning helical structures that were fabricated
using additive manufacturing techniques. Arnold et al. at Pennsyl-
vania State University have also successfully tested additively manu-
factured hybrid rocket fuel grains with embedded swirl patterns [37].
The additive manufacturing process used by [24,37] was stere-
olithography and not FDM. Although quantitative regression rate
amplification factors were not published by these early studies, all
results demonstrated the qualitative effectiveness of embedded
helical port structures in increasing regression rate and thus support
the conclusions derived from the order of magnitude analysis of the
simple correlation model of Eq. (14).

III. Experimental Verification of Helix Amplification
Factors

This section reports on a series of experiments conducted to
quantitatively investigate the helical regression-rate increase pre-
dicted by the order ofmagnitude analysis of theMishra–Guptamodel
as presented in the previous section. This testing campaign used an
existing lab-scale motor to perform multiple test firings with both
straight-bore and helical port geometries. Gaseous oxygen (GOX)
was selected as the initial test oxidizer to allow a pressure-reducing
regulator setting that choked the inlet oxidizer flow, thus decoupling
the oxidizer mass flow from the combustion chamber pressure. Using
GOX also presents the advantage of working with a single-phase
oxidizer requiring no thermal conditioning, making the test results
much less susceptible to external environmental effects.

A. Test Apparatus for Gaseous Oxygen–Acrlyonitrile Butadiene

Styrene Motor Tests

An existing mobile test stand, the Kart for Reactive Monopro-
pellant Testing [38] was used to perform the test and evaluation
campaign.Acquiredmeasurement channels included thrust, chamber
pressure, upstream and downstream coolant temperatures, ignitor
case temperature, Venturi pressures (inlet and throat) for oxidizer
mass flow, and Venturi temperature (necessary for determining GOX
density in the Venturi). These fuel regression tests were performed
using a well-characterized motor that had been previously used for
paraffin fuel regression tests. The motor was adapted from a com-
mercially available 75 mm Cesaroni Pro75 [39] motor case with a

Fig. 3 Schematic of lab-scale hybrid motor with snap-together helical fuel grains.
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custom-built injector cap, nozzle, and retaining ring. The system
featured a novel nonpyrotechnic arc-ignition system developed at
Utah State as a part of an earlier additive manufacturing campaign
[40]. This ignition system allowsmultiple consecutive static firings to
be performed with no hardware changeover.
The motor design takes advantage of FDM processing to build

the ignitor and fuel grain sections with “snap-together” inter-
locks that allow multiple grain segments to be manufactured

and then assembled for combustion. The multiple grain segments
were simultaneously manufactured on a Stratasys Dimension 1200es
three-dimensional (3-D) FDM printer [41] using their ABSplus-
P430 feedstock material (0.971 g∕cm3 density) [42]. Joints were
bonded using commercial grade ABS pipe joint cement. Figure 3
shows the integrated motor system featuring the injector cap, snap-
together fuel grain with the helical port structure, motor case, and
nozzle.

Table 1 Fuel grain geometry parameters for GOX–ABS tests

Grain
number

Initial
length, cm

Initial port
radius, cm

Initial helix
radius, cm

Initial helix pitch
length, cm ηh � 2·Rc

D0

Number
of burns

Pretest fuel
grain mass, g

1 35.98 1.013 — — — — — — 3 1147.0
2 35.98 0.762 0.381 15.24 10.382 5 1337.0
3 35.98 0.762 0.762 15.24 5.567 2 1326.0
4 22.86 0.762 0.5715 2.70 0.587 6 838.0

Fig. 4 GOX–ABS regression tests, thrust, and chamber pressure time histories.
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B. Test Summary

Four-fuel grain geometries, a straight-bore cylindrical grain, and
three helical ports with varying helix geometries were tested. Table 1
summarizes the parameters of these fuel grains. Real-time thrust-
stand motor mass measurements were considered too noisy to be
useful, and so for this testing campaign, each grain was burned
multiple times to allow intermediate mass measurements between
burns. The straight-bore port tests, where the regression rate was
expected to be lowest and the risk of wall burn-through less, were
performed with 4 s burn durations. The helical port tests, where the
risk of wall burn-through was significantly greater, were performed
with 2 and 3 s burn durations.Grains sectionswere inspected between
burns to ensure that burn-through had not occurred and that sufficient
fuel remained to allow additional burns. Generally, the shorter-
duration burns were performed last as a precaution against fuel wall
burn-through.
In all, 16 static firings were performed as a part of this testing

campaign. Figure 4 compares the thrust and chamber pressure pro-

files obtained from this test series. Figures 4a–4d plot the thrust time
history profiles obtained for each of the test geometries listed by
Table 1. Figures 4e–4h plots the chamber pressure profiles. The time
histories corresponding to the first burns of the test geometries are
plotted as solid black lines. Time histories from the subsequent burns
are plotted as lighter, dashed lines. Themost distinguishing feature to
note is that, although the cylindrical port thrust and chamber pressure
levels are quite consistent and nearly flat from burn to burn, the
helical port runs show quite a bit of burn-to-burn variability, with the
thrust and chamber pressure levels dropping off with time for the first
burn (solid line) and tapering to fairly flat for the successive burns.
Figure 5 presents corresponding mass flow time history plots, with

Figures 5a–5d plotting oxidizer mass flow rate and Figs. 5e–5g plot-
ting the fuel mass flow rate. The fuel mass flow rate was calculated as
the difference between the Venturi-measured oxidizer mass flow and
the nozzle exit mass flow. The nozzle exit mass flow was calculated
using the measured chamber pressure, flame temperature, nozzle exit
area, and the one-dimensional choking mass flow equation [43]:

Fig. 5 GOX–ABS regression tests, oxidizer, and fuel mass flow rate time histories.
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s

(15)

In Eq. (15), T0 is the combustion flame temperature, and Rg and γ
are the gas constant and ratio of specific heats of the combustion
products. As previously described, the thermodynamic and mass-
transport properties of the combustion products were calculated by
interpolating tables developed from the NASA chemical equilibrium
program Chemical Equilibrium with Applications (CEA) [44]. The
CEA tables were interpolated using the measured chamber pressure
and an assumed O∕F ratio as inputs. To ensure that biases due to
the exhaust product gas properties were minimized, the O∕F ratio
entered into the CEA tables was adjusted to produce a fuel mass flow
whose integrated value over the burn time exactly equals the con-
sumed fuel mass as measured after each burn test. Notice that,
although the oxidizer mass flow remains very consistent from burn to
burn as a result of the choked injector, the consumed fuel mass flow
varies significantly, indicating significant changes in the burn O∕F
ratio and fuel regression rate.
Figure 6 plots theO∕F ratio as a function of burn time for the tested

geometries listed in Table 1. The resulting profiles are extremely
interesting. First, the cylindrical port shows a slight drop in theO∕F
ratio as a function of burn time with values that vary from an initial
O∕F of 1.5 to less than 1.2 by the completion of the final burn. Next,
the “moderate” helical fuel import with an initial helix ratio of 10.38
shows almost no variation ofO∕F as a function of burn time but does
show a meanO∕F ratio that is measurably lower than the cylindrical
port grain, approximately 1.18. Finally, the very “aggressive” helical
ports show initialO∕F ratios that are significantly lower for the initial
burn but that loweredO∕F rapidly grows as a function of burn time.
The very short-pitch-length fuel grain (4) shows the most rapid
growth in O∕F ratio. In fact, after the first 3 s burn, grain 4 shows a
mostly flat O∕F variation as a function of burn time.

1. Estimating the Fuel Regression Rates and Mean Port Mass Flux

The longitudinal fuel regression rate was calculated from the fuel
mass flow starting with the regression rate definition:

�_r � _mfuel

ρfuel · 2π · �r · L
(16)

Rearranging Eq. (16) and integrating from the initial condition to
the current time solves for the mean instantaneous fuel port diameter:

�r�t� �
�����������������������������������������

r20 �
Z

t

0

_mfuel · dt

ρfuel · π · L

s

(17)

The longitudinal mean of the total mass flux is estimated as

�Gtotal �
_mox � 5∕9 · _mfuel

π · r20 �
R

t
0 _mfuel · dt∕ρfuel · π · L

(18)

In Eq. (18), the scaling factor of 5∕9 on the fuel mass flow results
when the classical Marxman regression rate equation [25,26] is
integrated along the length of the fuel port to account for contribu-
tions of the ablated fuel mass flow to the overall fuel port mass
flux [45].

2. Comparing the Fuel Regression Rates for the Helical and Straight-Port

Geometries

Using the data of Figs. 5 and 6, Eqs. (16–18) are used to calculate
the instantaneous mean regression rate profile for each of the test
burns and the instantaneous mean mass flux profiles. Figure 7 shows
the result where the plotted symbols represent the regression rate data
calculated from the test burns, and the plotted lines represent the
predicted regression rate calculated using the classical Marxman
model as modified by Eilers and Whitmore [46] for the straight-bore
port (grain 1) and scaled-values of this curve for each of the helical
geometries (grains 2, 3, and 4) calculated using the Mishra–Gupta
model of Eq. (14). The Mishra–Gupta extrapolations assume con-
stant values for d,P, and ηh but allow the instantaneous port diameter
D to grow as the fuel port burns.

3. Interpretation of Fuel Regression Rate Observations

Even though the data presented by Fig. 7 were collected from
multiple burns of each fuel grain, the empirical data tend to group into
4 distinct curves, one for each of the initial test geometries. Initially,
the helical port data exhibit a large amplification factor, but as the port
burns, the port cross section becomes more andmore cylindrical, and
the helical effects on skin friction diminish with time. Clearly, the
helix pitch ratio has very significant effect on the regression rate.
The Mishra–Gupta extrapolations tend to underpredict the regres-

sion rate at high flux levels and overpredict the regression rate at

Fig. 6 GOX–ABS regression tests, variation in O∕F ratio with burn time.
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lower flux levels. Recall that the Mishra–Gupta model does not
account for radial outflow of the ablated fuel mass flow, and the
extrapolated curves of Fig. 7 model the direct effects of the helix on
skin friction only. Thus, the observed differences between the
observed and predicted regression rate trends present clear evidence
that blowing effect suppression is a significant factor in the regression
rate amplification due to the helical fuel port, with amagnitude that is
at least equivalent to the increase in the skin friction coefficient.
In these graphs, the high mass flux rates occur early in the burn

sequences where the fuel port is still quite helical, and the resulting
centrifugal flow effects push the flame zone closer to thewall. As the
port burns and the mass flux drops, the helical structures also regress
both radially and longitudinally, gradually becoming almost cylin-
drical in shape. The resulting drop in centrifugal flow allows radial
blowing to push the flame zone away from the wall, and the regres-
sion rate drops significantly. The faster the initial regression rate is,
the more rapidly the port becomes cylindrical; thus, the short pitch
length fuel grain where the helical loops are spaced very close
together longitudinally shows the most significant drop in regression
rate.
It is also informative to plot the regression rate against the

rotational Reynolds number because that parameter provides both a
measure of the centrifugal and skin friction effects of the helical

flowfield. For this analysis, the rotational Reynolds number is
calculated using the mean total port mass flux, and it can be shown
that

Reω
� ρ · �ω · Rc� · S

�μ
� 2π ·

�

Rc

P

�

·

�

L

�μ

�

· �Gtotal (19)

In Eq. (8),ω is the rotational rate of the flow in the chamber, �μ is the
mean viscosity of the combustion by products, and S is the length of
the helix centerline:

S � 2π · N ·

�������������������������������

�

d

2

�

2

�
�

P

2π

�

s

(20)

Figure 8 presents the results of this calculation. Curve fits of the
data are also plotted showing the extrapolation down to essentially
zero rotational Reynolds number. All three curves for the helical fuel
grains asymptotically approach the baseline regression rate value
extrapolated from the data of Fig. 7 at low oxidizer mass flux. This
result strongly supports the hypothesis that the rotational flow
suppression of the fuel blowing effect is a primary driver for the
observed regression rate amplification.

Fig. 8 Effect of rotational Reynolds number on fuel regression rate.

Fig. 7 GOX–ABS regression rate comparison for straight-bore and helical grains.
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4. Posttest Fuel Grain Observations

Following the testing campaign, each of the fuel grains were cut
longitudinally along the port centerline to inspect the residual fuel
port structures. Figure 9 shows the resulting cross sections. These
images support the earlier assertion that the thrust and chamber
pressure differences between the successive helical-port time history
plots are due to the changing fuel regression rate as the port helix
opens up and the helical flow effects diminish. In fact, the short pitch
length (grain 4) cross section has become nearly cylindrical. Grain 3
retained themost posttest helical structure and thus exhibited the least
drop off in regression rate. As the fuel grain burns and the helix ratio
becomes small, the burn pattern becomes progressively more like a
cylindrical fuel grain. These observations agreewith the Eqs. (11, and
12) helical port model discussion presented in Sec. II.B. As described
earlier, conveniently, this effect reduces the potential for excessive
unburned fuel “slivers” at the end of the burn lifetime of the fuel grain.

IV. Conclusions

Hybrid rockets produce fuel regression rates are typically 25%
lower than solid propellant motors in the same thrust class. These
lowered regression rates produce unacceptably high oxidizer-to-fuel
(O∕F) ratios and can result in motor instability, nozzle erosion, and
reduced motor duty cycles. Several methods including multiple fuel
ports, liquefying fuel materials, and grain metallization have been
previously investigated to increase regression rates, but each method
has significant developmental issues.
This paper presents an alternative approach that uses helical fuel

port geometries to modify the internal fuel port flow properties and
increase the fuel regression rate. These helical port structures are
enabled using additive manufacturing. The helical fuel port also
increases the volumetric efficiency of the fuel grain by lengthening
the internal flow path for a given fuel port length. An order of
magnitude analysis of a simple helical flow model, based upon the
skin friction correlation developed by Mishra and Gupta for helical
pipe flows, predicts a significant potential for the helical port to
significantly increase the overall fuel regression rate.
To verify these order of magnitude predictions, a series of static

firings of amidsized lab-scale hybridmotor withmultiple helical fuel
port geometries were performed. In this series of tests, the helical
ports were fabricated with an initial ratio of the radius of curvature to
port radius varying from greater than 10 (a “mild” helix) to
approximately 1∕2 (an aggressive helix). The resulting regression
rates were compared to those obtained for the same motor with a
cylindrical port of the same initial port radius. For this series of tests,

gaseous oxygen is used as the oxidizer to allow a choked injector and
thus ensure that the desired oxidizer mass flow rate is decoupled from
the fuel regression rate. The additivelymanufactured fuel grainswere
constructed from acrlyonitrile butadiene styrene (ABS) using con-
ventional 3-D printer stock material.
The presented results demonstrate that the centrifugal flow

patterns introduced by the helical fuel port increases fuel regression
rates significantly. Mean regression rate amplification factors as a
function of oxidizer mass flux of greater than 4 are observed for the
very aggressive helical port structures with short pitch distances.
Even the very modest helical ports were shown to achieve mean
amplification factors of greater than 2. The presented analysis also
demonstrates that the rotational flow velocity within the helical fuel
port is a primary driver for the regression rate amplification, at least
equivalent in magnitude to the increase in skin friction caused by the
helical fuel port. Because the rotational velocity of the flowfield
diminishes with time as the fuel port opens up and becomesmore and
more helical, the regression rate amplification factor also drops
with time.
Because ABS can be manufactured in an almost infinite variety of

shapes using additive processes, there exists the potential to “draw”
high regression rate ABS fuel grains that mathematically optimize
desired combustion properties. One example is the design of a high
regression rate port structure that minimizes the oxidizer-to-fuel ratio
shift and maintains an optimal point on the characteristic velocity
curve for a wide range of oxidizer mass flux levels. Based on the
presented results, both the increase in local skin friction coefficient
and the radial blowing suppression must be considered when devel-
oping an “optimal” port design.A current limitation of the helical fuel
regression model based on the Mishra–Gupta correlation is the
inability to account for this wall-blowing suppression. Clearly, the
fidelity of the current helical regression rate model needs to be
extended to account for both of these effects to allow detailed optimi-
zation studies. Fortunately, because the grains are built additively, if
one can draw it, then one can build it, and this challenge appears to be
quite tractable.
A suggested follow-on research activity is to reproduce the

presented test matrix using a traditional hybrid propellant such as
hydroxyl-terminated polybutadiene. Because very modest helices
have been shown to produce significant effects, it should be possible
using an appropriate mold-release agent to cast the fuel material
around a helical mandrel and then remove that mandrel once the
material cures. Such a method, when proven to be effective, would
provide a simple and effective “drop-in” method to improve the
performance of many legacy hybrid systems. The demonstrated

Fig. 9 Posttest fuel grain cross sections.
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regression rate amplification effects should also be demonstrated
using an alternate two-phase oxidizer like nitrous oxide, where the
injector will be only partially choked. Thus, the injector mass flow
may couple with the observed fuel regression rate and may signif-
icantly affect the observed results.
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