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Abstract

The importance of studying site-specific interactions of structurally similar water molecules in 

complex systems is well known. We demonstrate the ability to resolve four distinct bound water 

environments within the crystal structure of lanthanum magnesium nitrate hydrate via 17O solid 

state nuclear magnetic resonance (NMR) spectroscopy. The approach utilizes high-resolution 

multi-dimensional 17O NMR experiments at high magnetic fields (18.8 – 35.2 T) where each 

individual water environment was resolved. The quadrupolar coupling constants and asymmetry 

parameters of the 17O of each water were determined to be between 6.6 and 7.1 MHz, and 0.83 

and 0.90. The resolution of the four unique, yet similar, structural waters within a hydrated crystal 

via 17O NMR spectroscopy demonstrates the ability to decipher the unique electronic environment 

of structural water within a single hydrated crystal structure.
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INTRODUCTION

The influence of water on the structure, stability, function, and dynamics of complex 

biological and inorganic systems underlines the importance of understanding the detailed 

structure of individual water molecules in such systems.1 For example, it is well known that 

water is intimately involved in the intra- and intermolecular hydrogen bonding of proteins, 

membranes, and nucleic acids2–4 and is therefore important in determining the secondary 

and tertiary structure of these macromolecular systems. Recently, in a combined cryo-

electron microscopy and magic-angle spinning (MAS) NMR study of the structure of 

amyloid fibrils from our group, we observed a water bilayer that is thought to be essential to 

stabilizing the structure of the paired twisted β-sheets.5–10 In addition to the impact of water 

on the structure of biochemical systems water is known to influence other systems,11–19 one 

such system in particular is the formation of organic rosette nanotubes.18–19 These and other 

results have stimulated the study of the structure of water in multiple different systems using 

solid-state NMR10, 19–27 with many studies focusing on the mobile waters of hydration. 

However, the resolution of different water molecules, and therefore the site-specific study of 

these waters, has proved challenging because of the small chemical shift range present in 1H 

NMR spectra which is the primary probe of the water molecules.10, 20–25 In contrast, the 

sizeable chemical shift range (~2,000 ppm) and quadrupolar nature of 17O (I = 5/2) makes it 

attractive for the study of intra- and intermolecular hydrogen bonding interactions involving 

water. However, 17O NMR is inherently insensitive due to the low natural abundance 

(~0.037%) and small gyromagnetic ratio (~1/7th of 1H). In addition, 17O NMR spectra are 

broadened by the second-order quadrupolar interaction which is not averaged by MAS.28 

Despite these shortcomings, 17O has been used extensively to study biological and inorganic 

systems, by utilizing isotopic enrichment,29–33 and high magnetic field strengths (≥ 16.4 T).
34–39 Approaches improving the resolution of 17O MAS NMR spectra by attenuating the 

second-order quadrupolar interaction, such as multiple quantum MAS (MQMAS)40 and 

satellite transition MAS (STMAS),41 have been shown to yield well-resolved isotropic 

quadrupolar spectra. And, despite the poor efficiency (~5%) of these techniques in the 

presence of large quadrupolar coupling constants (>5 MHz),42–43 they are used to 

successfully study 17O enriched biological samples and produced promising results.44–47 For 
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example, the increased resolution that is present in the MQMAS experiment allowed studies 

of inorganic glasses and minerals that could not be achieved with traditional MAS 

experiments.32–33, 48–58

In recent studies of H2
17O structurally bound to organic and inorganic crystals,11, 59–60 we 

observed 17O chemical shifts dispersed over ~50 ppm. This result suggests that 17O NMR 

can be used to distinguish bound water in complex biological and inorganic systems via the 

dispersion of oxygen chemical shifts. Here we report 17O spectra of lanthanum magnesium 

nitrate hydrate [La2Mg3(NO3)12 • 24H2
17O] (LMN), a hydrated crystal containing four 

distinct water environments (each site comprised of six individual equivalent waters),61 as a 

model system that demonstrates this possibility. As illustrated in Figure 1, each of the three 

Mg2+ ions is coordinated to six water molecules and the remaining waters in the crystal exist 

in a layer between the lanthanum nitrate and one of the magnesium hydrate subunits. The 

four crystallographically distinct waters are indicated on the molecular unit in Figure 1(a) 

with the average O-H bond distance and ∠HOH angle for each water site given in Figure 

1(b).

EXPERIMENTAL

a.) Materials and Synthesis:

Lanthanum magnesium nitrate hydrate, La2Mg3(NO3)12 • 24H2
17O, samples were 

synthesized by dissolving lanthanum nitrate hexahydrate, La(NO3)3 • 6H2O (Sigma Aldrich 

(SA), St. Louis, MO), and magnesium nitrate hexahydrate, Mg(NO3)2 • 6H2O (SA), in 

excess 17O labeled water (90%-H2
17O, Cambridge Isotopes Laboratories (CIL), Andover, 

MA), and recrystallizing in a sealed eppendorf tube over the course of two to 14 days. The 

crystals were then air-dried and ground into a fine powder using an agate mortar and pestle.

b.) Nuclear Magnetic Resonance Spectroscopy

Oxygen-17 NMR experiments were performed at 18.8 (Francis Bitter Magnet Laboratory – 

Massachusetts Institute of Technology, FBML-MIT), 18.8 (National High Magnetic Field 

Laboratory, NHMFL), and 21.1 (FBML-MIT) T using a Bruker Avance II or III 

spectrometer. Oxygen-17 NMR experiments were also performed at 35.2 T on the series-

connected hybrid magnet at the NHFML using a Bruker Avance NEO console and a single-

resonance 3.2 mm MAS probe designed and constructed at the NHMFL.62 A recycle delay 

of between 0.5 and 1 second was used for all 17O experiments, unless otherwise noted. 

Between 2,400 and 8,192 scans with γB1/2π (17O) = 27.7 to 140 kHz were utilized for 

MAS 17O NMR experiments. A spinning frequency (ωR/2π) of 20 kHz or 23 kHz was used 

for 17O MAS experiments at 18.8, and 21.1 T, respectively. One-dimensional MAS NMR 

experiments were acquired using a Hahn-echo (π/2–τ–acquire) pulse sequence.

Two-dimensional 17O shifted-echo triple quantum magic-angle spinning (3QMAS) spectra 

were acquired at 18.8, 21.1, and 35.2 T with 128, 92, 44 (80) rotor-synchronized t1 

increments with an increment of 62.5, 43.48, and 100 μs with 2,016, 2,400, and 1,152 (960) 

scans and ωR/2π = 16, 23, and 10 kHz. The 3QMAS experiments at 18.8 and 35.2 T were 

performed with 3Q excitation and conversion pulses of 3 and 1 μs (γB1/2π = 100 kHz), and 
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π/2 and π pulses of 2.5 and 5 μs (γB1/2π = 33.3 kHz). The 3QMAS experiment at 21.1 T 

were performed with 3Q excitation and conversion pulses of 4.6 and 2.8 μs (γB1/2π = 27.7 

kHz), and π/2 and π pulses of 3 and 6 μs (γB1/2π = 27.7 kHz). Spectra were referenced to 

liquid water, 17O (18% H2
17O, 0 ppm), via the substitution method.63

c.) Spectral Processing and Simulations

All spectra were processed by RNMR (Dr. D. Ruben, FBML-MIT), TOPSPIN (Bruker, 

Billerica, USA), or MATLAB (MathWorks, Natick, MA, USA) with between 10 and 500 Hz 

of exponential apodization. 17O spectral simulations were performed using either the 

WSolids,64 DMFit,65 or SIMPSON66 software packages.

RESULTS AND DISCUSSION

At high magnetic fields (18.8, 21.1, and 35.2 T62) multiple unique bound water 

environments were identified by 17O NMR spectroscopy of a crystalline sample of LMN 

prepared from H2
17O. The 3QMAS spectra illustrated in Figure 2 reveal four resolved peaks 

in the 2D landscape corresponding to four unique bound waters within the LMN crystals. 

The projection of the isotropic dimension at 18.8 T was found to have an integrated intensity 
ratio of 1:1:1:1 for the four environments (Figure 3) suggesting that they are the same bound 

water species that were identified by neutron diffraction.61 The observed isotropic frequency 

of the MQMAS spectrum is a linear combination of the isotropic chemical shift and the 2nd 

order quadrupolar shift. However, while the chemical shifts increase as ω0/2π, the 2nd order 

quadrupolar shifts28 decrease as (1/(ω0/2π)2) resulting in a change in the relative isotropic 

frequencies in spectra recorded at different static magnetic fields (Figure 4). There are also 

differences in the breadth of the peaks in the isotropic dimension that could arise from 

differences in structural heterogeneity or T2 relaxation arising from the molecular motions 

(twofold flips) of the different environments.

The resolution of multiple water environments with such a small chemical shift difference 

demonstrates the ability to use 17O NMR to study bound water in complex systems where 

the water environments are expected to be similar. The MQMAS spectrum at 21.1 T, Figure 

S1, shows only three resolved peaks. The field dependence of the 2nd order quadrupolar shift 

that causes the two center peaks that are resolved at 18.8 and 35.2 T to be nearly 

indistinguishable at 21.1 T (Figure 4). The determined ratio of the three peaks is 1:2:1, 

which is in line with the expected ratio considering that the center peak is two unresolved 

water environments. Using iterative spectral simulations of the 3Q-filtered MAS lineshape 

of each of the four peaks, the electric field gradient (EFG) and chemical shift anisotropy 

(CSA) tensor parameters were determined and are given in Table 1.

The breadth and asymmetry of the second-order quadrupolar lineshape of the central 

transition of half-integer quadrupolar nuclei, as measured by the quadrupole coupling 

constant, CQ, and the asymmetry parameter, ηQ, depend on the local structure of the oxygen 

nucleus. Therefore, the differences in the EFG and CSA tensor parameters could yield a 

better understanding of the structure of each of the water environments.
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The quadrupole coupling constants were found to be between 6.6 and 7.1 MHz. Although 

previous work has shown that the asymmetry parameter is a sensitive indicator of the ∠HOH 

bond angle,67 the fast limit twofold flipping of the bound water in the fast limit at room 

temperature averages the EFG tensor,11, 59–60 rendering the ability to use the asymmetry 

parameter as a target for assignment of the water environments is ill-advised. The 

experimentally determined asymmetry parameters for the four water environments in LMN 

were found to be between 0.83 and 0.9. The differences found in the EFG tensors likely 

reflect both differences in the local structure and the room temperature dynamics of the 

bound waters. Both the EFG and CSA tensor values were found to be in good agreement 

with previous results for bound water within hydrated crystals.11, 59–60 While the one-

dimensional MAS NMR spectra at 18.8 and 21.1 T (Figure 5) indicated the presence of 

multiple unique oxygen environments, the 2D MQMAS experiments were necessary to 

identify and characterize the four oxygen environments (Figures 2 and 5). Although 

inclusion of the 17O chemical shift parameters did not affect the 1D MAS NMR lineshape, it 

was necessary to include the CSA tensor parameters (Table 1) for the simulations of the 

3QMAS lineshapes at 35.2 T (Figure 6). The 3QMAS dimension was analyzed from the 

projection of the direct dimension of the 2D MQMAS experiment.

Unique assignments of the NMR resolved peaks to the crystal structure water environments 

were not performed in this study due to the complex dynamics of such environments.
11, 59–60, 68–70 The librational modes of the bound water sites have been shown to average 

the EFG tensors and therefore complicate the relationship between local and hydrogen 

bonding structure and the experimentally determined EFG tensors at room temperature. 

While a dependence of the isotropic chemical shift and the OH bond distance and ∠HOH 

bond angle was reported in crystalline amino acid and dipeptide hydrates,60 a study of 

crystalline inorganic hydrates did not demonstrate the same dependence.11 Either correlation 

spectroscopy between the 17O and nearby nuclei or low temperature NMR could be utilized 

to assist in determining which NMR environments correspond to their neutron diffraction 

counterparts.

CONCLUSION

Notwithstanding a unique assignment of the H2
17O lines, the resolution of multiple 

structurally similar environments indicates the benefit of high magnetic fields for the study 

of structurally important bound water. Due to the nature of the crystal structure studied here, 

correlation spectroscopy (e.g., 13C-17O, 15N-17O)47, 71–74 was not performed to better 

identify the oxygen environments that were resolved. However for complex biological 

systems, such as GNNQQNY or TTR105–115,6–9 where more accessible correlation 

spectroscopy is available an identification of resolved structural water molecules may be 

possible. The ability to use high resolution 17O MAS NMR to study unique, yet similar, 

structural waters in a single inorganic crystal structure indicates the possibility of analyzing 

structural waters in complex inorganic and biological systems. The addition of dynamic 

nuclear polarization to the high resolution 17O MAS NMR75–76 will enhance the ability to 

study the small number of structural water molecules in these complex systems in 

comparison to the inorganic crystal in this study.
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Figure 1: 
LMN crystal structure (a) showing the four crystallographically distinct water environments 

labeled as A-D, and corresponding (b) interatomic distances and angles determined by 

neutron diffraction.61
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Figure 2: 
Oxygen-17 2D MQMAS NMR spectra at (a) 35.2 T (ω0H/2π = 1500 MHz) and (b) 18.8 T 

(ω0H/2π = 800 MHz). Four distinct water sites are resolved in each spectrum. The 

projection of the isotropic dimension is shown to the right of each spectrum.
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Figure 3: 
Experimental and fit Isotropic projections of 17O 2D MQMAS spectra at (a) 35.2 T (ω0H/2π 
= 1500 MHz) and (b) 18.8 T (ω0H/2π = 800 MHz). Four distinct water environments are 

resolved with isotropic frequencies of (a) 0.4 ± 1, 3.1 ± 1, 5.6 ± 1, and 7.8 ± 1 ppm and (b) 

13.1 ± 1, 16.0 ± 1, 17.1 ± 1, and 19.9 ± 1 ppm. The Lorenztian fits of each environment 

indicate a ratio of populations of 1:1:1:1.
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Figure 4: 
Magnetic field dependence (Bo = 18.1 to 35.2 T) of the observed 17O isotropic frequency 

shown using the (a) observed isotropic frequency from the 2D MQMAS spectra, and (b) 

using the equationδiso = δ3Q + 3
850

PQ
2

ν0
2 x10−6,wherePQ = CQ 1 + η2

3 and v0 is the Larmor 

frequency of 17O and is calculated from the values in Table 1. A projection of the isotropic 

dimension at each field is shown to the left of the isotropic frequencies for each field in (a). 

The dashed lines (Black, Red, Blue and Purple) are linear fitted lines to the isotropic 

frequencies of each site.

Keeler et al. Page 14

J Phys Chem B. Author manuscript; available in PMC 2019 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Experimental (solid) and simulated (dashed) 17O MAS NMR spectra at (a) 21.1 T (ω0H/2π 
= 900 MHz), and (b) 18.8 T (ω0H/2π = 800 MHz) with ωR/2π = 23, and 20 kHz, 

respectively. EFG tensor parameters for the spectral simulations are given in Table 1.
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Figure 6: 
Projections of the 3Q-filtered lineshape of each 17O resonance from Figure 2 at (a) 35.2 T 

(ω0H/2π = 1500 MHz) and (b) 18.8 T (ω0H/2π = 800 MHz) with spectral simulations 

displayed as dashed lines. The EFG and CSA tensor parameters of the simulations are given 

in Table 1.
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Table 1:

17O EFG and CSA tensor parameters determined from MAS and MQMAS NMR

17O
site

CQ (± 0.3)
/ MHz

ηQ (±
0.15)

δiso /
ppm

Ω (± 30)
/ ppm

κ (±
0.5)

δ3Q (±1) /
ppm at 18.8

T

δ3Q (±1) /
ppm at 21.1

T

δ3Q (±1) /
ppm at 35.2

T

1 7.1 0.85 −5 ± 2 50 −1 13.1 9.1 0.4

2 7.1 0.83 −2 ± 2 70 −1 17.1 n.r. 3.1

3 6.6 0.83 0 ± 2 70 −1 16.0 n.r. 5.6

4 6.8 0.9 3 ± 2 80 −1 19.9 16.5 7.8

n.r. – not resolved, one peak at 12.8 ±1 ppm.
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