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Abstract. A Bayesian method is described for reconstruction of high-resolution 3D images
from the microPET small-animal scanner. Resolution recovery is achieved by explicitly
modelling the depth dependent geometric sensitivity for each voxel in combination with an
accurate detector response model that includes factors due to photon pair non-collinearity and
inter-crystal scatter and penetration. To reduce storage and computational costs we use a factored
matrix in which the detector response is modelled using a sinogram blurring kernel. Maximum
a posteriori (MAP) images are reconstructed using this model in combination with a Poisson
likelihood function and a Gibbs prior on the image. Reconstructions obtained from point source
data using the accurate system model demonstrate a potential for near-isotropic FWHM resolution
of approximately 1.2 mm at the center of the field of view compared with approximately 2 mm
when using an analytic 3D reprojection (3DRP) method with a ramp filter. These results also
show the ability of the accurate system model to compensate for resolution loss due to crystal
penetration producing nearly constant radial FWHM resolution of 1 mm out to a 4 mmradius.
Studies with a point source in a uniform cylinder indicate that as the resolution of the image is
reduced to control noise propagation the resolution obtained using the accurate system model is
superior to that obtained using 3DRP at matched background noise levels. Additional studies
using pie phantoms with hot and cold cylinders of diameter 1–2.5 mm and18FDG animal studies
appear to confirm this observation.

1. Introduction

MicroPET is a high-resolution PET scanner designed for imaging small laboratory animals
(Cherryet al 1997). It consists of a ring of 30 position-sensitive scintillation detectors, each
with an 8× 8 array of 2 mm× 2 mm× 10 mm lutetium oxyorthosilicate (LSO) crystals
coupled via optical fibres to a multi-channel photomultiplier tube. The detector ring diameter
of microPET is 172 mm with an imaging field of view of 112 mm transaxially by 18 mm
axially. The measured intrinsic detector pair resolution is 1.68 mm FWHM (full width at half
maximum) and the reconstructed image resolution, as measured using the 3D reprojection
method of Kinahan and Rogers (1989), is approximately 2.0 mm FWHM isotropically at
the centre of the field of view. The scanner has no septa and operates exclusively in 3D
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mode. Here we report on the development of a Bayesian reconstruction method for the
scanner.

The majority of fully 3D PET studies are reconstructed using algorithms based on
the analytic relationship between the source distribution and its sinograms (Colsher 1980,
Kinahan and Rogers 1989, Defriseet al 1997). The resolution of these methods is limited by
the implicit assumption that the data correspond to true line integrals through the unknown
source distribution. In contrast, iterative reconstruction algorithms that are based on a
statistical model are able to maximize resolution recovery by accurate modelling of the
system response. Furthermore, these methods can optimize performance in low-count
situations through explicit modelling of the statistical variability inherent in photon limited
coincidence detection.

Iterative 3D reconstruction represents a daunting computational challenge due to the
large number of lines of response (LORs) collected for each data set. Kinahanet al (1996)
reduce the dimension of the data by pre-processing using Fourier rebinning before applying
the OSEM algorithm. While this leads to substantial cost savings, Fourier rebinning again
assumes that the data are measurements of line integrals so that the potential for resolution
recovery is lost with this approach. Several other investigators have approached the problem
using a combination of sparse matrix structures and in-plane and axial symmetries to reduce
computation and storage requirements (Chenet al 1991, Johnsonet al 1995, 1997, Ollinger
and Goggin 1996, Tersteggeet al 1996). These methods model the detection process using
geometrical computations based either on the intersection of detection ‘tubes’ with each
voxel (Ollinger and Goggin 1996) or on depth dependent geometric sensitivity calculations
based on the solid angles subtended at the detectors by each voxel (Chenet al 1991,
Tersteggeet al 1996). Johnsonet al (1995) also use a detection tube intersection model but
include a shift-variant weighting to model detector response. Here we build on this work
by using a depth dependent solid angle calculation in combination with a spatially variant
detector response model. Using a factored matrix form, similar to that described for the 2D
case by Mumcuogluet al (1996b), we are able to include this more accurate model at little
additional computational cost compared to models that do not include detector response.

Many of the statistically based 3D reconstruction methods are based on the EM (Chen
et al 1991, Johnsonet al 1995) or OSEM (Johnsonet al 1997) algorithms. Both approaches
can exhibit high-variance behaviour at high iteration numbers and are regularized through
early termination of the algorithm or by subsequent smoothing of the reconstructed images.
Here we use a MAP formulation in which the variance and resolution of the reconstruction
are controlled through the regularizing influence of a prior. The MAP methods do not
typically exhibit the instabilities at higher iterations encountered using EM and OSEM
and hence the choice of stopping point is not critical once effective convergence has been
reached. To compute the MAP solution, we use a 3D extension of the pre-conditioned
conjugate gradient algorithm described by Mumcuogluet al (1996a, b).

2. Factored system model

2.1. The detection probability matrix

The theory of 3D MAP image reconstruction is essentially the same as for the 2D problem,
differing primarily in the specifics of the detection probability matrix,P. Even for
microPET, which is small compared to the latest generation of clinical 3D PET systems, the
P matrix is huge as shown in table 1. Sparseness and sinogram symmetry properties can be
used to reduce this size to more reasonable proportions as previously described by Johnson
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et al (1995) and Chenet al (1991). Here we combine the use of these symmetries with the
factored system matrix approach that we previously applied to 2D PET (Mumcuogluet al
1996b) to develop an accurate system model for which forward and backward projection
can be performed efficiently.

Table 1. 3D problem dimensions for the microPET system. The projection matrix sizes are
based on using eight bits to store each element ofPgeom as described in section 2.2.

Ring diameter, mm 172 Object size, mm 100× 100× 18
Detectors per ring 240 Object size, voxels 128× 128× 24
Number of rings 8 Voxel size, mm 0.753

Angles per sinogram 120 Full size ofP, Gbytes 280
Rays per angle 100 Storage size ofPgeom, Mbytes 16
Number of sinograms 64 Storage size ofPblur, Mbytes 0.02
Projections per sinogram 12 000 Storage size ofPattn andPeff, Mbytes 1.4
Total projection rays 768 000 Total storage size ofP, Mbytes 18

The elements,pij , of the detection probability matrixP ∈ RM×N denote the probability
of detecting an emission from pixel sitej , j = 1, . . . , N , at detector pairi, i = 1, . . . ,M.
In order to reduce the stored size of theP matrix, we factor it as follows:

P = Pdet.sensPdet.blurPattnPgeomPpositron. (1)

HerePattn ∈ RM×M is a diagonal matrix containing the attenuation factors. Since there
is currently no transmission source for the microPET system, we calculate these factors
by re-projecting an estimate of the attenuation image obtained using the region of support
estimated from a preliminary emission image and assuming a constant attenuation coefficient
of 0.095 cm−1. The diagonal detector normalization matrixPdet.sens∈ RM×M is measured
using a uniform cylindrical source. The data presented here are all for18F studies in which
positron range is sub-millimetre. We therefore ignore these effects and setPpositron∈ RN×N
equal to the identity matrix. In future studies we will investigate the use of positron range
blurring model for isotopes other than18F. Here we concentrate on the two novel aspects of
our model, i.e. modelling of geometrical sensitivity inPgeom and sinogram blurring factors
in Pdet.blur.

2.2. The geometric projection matrix

Pgeom ∈ RM×N is the geometric projection matrix with each element(i, j) equal to the
probability that a photon pair produced in voxelj reaches the front faces of the detector
pair i in the absence of attenuation and assuming perfect photon-pair collinearity. It is
calculated from the solid angle spanned from the voxelj to the faces of the detector pair
i. After rotating the coordinates, we approximate the 3D solid angle as a product of two
angles as illustrated in figure 1. The two angles for each voxel are computed, with reference
to the regions in figure 1, as follows:

θ =


6 d21V d22 voxel in region I

π − 6 d11V d21 voxel in region II
6 d11V d12 voxel in region III

π − 6 d12V d22 voxel in region IV

(2)

whereV denotes the position of the centre of each voxel. To improve the accuracy of
this model, each voxel is divided into 64 subvoxels and the angle from the centre of each
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subvoxel is computed. The finalpgeom(i, j) is then computed as the average

pgeom(i, j) = 1

64π2

64∑
k=1

θx ′−y ′(k)θx ′−z′(k). (3)

In figure 2, we show the variation inpgeom(i, j) for voxels lying along the centre of a
projection tube for a single detector pair. This figure shows significant depth dependent
sensitivity for this particular LOR; however we note that these pixels contribute to adjacent
LORs in such a way that the overall sensitivity to each voxel for each sinogram is
approximately uniform.

Figure 1. Geometry for computingpgeom(i, j). The coordinates(x′, y′, z′) are a rotation of the
original coordinate first with respect to thez axis and then they′ axis, so that thex′ axis is
parallel to the line that joins the centres of two detector faces. (a) Illustration of the solid angle
subtended at the detectors for a single voxel. (b) Cross sections in(x′, y′) and(x′, z′) planes.

Pgeom is very sparse and has redundancies of which we can take advantage. By choosing
the voxel size in thez direction to be an integer fraction of the ring distance, there are the
following symmetries in thePgeom matrix (Johnsonet al 1995, Chenet al 1991): in-plane
rotation symmetries, resulting from rotating the projection rays byθ = 90◦, 180◦ and 270◦,
and aθ = 45◦ reflection symmetry. This provides a total factor of eight reduction. Axial
reflection symmetry provides an additional factor of two reduction for ring differences other
than zero. The parallel symmetry of sinograms with a common ring differenceRd provides
a reduction by a factor of(Nr − Rd) whereNr is the number of rings in the system.
Combining these, the total reduction factor from the symmetry operations is approximately
64 for microPET. Therefore, we need only store the non-zero components of the base-
symmetry LORs, which amount to 12440 LORs for microPET. Further savings in storage
and computation can be realized by using an automated indexing scheme. This is achieved
by storing a base pixel index and run length in they direction for each value ofx and
z. By choosing the base symmetry lines of response so that they tend to run at small
angles to they direction, this scheme produces close to an additional factor of two saving
in storage. Each element of the matrix is stored as a single eight-bit integer which is
computed as 255pgeom(i, j)/pmax. The constantpmax is the maximum solid angle in the
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Figure 2. Values ofpgeom(i, j) for voxels lying along the centres of a detector tube for a single
detector pair. The detector pair shown is at the centre of the field of view with a ring difference
of zero. The field of view is 100 mm and the distance between the two detectors is 172 mm.

system computed at the point midway along the line joining the centres of the two detectors
forming the shortest transaxial LOR.

2.3. The sinogram blurring matrix

Pblur is the sinogram blurring matrix used to model photon pair non-collinearity, inter-crystal
scatter and penetration. In principle, uncertainties in the angular separation of the photon
pair should be included inPgeom; however, this will reduce its sparseness. We therefore
lump this factor with the detector blurring effects by assuming that it is approximately depth
independent. Similarly, we assume that the effects of inter-crystal scatter and detector
penetration are independent of the distance of the positron annihilation point from the
detectors.

In principle, a 3D sinogram blurring model should be used to model the radial, angular
and inter-sinogram blurring. In our current implementation we have assumed that these
blurring effects can be confined to a single sinogram and use a 2D blurring model.
Furthermore, because the axial acceptance angle of microPET is small (67.5◦), we assume
that the blurring kernels are identical for sinograms for all ring differences. We treat each
crystal as a separate detector and therefore ignore effects associated with the location of each
detector within the 8× 8 blocks used in the microPET system. We then have a rotational
symmetry in the blurring kernels due to rotational invariance of the detector geometry
(Mumcuogluet al 1996b). We note that although this model cannot account for variations
in the blurring kernels that may occur due to block effects (e.g. photons scattered between
a pair of adjacent detectors in two adjacent blocks will be modelled in the same way as
scatter between adjacent pairs in the same block), the spatially variant sensitivity due to
block structure is included inPdet.sens. As a result of the rotational symmetry, we need only
compute and store the blurring kernels for the projection rays for a single projection angle,
which saves both computational time and storage size; the computational cost of performing
the sinogram blurring is only a few per cent of that for computing the geometric projection.
The blurring factors were computed using the Monte Carlo code described in (Mumcuoglu
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et al 1996b). Statistical modelling of non-collinearity, crystal penetration and inter-crystal
scatter in the LSO detectors was used to produce the blurring of the sinogram element under
consideration into the neighbouring elements. Figure 3 shows the blurring kernels for two
different LORs; note the significant crystal penetration for off-centre detector pairs due to
the small crystal size.

To illustrate the size saving from factoring out the detector blur as compared to
incorporating it in the geometric matrix, as is the case in Johnsonet al (1995), we counted
the number of nonzero elements inPgeom and inPblurPgeom. To make the comparison fair,
the resulting elements ofPblurPgeom were quantized to the same number of levels as we use
in Pgeom. Because of rotation symmetry, only the columns corresponding to the voxels in
the planey = 0 need to be counted. The number of nonzero elements corresponding to
voxels with the same radial offset were averaged together in thez direction and the result
is shown in figure 4. This shows a savings factor of approximately three from using the
factored matrix. Further relative savings would be realized if a full 3D blurring model were
used.

Figure 3. Sinogram blurring kernels for the sinogram components indicated by the bold
characters corresponding to (a) the 20th and (b) the 50th out of 100 projection rays. These
kernels are shown for the sinogram stored in interleaved format.

3. Image reconstruction

The factored system model described above was used in a statistical image reconstruction
framework. The standard Poisson likelihood function was used for the data and a Gibbs
prior with a Huber potential used to model the 3D image. The image was reconstructed by
maximizing the log posterior density:

x̂(Y ) = arg max
x
L(Y |x)− βφ(x) (4)

= arg max
∑
i

[−Ŷi + Yi log(Ŷi)] − β
∑
j

∑
k∈Nj
k>j

κjkV (xj − xk) (5)

whereY are the measurements,β is the hyperparameter of the Gibbs prior andŶ is the
data associated with imagex, i.e. Ŷ = Px. We have not included scatter or randoms in this
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Figure 4. The average number of nonzero elements of different columns inPgeomandPblurPgeom

corresponding to voxels at different radial offsets. The total numbers of nonzero elements in
the two matrices were calculated using a radially weighted sum of the two curves to give an
average ratio of 3:1 betweenPblurPgeom andPgeom.

model. In small animals the total activity is small compared to that for human studies so
that scatter and randoms fractions are much lower in the microPET system and are currently
ignored in our work.

The Huber potential functionV (xj − xk) is

V (xj − xk) =

(1/2δh)(xj − xk)2 if |xj − xk| 6 δh
|xj − xk| − δh

2
otherwise

(6)

whereδh is a small constant. In the results presented below,δh was chosen to be very small,
i.e. 1% or less of the maximum reconstructed image intensity. The neighbourhoodNj we
used here is the second-order (26-voxel) neighbourhood withκjk equal to the reciprocal of
the distance between the two voxels.

Using the factored matrix approach we gain substantial savings in storage and
computational requirements. To fully realize this saving we must consider all data and all
pixels at each iteration. Therefore the preconditioned conjugate gradient (PCG) approach
(Mumcuogluet al 1996a) and EM algorithms are more suitable for 3D reconstruction than
either coordinate-wise methods (Bouman and Sauer 1996, Fessler 1994, Sauer and Bouman
1993) or ordered subset methods (Browne and De Pierro 1996, Hudson and Larkin 1994).
In the case of coordinate-wise ascent, one complete iteration through the image will require
the re-application of the blurring kernels each time a different pixel forward projects to a
particular sinogram element; this results in substantial increases in computation cost. In the
case of the ordered subset methods, efficiency is lost due to coupling of sinogram elements
through the blurring kernels. Thus computation of the sinogram subset associated with the
current image estimate requires forward projection into sinogram elements neighbouring the
current subset. However, by approximating the blurring kernels as a 1D radial-only blurring
function, we can use OSEM with the factored system model without loss in computational
efficiency.

In all of the results shown below we used 20 iterations of the PCG method since
the images were observed to change very slowly beyond this point. The procedure was
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initialized using a constant image scaled so that the total counts resulting from forward
projection of this image were equal to the total observed counts. For comparative purposes,
we have shown images reconstructed using the 3D reprojection (3DRP) method of Kinahan
and Rogers (1989). While it may also be possible to improve the performance of the 3DRP
method by pre-filtering the data to compensate for the detector response (Huesmanet al
1989, Liang 1994) or using a Wiener filter based approach (Shaoet al 1994, Fessler 1994),
these methods have not yet been widely studied in the 3D literature. In contrast, the standard
3DRP method used here serves as something of a gold standard in fully 3D reconstruction.

The computational cost of one iteration of the PCG algorithm is about 3 min on a
167 MHz Ultrasparc processor. Therefore, a 24× 128× 128 voxel image requiring 20
iterations can be reconstructed within 60 min and a 24× 64× 64 voxel image within
25 min. For comparison, the 3DRP method we used takes 15 minutes to reconstruct a
15× 128× 128 voxel image, although we note that this program was not optimized.

Figure 5. Profiles of the measured and calculated sinograms for the point source at different
positions in the field of view.

4. Experimental results

4.1. Point source measurements

Our factored system model was tested using experimental measurements of a point source.
A 0.5 mm diameter, 0.5 mCi22Na point source was scanned at different positions in the
field of view. Each data set contained approximately 0.2 M total counts. We first compared
the sinogram profile measured with that predicted using the factored system model. The
results are shown in figure 5, with and without the inclusion ofPblur. The figure shows that
by using the blurring kernels, the asymmetry and peak shift due to crystal penetration are
successfully followed. However, as we show below, errors in these blurring factors appear
to be at least partially responsible for artifacts in the pie phantom studies. We are currently
improving the Monte Carlo model of the detectors to correct this problem.

The point source data were reconstructed to investigate the potential for resolution
recovery using our factored system model. The Poisson likelihood with positivity constraint
can create artificially high resolution for a point source in zero background; resolution was
therefore measured instead using a quadratically penalized weighted least-squares (PWLS)
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method (Fessler 1994) without a positivity constraint. Profiles were taken through the point
source images and the resolution determined by measuring the FWHM. Figure 6 shows
plots of the radial and tangential components of the transaxial resolution, and also the axial
resolution, compared to results obtained using the 3D reprojection method with a ramp filter
with cut-off at the Nyquist frequency, i.e. half of the spatial sampling frequency for the
interleaved sinogram. These clearly show that improvements in resolution can be achieved
by using the accurate system model when compared to reconstruction obtained using either a
simplified system model (no detector response modelling) or the 3DRP method with a ramp
filter. The most dramatic improvement in resolution from the use of the blurring kernels
occurs in the radial direction where we see a resolution of approximately 1 mm FWHM out
to a 4 cmradius. The axial resolution is not improved by the 2D blurring kernels because
we do not currently model axial blur. Some caution is necessary in interpreting these results.
The FWHM resolution does not reflect the behaviour of the point spread functions (PSFs)
below the half-maximum level and in fact in some locations we noted some lengthening
of the tails of the PSF. Furthermore the estimators that we are using are nonlinear in the
data so that resolution of point sources does not extrapolate directly to more distributed
sources.

These point studies illustrate the potential gain that can be realized by accurately
modelling the data. However, this gain is only useful if it can be achieved without large
levels of noise amplification. We therefore also studied the trade-off between background
noise levels and resolution using a point source in a uniform background. It is not possible
to collect data for the point source in a uniform background because the point source is
encased in a plastic sphere. Instead, we collected data from a uniform cylinder and added
to this a separately acquired point source data set. By positioning the point source and the
uniform cylinder at the centre of the field of view, the attenuation that would have occurred
if the point source were actually inside the uniform cylinder would be constant along each
LOR passing through the point source. Consequently, the combined data set should be
virtually identical to that which would have been collected from a point source in a uniform
background. We reconstructed images from the combined data set using the MAP method
with different values of the hyperparameterβ and the 3DRP method with a ramp filter with
different cut-off frequencies. Figure 7 shows the resulting contrast recovery–background
variance plots for the two methods. These plots show that at matched noise levels we can
achieve superior contrast using the MAP method with the factored system model than when
using 3DRP.

4.2. Hot- and cold-phantom studies

Specially constructed hot and cold pie phantoms were also scanned and reconstructed as
shown in figure 8. These images show overall improvements in contrast in the MAP images
compared to 3DRP and again we see little degradation in performance as the phantom is
moved towards the edge of the field of view when using the factored matrix model. There
are some differences in the MAP results between the centred and off-centred phantoms due
to the small voxels (0.4 mm× 0.4 mm) used for the centred phantom compared to the
larger voxel size (0.85 mm× 0.85 mm) for the off-centred phantom. The different sizes
were used because the projection matrix for the small voxels becomes huge for the large
field of view required for the off-centred phantom—note that the symmetries that are used
to efficiently store the matrix preclude computing and storing the projection matrix for a
small off-centred source region. The dark area at the top of the centred cold-spot phantom
is due to an accumulation of air bubbles.
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Figure 6. FWHM resolution of the point source image using 3DRP and PWLS, with and
without modelling of the sinogram blur: (a) radial resolution, (b) tangential resolution, (c) axial
resolution.

Figure 7. Contrast recovery for the point source against spatial variance of the cylinder for
different smoothing parameters for the MAP and 3DRP methods.

There is a noticeable ring artifact at the edge of the cold phantom. The amplitude of
this artifact is reduced when the MAP method is applied to simulated data, indicating that it
is, in part, due to errors in the blurring kernels. However, the fact that the artifact remains
when applied to simulated data and when using different iterative reconstruction methods
(OSEM, least squares and penalized weighted least squares) is an indication that artifacts
also arise from ill conditioning in the accurate system model. The ill conditioning gives
rise to a Gibbs-like oscillation in the vicinity of sharp boundaries which are particularly
prominent for near-circularly-symmetric objects such as the cold-spot phantom. Similar
effects have been reported elsewhere (e.g. Snyderet al 1987). The artifact can be reduced
or eliminated by increasing the degree of smoothing, but this will be at the expense of an
overall loss in resolution.
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Figure 8. Reconstructions of hot and cold resolution phantoms at the centre and edge of the
field of view with cylindrical regions of sizes 1.0, 1.25, 1.5, 2.0, 2.5 mm diameter. Top row:
MAP reconstructions; Bottom row: 3DRP reconstructions. Hot phantom:∼32 M total counts;
cold phantom:∼100 M total counts. The phantom occupied the entire axial field of view.

Figure 9. Baby monkey brain images reconstructed using (a) the 3D MAP method with full
system model (β = 2×10−6); (b) the 3D reprojection method with ramp filter (cut-off frequency
= 0.8 Nyquist frequency).

4.3. Animal studies

18FDG data were collected from a 3 month old baby vervet monkey scanned using the
microPET scanner after injection of 2.2 mCi of FDG. The total counts were about 64 M
total counts for a collection time of 40 min. Figure 9 shows the image reconstructed by the
3D MAP method in comparison to the 3D reprojection method. The reconstructed field of
view in these figures is a circle of diameter 8 cm with the maximum diameter of the brain
approximately 6 cm. These images appear to confirm the resolution enhancement observed
in the point source and pie phantom studies. The oblique stripes in the 3DRP reconstructions
are probably due to imperfect detector normalization caused by time varying sensitivities.
However, these artifacts are not seen in MAP reconstruction indicating a potential robustness
of MAP to small errors in normalization factors.
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5. Conclusions

We have described a fully 3D MAP reconstruction method for the high-resolution microPET
animal scanner. We have shown that we can model and deconvolve the system response
within this framework to achieve uniform transaxial resolution of 1 mm FWHM for objects
up to a 4 cmdiameter, and a resolution of about 1.2 mm up to an 8 cm diameter. These
values reflect the maximum achievable resolution; when using noisy data, some loss in
resolution is produced by increasing the hyperparameterβ to control noise propagation.
However, uniform cylinder plus point source studies show that the MAP method can
achieve higher resolution than the 3D reprojection method at matched noise levels. These
observations are also confirmed by the hot- and cold-spot phantom studies. The appearance
of ring artifacts in the cylindrical cold-spot phantom indicates that the improvement in
resolution is gained at the expense of increased ill conditioning in the system which results
in increased sensitivity to modelling and numerical errors as well as noise. These artifacts
can be reduced or suppressed by increasing the hyerparameterβ but at the expense of
reduced resolution.

Through optimization of storage and computational costs, reasonable reconstruction
times can be achieved which should allow the routine use of this method in research studies.
The methodology described here is also directly extendible to 3D human PET scanners.
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