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ABSTRACT

Ambient noise tomography has proven to be effective in

resolving shallow earth structure. We applied ambient noise

tomography on a dense seismic array in Long Beach,

California. The array was composed of more than 5200 sta-

tions with an average spacing close to 100 m. Three weeks

of passive ambient noise were crosscorrelated between each

station pair, which resulted in more than 13.5 million cross-

correlations within the area. Clear fundamental-mode Ray-

leigh waves were observed between 0.5 and 4 Hz, which

were most sensitive to structure above 1-km depth. For each

station pair, we applied frequency-time analysis to deter-

mine the phase traveltime dispersion, and, for each fre-

quency, we applied eikonal tomography to determine the

Rayleigh wave phase velocity map. The eikonal tomography

accounted for ray bending by tracking the wavefront and

allowed uncertainties to be estimated through statistical

analysis. The compilation of phase velocity maps was then

used to invert for 3D shear velocity structure. The inverted

model showed clear correlation with the known geologic

features such as the shallow south–north velocity dichotomy

and a deeper fast anomaly associated with the Newport-

Inglewood fault zone. Our results can potentially be used

to complement traditional active source studies.

INTRODUCTION

Ambient noise tomography has been widely used to study shal-

low earth structure on regional (e.g., Sabra et al., 2005; Shapiro

et al., 2005; Yao et al., 2006) and continental scales (e.g., Yang et al.,

2007; Lin et al., 2008; Saygin and Kennett, 2012). The method

starts by crosscorrelating passive ambient noise signals recorded

by stations at different locations. The crosscorrelation between each

station pair is then used to approximate the Green’s function be-

tween the two locations (Bensen et al., 2007). In most applications,

strong surface wave signals within the microseism frequency band

(0.05–0.2 Hz) can be extracted and traditional surface wave tomog-

raphy methods are then applied to invert for 3D shear velocity struc-

ture (e.g., Yao et al., 2008; Moschetti et al., 2010). Applications

using ambient noise crosscorrelations to extract body wave signals

are also beginning to emerge (e.g., Draganov et al., 2009; Zhan

et al., 2010; Ruigrok et al., 2011; Poli et al., 2012a, 2012b; Lin et al.,

2013).

Between January and June 2011, more than 5200 high-frequency

(10-Hz corner frequency) velocity sensors were deployed in the

Long Beach area as part of a petroleum industry survey (Figure 1).

The survey area covers several segments of the active northwest–

southeast trending Newport-Inglewood fault system (Figure 1),

which are also related to the petroleum reservoirs (Wright,

1991). Along with active signals emitted by high-frequency vibrator

sources (8–80 Hz), passive ambient noise was also recorded con-

tinuously across the array. The availability of continuous passive

noise records and the dense 2D station coverage provide a great

opportunity to investigate detailed 3D shallow crustal structure

in the Long Beach area based on ambient noise tomography.

In this study, we apply ambient noise tomography to the Long

Beach array to demonstrate the applicability of the method to a

dense short-period array. In contrast to typical ambient noise appli-

cations, the relative small aperture of the array prevents us from

studying surface waves within the microseism frequency band,

in which a single wavelength is comparable to or larger than the

entire array. With the dense 2D array, however, we show here that

high-frequency (0.5–4 Hz) Rayleigh waves can be extracted from

noise crosscorrelations and used for high-resolution study of the 3D

shear velocity structure above 1-km depth. These high-frequency

surface waves are typically difficult to observe for longer paths

due to strong scattering and attenuation (Yang et al., 2011a). Note
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that although the frequency range we studied is outside the nominal

frequency band of the geophones (10-Hz corner frequency), strong

Rayleigh wave signals are observed in the correlations.

For each frequency, we apply eikonal tomography (Lin et al.,

2009; Gouédard et al., 2012) to determine the fundamental-mode

Rayleigh-wave phase velocity map and its uncertainty. Eikonal

tomography, which uses the array configuration to track the phase

front empirically, accounts for ray bending and is theoretically more

accurate than traditional straight ray inversions (e.g., Barmin et al.,

2001). Because the method deals with traveltime measurements

from the same common sources one source at a time, phase velocity

and its uncertainty can be determined statistically based on the

repeating measurements and the method is computationally very

efficient. The 3D shear velocity inversion based on the Rayleigh

wave phase velocity maps shows velocity anomalies that are corre-

lated with known geologic features such as the shallow north–south

velocity dichotomy and the slightly deeper fast anomaly associated

with the Newport-Inglewood system.

METHOD

Ambient noise crosscorrelation and virtual source

Theoretical studies (e.g., Lobkis and Weaver, 2001; Snieder,

2004; Tsai, 2010) have shown that the crosscorrelation (CAB) of

a diffuse, equipartitioned noise field at locations A and B is related

to the Green’s function between the two points (GAB and GBA)

based on

dCABðtÞ

dt
¼ −GABðtÞ þ GBAð−tÞ −∞ < t < ∞: (1)

Although theoretically, GAB and GBA are identical due to the reci-

procity principle, for an inhomogeneous noise source distribution,

the negative and positive time lags of a crosscorrelation can be

different. In general, the negative and positive time lags correspond

to noise signals traveling from B to A and A to B, respectively.

We use the method described by Bensen et al. (2007) (modified

slightly) to calculate the crosscorrelation for each station pair between

5March and 25March.With 5204 stations across the array, more than

13.5 million crosscorrelations (∼52042∕2) are calculated. For each

1-h noise segment, we first perform spectrum whitening and then cal-

culate the crosscorrelation. Unlike Bensen et al. (2007), we do not

perform temporal normalization before crosscorrelation but normalize

each 1-h noise crosscorrelation by its maximum amplitude (Prieto

et al., 2011). As there are near 500 hourly crosscorrelation segments

for each station pair, this process effectively suppresses the effects of

irregular instrument spikes and large amplitude events. For each

station pair, all normalized 1-h crosscorrelations are then stacked

together to get the final three-week crosscorrelation.

Figure 2 shows an example of the record section for the three-

week crosscorrelations between a common station near the center of

the array and other stations on a north–south line (Figure 1). For low

frequencies (<1 Hz; Figure 2b), clear fundamental-mode Rayleigh

waves are observed in the negative and positive time lags for sta-

tions in the south and north, respectively. Note that weak higher

mode/body wave signals, which propagate faster than fundamen-

tal-mode Rayleigh waves, are also observed. At higher frequencies

(2–4 Hz; Figure 2c), the crosscorrelations are generally nosier, but a

clear fundamental-mode Rayleigh wave can still be observed in the

negative and positive time lags for stations in the south and north

directions. Although understanding the detailed noise source distri-

bution is not the main focus of this study, a visual inspection of

noise crosscorrelations suggests that different noise sources between

the low and high frequencies (Figure 2 and supplementary movies)

are important. For low frequencies, the noise signals are dominantly

propagating in the north and east directions, and hence they are likely

to be oceanic related. For high frequencies, the propagating energy of

the noise signals tends to be more isotropic and can either be gen-

erated by highly scattered oceanic sources or possibly anthropogenic

activities.

To suppress the effect of an inhomogeneous

source distribution and reducemeasurement errors

in phase velocity dispersion, we calculate the sym-

metric component of the crosscorrelation by aver-

aging the positive and negative lag signals (Lin

et al., 2008). For each station pair, this is equiv-

alent to averaging the source distribution on both

sides of the stations. Based on the relationship be-

tween crosscorrelation and the Green’s function

(equation 1), we use the symmetric-component

crosscorrelations between one common station

and all other stations to approximate the wavefield

emitted by a virtual source at the common station

location. An example of the constructed wavefield

at two snapshots in time for a virtual source near

the center of the array is shown in Figure 3. A

clear fundamental-mode Rayleigh wave emitted

by the virtual source can be observed in almost

all directions. Note the discontinuous wave-

front in the southeastern direction near the

Newport-Inglewood fault zone, which suggests

that the fault zone acts as a velocity structure

boundary.

241.5˚ 242.0˚

33.5˚

34.0˚

241.80˚ 241.82˚ 241.84˚ 241.86˚

33.76˚

33.78˚

33.80˚

33.82˚

33.84˚

Figure 1. The array configuration and the regional fault lines in Southern California.
The small circles show the 5204 stations used in this study. Several segments of the
Newport-Inglewood fault system are denoted by black lines in the magnified plot.
The star and blue circles show the stations used in Figure 2.
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Figure 3. The wavefield emitted by a virtual
source. The location of the virtual source is shown
by the star near the center of the array. (a, b) Snap-
shots of the 0.5–1 Hz band-passed wavefield ob-
served at each station location at 2.5- and 4.0-s lag
times, respectively. The source distance contours
are separated by 1-km intervals.
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Figure 2. The record section of crosscorrelations calculated between a center station (star in Figure 1) and stations on a north–south line (blue
circles in Figure 1). The crosscorrelations are sorted based on the path distances, in which we assign a negative sign if the second station is in
northern direction compared to the common station. (a-c) Results without band-passed, 0.1–1 Hz band-passed, and 2–4 Hz band-passed
signals, respectively. The fundamental Rayleigh wave signals are indicated by blue arrows in (b) and (c), where body wave/higher mode
signals are indicated by red arrows in (b). Supplementary video clips are available online: S1, 10.1190/geo2012-0453.2; S2, 10.1190/
geo2012-0453.3; and S3, 10.1190/geo2012-0453.4. (S1) The wavefield constructed based on the ambient noise crosscorrelations between
a common station and all other stations. The common station is located at the center of the equidistant contours, which are separated by 1 km
intervals. For each station location and each snapshot in time, we assign the color based on the observed crosscorrelation waveform. The movie
is running between −8 and 8 s lag time, where the last number in the lower left corner infers the time. Note that the negative and positive
components of crosscorrelations are not stacked, which retains the original directionality of the noise wavefield. (S2) Same as S1, but band-
passed between 0.2 and 1 Hz. The movie is running between −12 and 12 s lag time. (S3) Same as S1 but band-passed between 2 and 4 Hz. The
movie is running between −8 and 8 s lag time.
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Caution must be exercised when relating the crosscorrelation and

the Green’s function based on equation 1 (Yao and van der Hilst,

2009), particularly for the amplitude response. The strengths of the

observed surface wave signals are clearly directionally dependent

(Figure 3). The noise source distribution, although likely smoothly

varying spatially, is not homogeneous and hence does not fully

satisfy the basic assumption of equation 1. It is important to note

that the wavefield emitted by a virtual source constructed by the

ambient noise crosscorrelations (i.e., Figure 3) satisfies the gov-

erning wave equation. This allows the phase velocity structure to

be determined by directly studying local wave propagation using

eikonal tomography without the exact knowledge of the noise

source distribution. To see this, consider any wavefield u satisfying

the homogeneous wave equation:

Luðr; tÞ ¼ 0; (2)

where L represents the linear differential operator. The time domain

crosscorrelation, CAðr; tÞ, between one common location rA and

all other locations r of the wavefield u, also satisfies the wave equa-

tion as

LCAðr; tÞ ¼ L

Z
uðrA; τÞuðr; τ þ tÞdτ

¼

Z
uðrA; τÞLuðr; τ þ tÞdτ ¼ 0: (3)

If we now consider u to be the noise wavefield, which is dominantly

the superposition of many ballistic waves, then the noise cross-

correlation CAðr; tÞ between one common location rA and all other

locations r will also satisfy the wave equation. If we neglect attenu-

ation, this implies that the wavefield emitted by a virtual source at

rA constructed by stacking positive and negative component cross-

correlations ½CAðr;−tÞ þ CAðr; tÞ�∕2 will also satisfy the wave

equation. As we will discuss later, this allows eikonal tomography

to be applied even with an inhomogeneous noise source distribution

as long as a well-defined wavefront can be identified for the wave-

field emitted by a virtual source.

Eikonal tomography

We closely follow the eikonal tomography method described by

Lin et al. (2009) to determine Rayleigh wave phase velocity maps

between the 0.5- and 4-Hz frequencies. For each frequency, we

measure traveltime between each station pair based on fre-

quency-time analysis (Bensen et al., 2007; Lin et al., 2008). We

assume that the fundamental Rayleigh wave is the dominating sig-

nal within the prediction window, which is defined by assuming a

group velocity between 0.3 and 1.5 km∕s. The potential contami-

nation from higher mode and body wave signals (Figure 2) can

introduce errors in the traveltime measurement, and the errors will

contribute to the uncertainty of our velocity estimation. Only mea-

surements with a frequency-dependent signal-to-noise ratio

(S/N) higher than eight are kept for further analysis. Here we define

the S/N by the ratio between the peak amplitude within the

prediction window and the rms amplitude of the noise outside of

the prediction window.

0 1 2 3 4 5 6 0.45 0.55 0.60 0.65 0.70 0.75 0.850 1 2 3 4 5 6

a) b) c)

Phase velocity (km/s)Phase traveltime (s) Phase traveltime (s)

241.80˚ 241.82˚ 241.84˚ 241.86˚

33.76˚

33.78˚

33.80˚

33.82˚

33.84˚

241.80˚ 241.82˚ 241.84˚ 241.86˚

33.76˚

33.78˚

33.80˚

33.82˚

33.84˚
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33.82˚

33.84˚

Figure 4. A demonstration of eikonal tomography. (a) The 1-Hz Rayleigh wave phase traveltime observed across the array for the wavefield
shown in Figure 3. Only stations with S/N higher than our selection criterion are shown. The source distance contours are separated by 1-km
interval. (b) The phase traveltime map derived from (a) using the minimum curvature fitting method. The traveltime contours are separated by a
1-s interval. (c) The phase velocity map derived from (b) based on the eikonal equation (equation 4). Only areas satisfying our one-period
traveltime and three- out of four-quadrant selection criteria are shown.
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Eikonal tomography deals with all measurements from the same

virtual source simultaneously. An example of the 1-Hz traveltime

measurements for the wavefield shown in Figure 3 is shown in

Figure 4a. Note that the wavefield in the southwestern direction

of the virtual source is generally weaker (Figure 3), and many

measurements in that direction have an S/N smaller than the selec-

tion criterion, and hence they are removed from further analysis

(Figure 4a). Following Lin et al. (2009), all available traveltime

measurements are used to construct the phase traveltime maps

on a 60 × 60 m grid based on minimum curvature fitting (Figure 4b;

Smith and Wessel, 1990). The gradient of the traveltime map at

each location is then used to estimate the apparent phase velocity

(Figure 4c) and the direction of wave propagation based on the

eikonal equation

k̂

c
¼ ∇τ; (4)

where k̂ denotes the direction of wave propagation, c is the apparent

phase velocity, and τ is the phase traveltime.

The eikonal equation is derived directly from 2D wave equation

using high-frequency approximation (Wielandt, 1993; Lin and Ritz-

woller, 2011a). Because the wavefield emitted by a virtual source

has a well-defined wavefront (e.g., Figure 3) and satisfies the wave

equation (as discussed previously), the phase velocity determined

based on equation 4 is likely not sensitive to the exact noise source

distribution. Although an inhomogeneous noise source distribution

can introduce traveltime biases when relating the crosscorrelations

and Green’s functions based on equation 1 (Yao and van der Hilst,

2009), the biases tend to be similar for nearby stations and cancel

out when the spatial derivative in equation 4 is taken.

For example, if we consider an extreme case in which for an iso-

tropic medium all noises are coming from the south, then because

the positive and negative components of crosscorrelations are aver-

aged, the wavefield emitted by a virtual source near the center of the

array will be two plane waves, one propagating northward and

one propagating southward. The traveltime variation will be zero

on the east–west line through the virtual source location but increase

monotonically toward north and south directions. The traveltime

map will clearly be different from that expected for a point source,

but the 2D gradient of the map does correctly reflect the direction of

wave propagation (propagating northward and southward in the

north and south, respectively) and phase velocity based on equa-

tion 4 everywhere but the zero traveltime line. On that line, the gra-

dient cannot be determined due to the singularity, and our method

will remove the region near the singularity by imposing a traveltime

selection criterion as discussed below. Note that applying a tradi-

tional straight ray tomography method (e.g., Barmin et al., 2001)

would introduce artificial azimuthal anisotropy in this case due

to the uneven noise source distribution.

To retain only the most reliable measurements and avoid singu-

larities, we remove regions with phase traveltime smaller than one

period and only keep the regions where at least three of the four

quadrants of the east–west and north–south axes are occupied by

at least one station closer than 400 m (Lin et al., 2009). The

one-period traveltime criterion is less restrictive than the more

common recommendations of two to three periods used in regional

studies (e.g., Lin et al., 2008; Yao et al., 2011), but due to the small

aperture of the array, using a larger traveltime criterion, such as 2

periods, will degrade our ability to determine phase velocity maps at

lower frequencies (<0.7 Hz). At higher frequencies (>1.0 Hz), us-

ing one or two periods of traveltime criterion results in very similar

phase velocity maps, and the overall difference between the two is

consistent with our error estimation. Note that there are two reasons

to discard short-distance measurements in traditional ambient noise

tomography applications. The first is to satisfy the far-field approxi-

mation, which mostly affects measurements within one wavelength,

and the second reason is to remediate inhomogeneous noise source

distributions, which can affect measurements at longer distances

(Yao and van der Hilst, 2009). As we described, eikonal tomogra-

phy is less sensitive to the noises source distribution, which some-

what justifies the shorter traveltime selection criterion used here.

The phase velocity map determined by a single virtual source

(e.g., Figure 4c) is statistically unreliable, but an average over all

measurements from different virtual sources reduces the uncertainty

significantly. For each location, we calculate the mean and the stan-

dard deviation of the mean of all available measurements to deter-

mine the final phase velocity and its uncertainty, respectively.

Figure 5 shows the result of 1-Hz phase velocity maps and their

associated uncertainty estimation when different numbers of virtual

sources are used. Although the large-scale patterns of phase velocity

maps are generally similar, the detailed features become more

coherent and the overall uncertainty is reduced when more virtual

sources are used. Note that the uncertainty estimated here accounts

for not only random measurement variations but also systematic

measurement variations (e.g., due to azimuthal anisotropy for waves

propagating in different directions). The final phase velocity maps

at 2 and 0.67 Hz with all virtual sources used are summarized in

Figure 6. The 0.67-, 1-, and 2-Hz Rayleigh waves shown in

Figures 5 and 6 are most sensitive to structure near 400, 250,

and 100 m, respectively. The quality of the map degrades at the

lower frequencies due to fewer measurements satisfying the one-

period traveltime selection criterion and potential errors due to finite

frequency effects (Lin and Ritzwoller, 2011a).

Three-dimensional inversion

Based on phase velocity maps observed between the 0.5- and

4-Hz frequencies, we invert for the top 1-km 3D shear velocity

structure in the Long Beach area. We smooth the phase velocity

maps by a 500-m radius Gaussian filter before the inversion to en-

sure the smoothness of the inverted model. For each location, the

Rayleigh wave phase velocity dispersion curve and its associated

uncertainty are used to invert for 1D shear velocity structure beneath

that location. The dispersion measurements at two example loca-

tions (Figure 6a) are shown in Figure 7a. Faster dispersion mea-

surements are clearly observed for the point close to the

Newport-Inglewood fault zone compared to the point in the south-

west. Note that the uncertainties of the dispersion measurements are

higher near lower and higher frequency ends. At the lower frequency

end, this is mostly due to fewer measurements satisfying the one-

period traveltime criterion and measurement errors due to unac-

counted finite frequency effects. At the higher frequency end, this

is primarily due to the smaller S/N of the Rayleigh wave signals,

which is likely due to strong scattering and attenuation and the lower

convergence rate of the crosscorrelation to the Green’s function.

Because Rayleigh wave dispersion measurements have consider-

ably broad depth sensitivity kernels and do not have the ability to

resolve velocity discontinuities, we parameterize our 1D model at
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each location by five cubic B-splines as shown in Figure 8a. In the

inversion, we fix theVP∕VS ratio and the density models (Figure 8b)

and only perturb the shear velocity model. We minimize the misfit

between observed and predicted dispersion curves (Herrmann and

Ammon, 2002) through a steepest descent nonlinear inversion

method (Lin et al., 2012). A half-space model beneath 1-km depth

is used. Tests show that small changes in the VP∕VS ratio and den-

sity models do not change the inverted shear velocity model signifi-

cantly. Figure 7b shows the inverted shear velocity models for the

two sample locations, and the predicted dispersion curves are shown

in Figure 7a.

RESULTS AND DISCUSSION

3D model

The compilation of all the inverted 1D models at different

locations is used to construct the 3D model. The shear velocity

model at three different depths is shown in Figure 9, where the aver-

age 1D model for the whole area is shown in Figure 10a. In general,

at 100-, 300-, and 650-m depths, the model shows very similar

velocity patterns as observed in Rayleigh wave phase velocity maps

at 2, 1, and 0.67 Hz, respectively (Figures 5 and 6). This is expected

considering the depth sensitivity kernels of the Rayleigh waves

(Figure 10b).

At shallow depths (<100 m; e.g., Figure 9a), a clear north–south

dichotomy with the transition near the Newport-Inglewood fault is

observed. The velocity difference, slow in the south and fast in

the north, can be due to the difference in geologic history and

the aquifer system separated by the fault zone. The Newport-

Inglewood fault zone is a right-lateral transpressional system, which

manifests itself as a line of hills on the earth surface and is a natural

geologic boundary in the area (Wright, 1991; Wesnousky, 2005). At

greater depths (>200 m; e.g., Figure 9b and 9c), a fast anomaly

associated with the Newport-Inglewood fault system starts to

emerge likely related to deeper earth material exhumed due to

the deformation process. Figure 11 shows three north–south cross

sections of the model. A clear north–south dichotomy in the top

100 m is again evident. Spatial variations of the fault-related fast
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Figure 5. The 1-Hz Rayleigh wave phase velocity map (upper) and its associated uncertainty estimation (lower) based on different numbers of
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triangles in the lower plots show the virtual source locations used.
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anomaly is also observed, where the fast anomaly in cross sections

B–B′ and C–C′, which cut through the high topography hills (i.e.,

Signal Hill) in the region, plunges to the southeast.

The ability to construct a high-resolution shallow shear velocity

model has several important applications. First, the model provides

complementary information to the traditional exploration seismol-

ogy analysis, which is based on active sources and focuses on

P-wave reflection imaging. The availability of a shallow 3D veloc-

ity model will allow static correction to be estimated as the vertical

traveltime through the model. Generating the

model with surface waves means that there does

not need to be a coherent refractor or reflector to

estimate these corrections. Second, the model

provides new ways to investigate earthquake

hazard assessment. The shear velocity model is

particularly important to predict strong ground

motion during a seismic event. Third, the model

provides new insights to the active fault zone

structure with an unprecedented resolution.

Azimuthal anisotropy

Along with the isotropic structure, eikonal

tomography also straightforwardly allows azi-

muthal anisotropy and its uncertainty to be evalu-

ated (Lin et al., 2009, 2011). Azimuthal

anisotropy describes the velocity difference for

waves propagating in different directions and

in the very shallow earth is likely due to the

alignment of microcracks (Crampin, 1994). Be-

cause such alignment is mostly stress driven, the

ability to determine azimuthal anisotropy at the

shallow depth can have potentially important im-

plications on the ability to determine the regional

stress field.

Based on the eikonal equation (equation 4), for

each phase velocity measurement, we approxi-

mate the direction of wave propagation by the

direction of the traveltime gradient. For each

frequency and location, we follow the method

described by Lin et al. (2009) to statistically sum-

marize all available phase velocity measurements

within each 20° azimuth bin (Figure 12a–12c).

The resulting directionally dependent phase

velocity measurements and their uncertainties

are then used to determine the anisotropy param-

eters. For weakly anisotropic media (Smith and

Dahlen, 1973), the Rayleigh wave phase velocity

c can be expressed as

cðψÞ ¼ c0þ A cos½2ðψ − φÞ�

þ B cos½4ðψ − αÞ�; (5)

where ψ is the azimuthal angle, c0 is the iso-

tropic velocity, A and B are the amplitude of

anisotropy, and φ and α define the orientation

of the anisotropic fast axes for the 2ψ and 4ψ

components of anisotropy. In many applications,

2ψ is the dominant anisotropy component

observed when the finite frequency effect is not severe (e.g.,

Figure 12a–12c; Lin et al., 2011; Lin and Ritzwoller, 2011b). Here,

we fit the directionally dependent phase velocity based on equa-

tion 5 without the 4ψ component.

The azimuthal anisotropy fast directions and amplitudes for 1.25-

and 1.0-Hz Rayleigh waves, which are most sensitive to structure

near the 150- and 200-m depths (Figure 10b), are summarized in

Figure 12d and 12e, respectively. Note that the isotropic velocities

c0 determined here are very similar to those determined earlier by
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Figure 6. (a, b) The 2- and 0.67-Hz Rayleigh wave phase velocity maps. The star and
triangle in (a) denote the locations used in Figure 7.
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taking the mean of all measurements. The anisotropy fast directions

are overall oriented north–south, which is consistent with the maxi-

mum horizontal compressional stress direction in Southern Califor-

nia (Heidbach et al., 2008; Yang et al., 2011b) and suggests that the

anisotropy is related to the regional stress field. Small-scale varia-

tion is also observed near the segmentation of the fault zone, which

suggests either a small-scale stress change near the fault zone seg-

mentation or the presence of fault parallel structural anisotropy

(e.g., de Lorenzo and Trabace, 2011). Fast directions rotating to-

ward the fault direction, in particular, can be clearly observed within

the fault segment near Signal Hill at 1.0 Hz. The uncertainties are

generally higher at the lower frequency potentially due to the finite
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Figure 9. (a-c) Inverted 3D shear velocity model at 100-, 300-, and 650-m depths. The three north–south cross sections used in Figure 11 are
shown in (a).
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frequency effect contamination (Lin and Ritzwoller, 2011b). In

most locations, the anisotropy amplitudes are comparable or larger

than 10%, consistent with earlier shallow sedimentary studies in the

Southern California region (Crampin, 1994; Coutant, 1996). The

inversion of the 3D azimuthal anisotropy structure is out of the

scope of this study and will be the subject of future contributions.

Body wave and higher modes

Although the theory (equation 1) suggests that the entire Green’s

function can be derived from the noise crosscorrelation for a

diffuse noise field, in reality, the noise sources are distributed gen-

erally near the surface and hence body wave phases are not easily

observed. However, extracting body waves from ambient noise

is important for imaging subsurface structure without artificial

sources.

Although fundamental Rayleigh waves are the dominant signals

observed in our noise crosscorrelations, weak body wave/higher

mode signals are also observed (Figure 2). Body waves and

higher modes are sometime difficult to distinguish for short paths,

particularly at low frequencies. To better demonstrate the body

waves/higher modes, we stack all crosscorrelations within each

200-m distance bin (Figure 13). Because body waves/higher modes

are more sensitive to deeper structure compared with fundamental

Rayleigh waves, they tend to stack more coherently due to a

smaller velocity variation. Clear body waves/higher models can

be observed for low and high frequencies. Between 2 and 4 Hz,

a clear P-wave signal emerges with an ~2-km/s apparent velocity.
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Although using body waves to invert for structure is beyond the

scope of this study, the ability to extract body wave signals from

ambient noise shows an encouraging first step toward reflection

imaging based on ambient noise.

CONCLUSIONS

In this study, we showed that ambient noise tomography can be

applied to a dense industrial array to recover high-resolution shear

velocity structure in the shallow crust. Although the array is

designed to record active sources at high frequencies (up to

∼80 Hz), low-frequency surface wave signals between 0.5 and

4 Hz can be extracted from ambient noise. The noise is likely oce-

anic below 1 Hz but is more scattered (homogeneous) above the

1-Hz frequency. We show that by applying eikonal tomography,

Rayleigh wave phase velocity maps can be determined and 3D shear

velocity structure down to a 1-km depth can be inverted for. The 3D

model shows a clear correlation with the known geologic features,

i.e., the shallow north–south velocity dichotomy across the New-

port-Inglewood fault zone and the deeper fast-velocity anomaly

associated with the fault zone itself. The ability to constrain a shal-

low structure based on ambient noise provides a cost-efficient way

to complement traditional exploration seismology, considering that

only passive signals are required. The 3D velocity model can also be

used for hazard assessment and fault zone studies.
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