


increase the degree of discrepancy. In addition, the variability increased as the specimens became denser and less 449 
homogeneous thus augmenting the standard deviations. In Fig. 11a, and for the same stress applied, smaller strain was 450 
recorded with higher gelatin concentrations; whereby adding more gelatin powder rendered the phantoms denser and 451 
more capable of withstanding compressive deformations in the direction of the applied force. Finally, the phantoms 452 
had its limitations as it could only withstand being submerged in water for a certain period of time. Extended 453 
submergence would cause the phantom to start disintegrating and thinning out at specific regions, thus interfering with 454 
the integrity of the results.  455 

Conclusion 456 

Acoustic phantoms are a valuable tool for researchers in various fields, providing a safe and reliable way to study the 457 
behavior of sound waves. They are also used to test the accuracy of acoustic measurements and to evaluate the 458 
performance of acoustic devices. In this work, developed gelatin-based ultrasound (US) phantoms of soft tissue, 459 
mechanical via unconfined compression tests, acoustically via high resolution acoustic mapping and validated the 460 
results against acoustic simulations. High resolution acoustic maps of the intensity distribution of US can provide 461 
essential information on the spatial changes in US wave intensity and focal point, enabling a more in-depth 462 
examination of the effect of tissue on US waves. Our work,  described the acoustic and mechanical characterizations 463 
of a phantom suitable for investigating the effective intensity of an ultrasonic wave after encountering a soft tissue. 464 
High-resolution acoustic mappings allow visualization of multidimensional measurements of spatio-temporal acoustic 465 
waves. Examining the ultrasound intensity drops as a function of increased tissue elasticity and stiffness, mimicked 466 
by artificial in vitro phantoms, highlighted the acoustic attenuations taking place. As ultrasonic waves pass through 467 
different media, the magnitude of energy loss goes up. Estimation of the latter enhances pre-clinical and clinical works 468 
that employ ultrasound. Advances in computational simulations of the acoustic profiles facilitate prediction and 469 
validation of the experimental outcomes for fitter results. For further enhancements and more precise measurements, 470 
the phantoms can be fabricated in more accurate geometrical shapes, specific to the tissue in concern. Henceforth, this 471 
work presented a method by which a readily available material can be characterized to mimic properties of soft tissues, 472 
using a motorized system to get high resolution acoustic intensities and profiles of the traveling ultrasonic waves in 473 
characterized media.  474 
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