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High-resolution adaptive optical imaging within
thick scattering media using closed-loop
accumulation of single scattering
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Thick biological tissues give rise to not only the multiple scattering of incoming light waves,

but also the aberrations of remaining signal waves. The challenge for existing optical

microscopy methods to overcome both problems simultaneously has limited sub-micron

spatial resolution imaging to shallow depths. Here we present an optical coherence imaging

method that can identify aberrations of waves incident to and reflected from the samples

separately, and eliminate such aberrations even in the presence of multiple light scattering.

The proposed method records the time-gated complex-field maps of backscattered waves

over various illumination channels, and performs a closed-loop optimization of signal waves

for both forward and phase-conjugation processes. We demonstrated the enhancement of

the Strehl ratio by more than 500 times, an order of magnitude or more improvement over

conventional adaptive optics, and achieved a spatial resolution of 600 nm up to an imaging

depth of seven scattering mean free paths.
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R
eaching diffraction-limited spatial resolution has been a
challenging task for optically imaging targets embedded
deep within scattering media, such as biological tissues1.

Multiple scattering events attenuate light waves that preserve the
original incidence momenta and generate multiply scattered
waves that act as strong background noise. As the target depth is
increased, these combined effects lead to the exponential decrease
of the signal-to-noise ratio (SNR). Consequently, sub-micron-
scale biological reactions occurring inside living tissues have been
optically inaccessible, limiting the effectiveness of optical micro-
scopy in the investigation of the early stages of disease progres-
sion and the studies of various biological microenvironments
such as nervous systems.

When considering a target spatial resolution close to the dif-
fraction limit, the attenuation of the SNR by multiple light scat-
tering is not the only challenge. In fact, the so-called specimen-
induced aberration is an equally important issue to address2. The
signal waves that preserve original incidence momenta are not
only attenuated in their intensity by the multiple light scattering,
but their phases are also retarded due to the heterogeneity of the
medium. These phase retardations vary depending on the pro-
pagation angle3, which broadens the width of the point spread
function and reduces its peak height. Consequently, the spatial
resolving power is degraded and the SNR is further reduced in
addition to the reduction caused by multiple light scattering.
These detrimental effects of the specimen-induced aberration are
much more pronounced for high-resolution imaging as waves
propagating at large incidence angles, which retain the high
spatial frequency information, travel long paths and are more
likely to experience large phase retardations.

Numerous previous studies have tried to deal with scattering
and aberrations for deep-tissue imaging. The methods for dealing
with scattering have used temporal and/or confocal gating for the
selective detection of signal waves. Examples include optical
coherence microscopy (OCM) and multi-photon microscopy4–9.
We also reported a method termed collective accumulation of
single scattering (CASS) microscopy10. CASS microscopy uses
both time-gated detection and spatial input–output correlation to
preferentially accumulate single-scattered waves, which are the
waves scattered only once by the target object and not at all by the
medium. But the specimen-induced aberration easily undermines
these gating operations. Using eigenchannels to better accumulate
signal waves has been attempted, but this does not guarantee
aberration compensation11,12.

Various methods have been proposed to deal with aberrations
in the context of adaptive optics (AO)13,14. A straightforward
approach has been to use the intensity or the sharpness of the
acquired images as indirect measures of the degree of aberrations
and to maximize them by iteratively shaping the wavefront of
incident waves15–19. In most cases, control of orthogonal modes,
such as Zernike polynomials, was used to deal with slowly varying
aberrations in the pupil plane20. These so-called sensorless
approaches usually require many measurements for the experi-
mental feedback control, and fluorescent molecules can be
bleached during the process. However, some approaches
employed pixel-based wavefront-shaping devices to compensate
very steep phase gradients and high-order modes of the aberra-
tions15,17, and introduced parallelization schemes to minimize the
number of measurements19.

The other approach is to identify the aberrations by the
wavefront sensing of backscattered waves using Shack–Hartmann
wavefront sensors21 or coherence-gated wavefront sensing22,23.
Especially when there exist point particles called guide stars
nearby the objects of interest, recording the wavefront of the
backscattered waves from the point particles is a direct measure of
aberrations24. This wavefront sensing AO can be ideal since

aberrations can be determined by only a few measurements even
up to high-order modes. However, the need for guide stars is a
stringent condition for most biological applications. To alleviate
this requirement, one can either assume that the target object is
mostly point particles22 or the aberration has translational
memory effects25, but the assumptions may not work for thick
biological tissues.

Even if the existing aberration correction methods mentioned
above have shortcomings, they tend to work much better for
fluorescence imaging than reflectance imaging. In the case of
fluorescence imaging, the aberrations in the illumination and
imaging paths are rather independent, and their distinction is
clear as emission wavelengths are different from those of the
excitation. Therefore, it is possible to separately address the
aberrations in the illumination and imaging paths. In the case of
reflectance imaging, however, incident and backscattered waves
have the same wavelength, and yet they are convolved in forming
an object image. For these reasons, it is extremely difficult to
separate out one-way aberration necessary for the aberration
compensation unless there exist guide stars. Moreover, the exis-
tence of strong multiple light scattering having the same wave-
length as signal waves makes the problem even worse. Indeed,
there has been almost no successful implementation of adaptive
optics for high-resolution reflectance imaging although this
imaging modality is readily applicable to in vivo biomedical
imaging due to its label-free imaging capability.

In this article, we present a label-free and high-resolution
imaging method that can identify sample-induced aberrations in
illumination and imaging paths separately without guide stars
and even in the presence of multiple light scattering. We used a
time-gated optical coherence imaging to record the amplitude
and phase maps of backscattered waves from the specimens for
various illumination angles. In the image reconstruction process,
we introduced separate angle-dependent phase factors for the
incident and reflected waves, and identified phase corrections that
preferentially accumulate single-scattered waves over multiple-
scattered ones for the forward and phase-conjugation processes.
By applying these angle-dependent phase corrections to the initial
data, we could not only optimize the accumulation of single-
scattering signals but also significantly reduce the effect of image
distortion. Using this method, which we term ‘closed-loop
accumulation of single scattering’ (CLASS) microscopy, we
achieved a spatial resolution of 600 nm up to the imaging depth
of seven scattering mean free paths. To demonstrate the applic-
ability of CLASS microscopy to biological tissues, we conducted
imaging of a rabbit’s cornea infected by the Aspergillus fumigatus,
a type of fungi, and successfully visualized individual fungal
filaments embedded within opaque fungal infection.

Results
The effects of sample-induced aberrations. Let us consider a

plane wave, E x; y; z ¼ 0; ki
� �

¼ exp �ikixx � ikiyy
h i

, incident

(superscript i) to a target object embedded in a thick scattering

medium, where ki ¼ kix; k
i
y

� �

is the transverse wavevector of the

incident wave (Fig. 1a). When this wave travels through the
scattering medium of thickness L, the intensity of the wave that
preserves its original momentum is attenuated by a factor of exp
(−L/ls), where ls is the scattering mean free path, due to multiple
light scattering. Moreover, this unscattered wave undergoes the
phase retardation ϕi k

i
� �

depending on ki. Subsequently, it is
reflected by the target object whose amplitude reflectance can be
described by the object function O(x,y), and gains the transverse
wavevector Δk driven by the object spectrum O Δkð Þ, which is
the Fourier transform of the object function. On its way out
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(superscript o), the wave that now has the wavevector of ko ¼
ki þ Δk is again attenuated by the multiple scattering process and
also experiences the additional aberration described by the angle-
dependent phase retardation ϕo koð Þ. Therefore, the angular
spectrum of the reflected wave that has the flight time of τ0 = 2L/c
is written as

E ko; ki; τ0
� �

¼ ffiffiffi

γ
p

Pa
o ki þ Δk
� �

O Δkð ÞPa
i ki
� �

þ
ffiffiffi

β
p

EM
o ki þ Δk; τ0
� �

:
ð1Þ

Here, the first term on the right-hand side is the single-scattered
wave containing object information, and the second term is the
multiple-scattered waves that have the same wavevector and flight
time as those of the single-scattered wave. The rest of the
multiple-scattered waves can be ruled out by the time-gated
detection10. Pa

i ki
� �

¼ P ki
� �

� exp �iϕi k
i

� �� �

and Pa
o koð Þ ¼

P koð Þexp �iϕo koð Þ½ � are the complex pupil functions for the
illumination and imaging paths, respectively, where P kð Þ is the
pupil function of the ideal objective lens (P kð Þ ¼ 1 for kj j � k0α,
with α being the numerical aperture of the objective lens and k0
the magnitude of the wavevector in free space; otherwise P = 0).
The factor γ ¼ exp �2L=ls½ � describes the intensity attenuation of
the single-scattered wave for the round trip through the scattering
medium. β is the average intensity of the multiple-scattered waves
detected at the camera, which is determined by the imaging
optics, the time-gating window, and the optical properties of the
scattering medium. The single-scattered wave can be obscured by
multiple-scattered waves, because γ/β is reduced to well below
unity with increasing target depth.

To enlighten the effects of scattering and aberration in image
formation, we prepared an asymmetric aberrating layer

containing a cylindrical groove with a radius of curvature of
6 mm (Fig. 1b). The layer was made of 1-mm-thick clean
polydimethylsiloxane (PDMS, refractive index: 1.41). Because of
the refractive index mismatch between the layer and the
immersion medium (refractive index of water: 1.33), the
cylindrical groove causes asymmetric aberrations such as
astigmatisms. A 7ls-thick scattering layer was placed underneath
this aberrating layer. The scattering layer was fabricated by
dispersing polystyrene beads (diameter of 1 μm) in PDMS, and its
scattering mean free path was determined by measuring the
intensity of ballistic photons as a function of the thickness of the
layer (Supplementary note 3). The typical scattering mean free
path of the samples used in the experiment was ls = 102 μm. This
arrangement of the phantom sample allowed us to independently
control the aberration and scattering. The composite layer was
placed on the top of a resolution target fabricated by focused-ion-
beam (FIB) milling of a gold-coated slide glass (gray scale image
in Fig. 1b). The separation between the finest lines was 600 nm,
which corresponds to the theoretical resolving power given by the
numerical aperture of 0.8 at the wavelength of 800 nm. In the
absence of the scattering and aberrating layers, the conventional
incoherent imaging clearly resolved all the structures (Fig. 1c). On
the other hand, fine structures were obscured by the aberrating
layer (Fig. 1d), and the addition of the scattering layer completely
washed out all the structures (Fig. 1e).

Experimental recording of a time-resolved reflection matrix.
To identify the aberrations in the illumination and imaging paths,
we first recorded the amplitude and phase maps of the back-
scattered waves from the sample for various illumination angles,
or, equivalently, the incident wavevectors ki (Fig. 2a). The output
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Fig. 1 The effect of scattering and sample-induced aberrations in the reflectance imaging. a Description of sample-induced aberrations in the illumination

and imaging paths. The phase of the unscattered component of an incident wave with transverse wavevector ki is retarded by ϕi k
i

� �

, and that of the

reflected wave from the target object is retarded by ϕo koð Þ. ES
o koð Þ and EM

o koð Þ stand for single- and multiple-scattered waves. O(x,y): amplitude

reflectance of a target object. b Layout of the phantom sample. An asymmetric aberrating layer made of a clean PDMS block with a cylindrical groove was

placed on the top of a 7ls-thick scattering layer. A resolution target was placed underneath the scattering layer. The gray scale image is the topography of

the target measured by atomic force microscopy. Scale bar, 4 μm. Color map, height in nanometers. c Incoherent image of the target without the scattering

and aberrating layers. The image was recorded in the reflection geometry, and light emitting diode (λ= 780nm) was used as a light source. Scale bar, 4 µm.

d, e Same as (c), but with an aberrating layer and with both the scattering and aberrating layers, respectively. Color bars in (c–e), intensity in arbitrary unit
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beam from a Ti:Sapphire laser (center wavelength: 800 nm,
temporal pulse width: 80 fs, and average output power: 600 mW)
was used as a light source. A water-dipping type objective lens
(Nikon, CFI-Apo-40XW-NIR) with a numerical aperture of α =
0.8 was used for sub-micron resolution imaging. For the illumi-
nation, we wrote a set of 2800 random phase patterns on a liquid-
crystal spatial light modulator (SLM, Hamamatsu Photonics,
X10468) located at the conjugate plane of the sample. By using
the basis conversion (Methods section) we retrieved images for
2800 incident wavevectors covering all the orthogonal free modes
determined by the illumination area of 30 × 30 μm2 and the
numerical aperture of the objective lens. The use of random basis
was critical in removing uncontrolled phase shifts introduced in
interferometric imaging. The time-resolved detection was con-
ducted by the low-coherence interferometry (Supplementary
note 3 for detailed experimental setup). The depth gating window
given by the bandwidth of the light source was about 12 μm. The
total acquisition time for the entire set of images was about 5 min,
but it can potentially be reduced below 1 s if a high-speed SLM
and camera are used. Figure 2b shows few representative
complex-field maps of backscattered waves E ro; ki; τ0

� �

retrieved
at the sample plane ro ¼ xo; yoð Þ for the target object shown in
Fig. 1b. By taking the Fourier transform of these images, we could
obtain the angular spectrum of backscattered waves E ko; ki; τ0

� �

for each ki. Figure 2c shows E ko; ki; τ0
� �

in the form of matrix
with its column and row indices set by ki and ko, respectively.
This matrix is known as time-resolved reflection matrix in the
wavevector space10.

From E ko; ki; τ0
� �

, we could reconstruct an object image using
CASS microscopy10. This can be done by simply converting the
wavevector bases, ki and ko, to the position bases, ri and ro,
respectively. In doing so, the time-resolved reflection matrix in
the real space, E ro; ri; τ0ð Þ, can be obtained (Fig. 2d) (Methods

section). In Fig. 2d, we can observe that the single-scattered waves
were significantly spread to off-diagonal elements due to the
strong aberrations, and the speckled multiple-scattered waves are
superimposed on the top of these single-scattered waves. Here,
the diagonal elements represent the amplitude of backscattered
waves where the point of illumination coincides with that of
detection. Therefore, sampling the diagonal elements is equiva-
lent to applying confocal gating, and the image reconstruction by
the diagonal elements leads to wide-field OCM imaging (Fig. 2e).
Due to the pronounced sample-induced aberrations, the confocal
and temporal gating operations did not work properly and the
target structures, especially fine structures, were not resolved.

Simultaneous suppression of aberration and scattering. The
confocal gating is susceptible to the aberration as well as scat-
tering. This can clearly be seen in the angular spectrum of CASS
microscopy, or equivalently OCM, which is mathematically
expressed as

ECASS Δkð Þ ¼
X

~ki

E ki þ Δk; ki; τ0
� �

¼ ffiffiffi

γ
p O Δkð Þ �

X

ki

Pa
i ki
� �

Pa
o ki þ Δk
� �

þ
ffiffiffi

β
p

X

ki

EM
o ki þ Δk; τ0
� �

:

ð2Þ

The angular spectrum is determined by the coherent addition
of the elements of E ko; ki; τ0

� �

, whose momentum difference
ko � ki equals the object spectrum Δk. This addition process is
essential for suppressing the effect of multiple light scattering.
The summation at the first term on the right-hand side of Eq. (2),
which is the cross-correlation between the complex pupil
functions of the illumination and imaging paths, amplifies the
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Fig. 2 Experimental measurements of a time-resolved reflection matrix. a Layout of the experimental recording of the time-resolved reflection matrix. For

each incident wavevector ki, the complex field maps of the backscattered waves were recorded at the flight time of the single-scattered waves. SP sample

plane, FP Fourier plane. b Complex field maps of the backscattered waves recorded experimentally. Only a few representative images are shown out of the

total 2800 images. Scale bar, 4 μm. Images are normalized by their respective maximum amplitudes. The saturation and colour of the colour bar indicates

the amplitude and phase of the complex field, respectively, and i=
ffiffiffiffiffiffiffiffiffiffi

ð�1Þ
p

. c Reconstructed time-resolved reflection matrix E ko; ki; τ0
� �

in the wavevector

space. Column and row indices are ki and ko, respectively. Color bar, log-scaled amplitude. d Time-resolved reflection matrix E ro; ri; τ0ð Þ in the real space

converted from (c). Column and row indices are ri and ro, respectively. Color bar, amplitude in arbitrary unit. e Reconstructed object image from the

diagonal components in (d). Color bar, intensity normalized by the maximum intensity. Scale bar, 4 μm
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object function in proportion to the number of incident
wavevectors, Nm. In contrast, the amplitude of the multiple-
scattered waves grows in proportion to

ffiffiffiffiffiffiffi

Nm

p
. Therefore, the

signal to noise ratio of the intensity is increased from γ/β to (γ/β)
Nm, and the single scattering intensity can outgrow that of
multiple scattering when Nm>β=γ.

However, the existence of aberrations can significantly under-
mine the accumulation of the single scattering signal because the
cross-correlation of the complex-valued pupil functions is always
smaller than that in the aberration-free case due to the inequality

P

ki
Pa
i ki
� �

Pa
o ki þ Δk
� �

	

	

	

	

	

	

	

	

	

	

� P

ki
P ki
� �

P ki þ Δk
� �

	

	

	

	

	

	

	

	

	

	

. To quantify

the effect of aberrations, we define the following parameter η
that describes the ratio between the total accumulated single-
scattering intensity with aberrations and that without aberrations:

η ¼
P

ki P
a
i ki
� �

Pa
o ki þ Δk
� �2

Δk
P

ki P ki
� �

P ki þ Δk
� �2

Δk

� 1: ð3Þ

Here, f Δkð Þ2Δk stands for the summation of the absolute square of
f for all the possible Δk’s. Due to aberrations, the signal to noise
ratio of CASS imaging is reduced from (γ/β)Nm to (ηγ/β)Nm. This
suggests that the objects may not be resolvable even for Nm> β/γ
if strong aberrations exist. As a point of reference, the Strehl ratio
S, the ratio of the peak intensity of point-spread-function with
and without aberration, is often used in adaptive optics for
describing weak aberrations26. Both S and η are attenuated with
the increase of aberration, but in general S<η (Supplementary
note 2). Typical adaptive optics can deal with aberrations for S ≥
0.127. However, the degree of aberrations that we dealt with in the
present study was so severe that S is around 1/500 (piston, tilt,
and defocus terms were removed in our estimation of Strehl ratio
following the convention in adaptive optics), more than an order
of magnitude smaller than that the conventional adaptive optics
can handle. In addition to the reduction in signal intensity, the
cross-correlation adds Δk-dependent phase retardation to the
measured object function, thereby distorting the reconstructed
object image.

The method we propose here is to identify the angle-dependent
phase corrections θi k

i
� �

and θo koð Þ for the illumination and
imaging paths, respectively, that can cancel out the respective
angle-dependent aberrations, ϕi k

i
� �

and ϕo koð Þ (Supplementary
note 1). In doing so, the complex-valued pupil function is
converted to the real-valued ones. The main concept is to apply
θi k

i
� �

for each ki in the forward process in such a way to
maximize the total intensity, or η, of the reconstructed image
(Fig. 3a). It turned out that this operation enables θi k

i
� �

to
preferentially counteract ϕi k

i
� �

(Methods section). As an
important additional step, we employed the phase-conjugation
operation, that is, the reversal of illumination and imaging paths,
and applied θo koð Þ to maximize the intensity of the reconstructed
image in the reciprocal process, which then preferably corrects
ϕo koð Þ (Fig. 3e). Repeating these operations leads to the
independent identification of ϕi k

i
� �

and ϕo koð Þ.
The detailed procedures for this CLASS algorithm are given in

the following. We first multiplied initial arbitrary angle-dependent

phase corrections, exp½iθð1Þi ki
� �

�, to columns of E ko; ki; τ0
� �

(Fig. 3b) and identified the set of θ
ð1Þ
i ki
� �

that maximizes the
total intensity of the reconstructed image (Fig. 3c). This can simply

be done by changing the individual θ
ð1Þ
i ki
� �

from 0 to 2π and

finding the particular value of θ
ð1Þ
i ki
� �

at which the total intensity
is the maximum. It is important to note that mainly the single-
scattered waves take part in this process and the multiple-scattered

waves play little role. The maps of multiple-scattered waves taken
at different angles of illumination are uncorrelated with respect to
one another, and remained so even after multiplying the phase
corrections. Therefore, the maximization of total intensity is almost
exclusively due to the aberration correction of the single-scattered

waves (Supplementary note 2). Figure 3c is the map of θ
ð1Þ
i ki
� �

identified by this process and the resulting image is shown in
Fig. 3d in which large structures were resolved better than the
original image (Fig. 2e).

The maximization operation for the forward process is
incomplete and θ

ð1Þ
i ki
� �

cannot be the same as ϕi k
i

� �

unless
the aberration in the imaging paths is addressed. In order to form
a closed-loop correction, we developed a phase conjugation
process in which the wave is incident from �ko to �ki ¼
� ko � Δkð Þ (Fig. 3e). This reverse process does not require
additional data acquisition because it can be computed from the
set of originally measured images by the reciprocity of wave
propagation. With the correction θ

ð1Þ
i ki
� �

in place, we took the
conjugate transpose of the original time-resolved reflection
matrix E ko; ki; τ0

� �

to obtain the phase-conjugated time-resolved
reflection matrix, E� ki; ko; τ0

� �

(Fig. 3f). We then multiplied
exp iθð1Þo koð Þ

� �

to the columns of E� ki; ko; τ0
� �

, and maximized
the total intensity of the phase-conjugated image. Figure 3g shows
the map of θð1Þo koð Þ thus identified. Figure 3h shows the image
after this operation in which the fine details were better visible
than before. Since the identified aberration maps are not yet
complete, we iterated the aberration correction steps to improve
its accuracy. The accumulated phase corrections for the
illumination path,

P

n θ
ðnÞ
i ki
� �

, and imaging path,
P

n θ
ðnÞ
o ,

converged as the number of iterations n was increased (Fig. 3i,
j, respectively). The reconstructed image could reveal the finest
structures in the resolution target at the iteration number of n = 5
(Fig. 3l). Moreover, the signal intensity at the target estimated
(Fig. 3d, i) was increased in magnitude by more than 20 times,
suggesting that the cross-correlation of the aberration-corrected
pupil functions had been increased. Taken together, these
observations confirmed that the proposed method works
extremely well, even in the presence of multiple-scattered waves.

From the acquired angle-dependent phase correction maps in
Fig. 3i, j, the initial Strehl ratio (Supplementary note 2) was
estimated to be S = 1/531. This value is two orders of magnitude
smaller than the one conventional adaptive optics typically
handles. We also obtained η = 1/204 from Eq. (3) and measured
aberration maps, which means that the total single scattering
intensity was increased by about 200 times after the application of
CLASS algorithm. There was a discrepancy between the apparent
signal enhancement of about 20 times estimated (Fig. 3d, l) and
the increase of single scattering intensity by 200 times. Moreover,
this was mainly because multiple-scattered waves as well as
single-scattered waves contributed to the signal intensity at the
target in Fig. 3d. Further analysis revealed that the initial single-
to-multiple scattering intensity ratio of individual angle-
dependent images was γ=β ’ 0:007, and the initial single-to-
multiple scattering intensity ratio of the reconstructed image was
η γ=βð ÞNm ’ 0:1 (Supplementary note 3).

The acquired angle-dependent phase corrections shown in
Fig. 3i, j presented asymmetry due to the cylindrical groove in the
aberrating layer. The phase corrections along the ky direction
have much steeper variations than those along the kx direction.
The input and output aberration maps are largely the same as
waves travel back and forth through the same sample physically
in the reflection geometry. But, due to the difference in the system
aberrations between the illumination beam path from the light
source to the beam splitter and the collection beam path from the
beam splitter to the camera, they have a slight difference
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(Supplementary note 3). We decomposed the output phase
correction map in Fig. 3j into Zernike polynomials (Zj), which are
widely used to explain these types of aberrations. Because the
aberration correction of CLASS microscopy was performed at the
spatial frequency resolution of 1/30 μm−1, we could identify high-
order Zernike modes that ordinary adaptive optical microscopy
cannot. In Fig. 3k we show only the first 50 coefficients according
to Noll’s sequential indices28. As expected, the dominant
components were the astigmatism (Zernike indices of 5, 6, 12,
and 13, red bars) induced by the cylindrical aberrating layer and
the spherical aberration (Zernike indices of 4, 11, 22, 37, blue
bars) induced by the overall index mismatch between the
immersion medium and the scattering layers.

High resolution imaging of targets in biological tissues. In
general, biological tissues exhibit much more complicated aber-
rations than the phantoms, making high-resolution imaging even
more difficult. We demonstrated the performance of CLASS
microscopy for targets located under a layer of a biological tissue.
A 500 μm-thick slice of a rat brain tissue, whose scattering mean
free path was measured to be approximately 100 μm, was placed

on the top of the resolution target (Fig. 4a) (Methods section for
the preparation of brain tissues). As shown in Fig. 4b, the
reconstructed image before the aberration correction could not
reveal the fine structures of the resolution target due to the
multiple scattering noise and the aberration induced by the tissue.
On the other hand, when full aberration correction functionality
of CLASS microscopy was used, the targets were clearly visible up
to the line spacing of 600 nm (Fig. 4c). Also, the intensity fluc-
tuation in the gold-coated area was remarkably reduced, sup-
porting the conclusion that the aberration correction process
properly accumulated the single-scattered waves.

The angle-dependent phase corrections for illumination and
reflection identified for the biological tissues are shown in Fig. 4d,
e, respectively. Unlike the results shown in Fig. 3i, j, irregular
patterns appeared due to the complex internal structures in the
brain tissue. In Fig. 4f, we present the amplitude transfer function
of the rat brain tissue created by calculating the cross-correlation
of input and output aberration maps. The color scale is
normalized by the maximum value of the ideal amplitude
transfer function. The attenuated value of the amplitude transfer
function and reduced bandwidth were responsible for the
deterioration of the image in Fig. 4b. The initial Strehl ratio
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was estimated to be about 1/662 from the acquired aberration
maps. In addition, while the phase gradient of aberration is
relatively flat at low spatial frequency, it steepens at higher spatial
frequencies. This difference underlies the necessity of compensat-
ing for specimen-induced aberrations in ultra-high resolution
imaging.

Demonstration of CLASS microscopy for biological specimens.
Finally, we demonstrated the performance of CLASS microscopy
for imaging biological specimens. We prepared an ex vivo fungal
keratitis rabbit cornea infected by A. fumigatus (Fig. 5a) and
performed imaging of individual fungal cells therein (Methods
section for the details of sample preparation procedure). A.
fumigatus is a group of fungi that can be found everywhere. It can
cause infection to people with poor immune systems in their
brains or other organs including the eye, the heart, the kidneys
and the skin, and severely undermine the functionalities of such
organs. In the case of eye infection, the penetration of fungi and
the disruption of corneal microenvironment by inflammation
response make the cornea opaque (black dashed circle in Fig. 5a),
which often leads to the complete loss of vision. The fungi act as
scattering particles because their size is typically on the order of a
few microns and their refractive index is different from the sur-
rounding cornea. Multiple light scattering and aberrations caused
by these fungal cells make it extremely difficult to perform ima-
ging inside cornea. As such, the depth at which the infection has
progressed can hardly be visualized by conventional imaging
modalities such as optical coherence tomography and confocal
microscopy. In our experiment, we performed imaging of
Aspergillus cells deep inside the infection sites and successfully
visualized their fine multicellular filaments called hyphae.

As a point of reference, we first took transmission images of the
cornea at two different sites (Fig. 5b, c) by illuminating light
emitting diode from the bottom of the specimen. Since imaging in
transmission experiences the effect of scattering much less than
the epi-detection, the structures can still be visible in cases like
Fig. 5b where the depth of the fungal cells was relatively shallow.
But even the transmission mode of imaging failed to visualize the
fine details of the fungal cells when they are located 300 µm or

more from the surface of the cornea (Fig. 5c). The structures were
distorted significantly and the background noise due to other
fungal cells became strong. In any case, the transmission mode of
imaging is not relevant to in vivo imaging as light source cannot
be put inside the specimens. For the view fields indicated as
rectangular boxes (Fig. 5b, c), we took a set of time-resolved
reflection images in the epi-detection geometry for various angles
of illumination. The incoherent addition of these images (Fig. 5d,
e), which are equivalent to the images of angular compounding
optical coherence tomography, could not visualize the detailed
structures of the fungi due to the multiple light scattering and
aberration caused by the fungi located at the upper layers. From
the recorded images, we constructed a time-resolved reflection
matrix and acquired CASS images (Fig. 5f, g), but these images
failed to visualize the fine filaments, too. Finally, we applied
CLASS algorithm and corrected the specimen-induced aberra-
tions (Fig. 5h, i). This has led to the clear visualization of the
filaments, which is the objective indication of the infection. The
aberration maps identified by the CLASS microscopy in Fig. 5j, k
show highly irregular patterns induced by the thick layer of fungi.
The Strehl ratio S, single-scattering enhancement factor η, and
initial single-to-multiple scattering ratio in the position basis
ηγ=βð ÞNm were 1/437, 1/44.7 and 0.23, respectively, for the
specimen in Fig. 5h, and 1/890, 1/68.2, and 0.04, respectively, for
the specimen in Fig. 5i. The implication of these results is that
CLASS microscopy will help us to make an accurate diagnosis
and proper treatments of such diseases as a fungal infection and a
cataract that affect to about 30% of the entire population. Since
our measurements were performed in the epi-detection geometry
with no use of labeling agents, the proposed method can readily
be applicable to the real practices.

Discussion
We presented an optical coherence imaging method that can
perform sub-micron resolution imaging of targets located up to
the depth of 7 scattering mean free paths. The proposed method
introduced separate angle-dependent phase corrections for the
illumination and reflection paths to preferentially optimize the
total intensity of single-scattered waves in both forward and
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phase-conjugation processes. Our method is unique in four major
respects. First, the optimization operation of the total intensity
in the momentum difference space acted mainly on the
single-scattered waves, rather than the multiple-scattered ones.
For this reason, the proposed method could be effective even with
multiple scattering backgrounds. Second, due to the use of the
closed-loop operations, aberrations for the illumination and
reflection paths could be independently identified without the need
for a guide star26. Unlike fluorescence imaging where the correc-
tion of aberrations from the illumination path is the only concern,
this capability is especially critical for coherent imaging because
aberrations from both paths are responsible for the reduced SNR.
The third important aspect is that aberration correction is per-
formed over a view field with finely stepped illumination angles.
This enables our method to eliminate the steep angle-dependent
phase retardations that thick biological tissues induce at large
propagating angles and to outperform conventional adaptive optics
microscopy. In addition, due to the aberration correction for all the
orthogonal modes within the view field, diffraction-limit spatial
resolution can be obtained across the entire view field. Finally, the
aberration correction is performed in post-processing after the
acquisition of the time-resolved reflection matrix. Given the same
number of angular bases to correct, this post processing step is
much faster than the experimental feedback iteration required for
wavefront control. The speed of the current implementation is
largely limited by the speed of the SLM, but the use of a high-speed
binary control SLM with a high-speed camera would substantially
reduce the detection time.

The ability to perform ultra-high spatial resolution imaging
deep within scattering media will open new possibilities for
studying important biological reactions in detail. Since our ima-
ging method relies on reflectance, not the fluorescence, it can
readily be applicable to in vivo imaging with no need of labeling
agents. On the other hand, CLASS microscopy requires target
samples to have sufficient reflectivity for its best performance in
imaging depth similar to the other coherent imaging methods
working in the epi-detection geometry. In fact, the maximum
possible imaging depth is determined by the reflectivity of the
sample as well as the scattering properties of the scattering
medium. If the reflectivity of the sample is reduced by 1/10, then
the imaging depth should be reduced by 1 scattering mean free
path. In addition to the successful demonstration of imaging deep
within a rabbit’s cornea infected by fungi, the applications of this
method can be extended to early disease diagnosis, studies of
nervous systems and of the activities of stem cells inside bone
marrow, and so on. The proposed method can be applicable to
other coherent imaging modalities such as second-harmonic
generation microscopy and stimulated Raman scattering micro-
scopy to increase their imaging depth limits in a similar way.
Moreover, this new CLASS microscopy can offer specimen-
induced aberration maps with minimal photo-bleaching to mul-
tiphoton fluorescence microscopy techniques22. Ultimately, our
study will widen the scope of the applications that optical
microscopy can explore.
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Methods
Random basis and basis conversion to wavevector space. In the experiment, we
used a set of random patterns composed of multiple plane waves as a basis of
illumination rather than individual angular plane waves. Interferometric imaging
suffers from uncontrolled phase shifts due to the mechanical fluctuation of the
relative path length between the sample and reference waves. When using plane
waves, these phase shifts are indistinguishable from the angle-dependent phase
retardation caused by the sample, meaning that the sample-induced aberrations
cannot be identified. When using random patterns, however, multiple plane waves
of known relative phases are simultaneously injected to the sample such that we
can exclusively deal with sample-induced phase shifts.

For the basis conversion, we recorded a time-resolved complex field map
uiðri; j; τ0Þ for the jth random pattern written on the SLM by placing an ideal
mirror at the sample plane for the arrival time τ0 associated with the depth of the
mirror. For the same set of illumination patterns, the complex-field map
uoðro; j; τ0Þ of the reflected waves was recorded for the sample embedded in the
scattering medium (Supplementary note 3 for representative images). By taking the
Fourier transform of uiðro; j; τ0Þ and uoðro; j; τ0Þ, we constructed the matrices
describing the incident and reflected waves, U i k

i
; j; τ0

� �

, and Uo ko; j; τ0ð Þ,
respectively. From the product U ko; jð Þ � U�1

i ki; j
� �

, we could construct the time-
resolved reflection matrix E ko; ki; τ0

� �

, which is shown in Fig. 2c. This procedure
led to the conversion of the initial random speckle basis into the basis of transverse
wavevectors. By taking the inverse Fourier transform of the matrix with respect to
ko , we could obtain E ro; ki; τ0

� �

, which are the complex field maps at the sample
plane for each incident wavevector. Some of the representative images are shown in
Fig. 2b.

The time-resolved reflection matrix E ko; ki; τ0
� �

in the wavevector space can be
converted to that in the position space (Fig. 2d), i.e. E ro; ki; τ0

� �

, by taking the
inverse Fourier transforms with respect to ki and ko . Alternatively, it can be
constructed by the matrix multiplication, uoðro; j; τ0Þ � ui ro; j; τ0ð Þ�1

.

Convergence of CLASS algorithm. The CLASS algorithm described in Fig. 3 is
mathematically described in the following. We first applied initial arbitrary angle-
dependent phase corrections θ

ð1Þ
i ki
� �

to the spectrum of the CASS image to form a
CLASS image, that is Eð1Þ

CLASS Δkð Þ ¼ P

ki
Eo ki þ Δk
� �

eiθ
ð1Þ
i

kið Þ: Then we identified
the set of θ

ð1Þ
i ki
� �

that maximizes the total intensity of the CLASS image:

max
θ
ð1Þ
i

kið Þ

X

Δk

Eð1Þ
CLASS Δkð Þ

	

	

	

	

	

	

2

: ð4Þ

Through this maximization process, θ
ð1Þ
i ki
� �

converges to the input aberration
θi k

i
� �

. This becomes evident when examining the cross-term between two repre-
sentative incident wavevectors, ki1 and ki2 ≠ki1

� �

, in Eq. (4):

exp i ϕi k
i
2

� �

� ϕi k
i
1

� �
 �

exp �i θ
ð1Þ
i ki2
� �

� θ
ð1Þ
i ki1
� �

n oh i

� P

Δk

O Δkð ÞPa
o Δk þ ki1
� �
 �

O Δkð ÞPa
o Δk þ ki2
� �
 ��

� 

:
ð5Þ

If there was no aberration in the reflection beam path, then Pa
o ¼ Po . The phase

angle of the term in the square brackets [] in Eq. (5), which we define as
Φ

ð1Þ
i ki1; k

i
2

� �

, would be zero such that θ
ð1Þ
i ki2
� �

� θ
1ð Þ
i ki1
� �

¼ ϕi k
i
2

� �

� ϕi k
i
1

� �

.
Since only relative phase matters, we can set θ

ð1Þ
i ki1
� �

¼ 0 and ϕi k
i
1

� �

¼ 0 at ki1¼ 0.
Then θ

ð1Þ
i ki
� �

is equal to ϕi k
i

� �

for arbitrary ki , suggesting that the aberration in
the illumination path is perfectly corrected. However, aberration also develops
through the reflection process, and Φ

ð1Þ
i ki1; k

i
2

� �

would be non-zero and conse-
quently act as the error for the aberration correction.

For the aberration correction to be effective, the correction error Φ
ð1Þ
i ki1; k

i
2

� �

should have a finite width of distribution around zero, not a random and uniform
distribution between −π and +π. This becomes possible when Pa

o Δk þ ki
� �

is a
slowly varying function with respect to Δk. If we record individual images over a
wide view field, then the spectral resolution of the individual complex field images,
which is the reciprocal of the width of view field, can be fine enough to make Pa

o a
slowly varying function (Supplementary note 2 for the numerical simulation on the
convergence condition). The maximization process in Eq. (5) lead to θ

ð1Þ
i ki
� �

�
ϕi k

i
� �

up to the accuracy given by the width of the distribution of Φ
ð1Þ
i ki1; k

i
2

� �

. As
iteration number increases, the width of the distribution of Φ

ð1Þ
i ki1; k

i
2

� �

was
reduced and so were the aberration correction errors (Supplementary note 2).
Mathematical description for the phase-conjugation is similar to that for the
forward process, and it can be shown that θo koð Þ converges to ϕo koð Þ
(Supplementary note 1).

Brain tissue preparation. The brain slices were made from 2- to 3-day-old
Sprague–Dawley rats. The brains were quickly excised and dropped into ice-cold
artificial cerebrospinal fluid (ACSF). Coronal slices were cut at 500 µm using a
vibroslicer (World Precision Instruments, Sarasota, FL, USA) and fixed for over-
night at 4 °C in 4% paraformaldehyde. After fixation, brain slices were mounted on
the resolution target for imaging. All experimental procedures and protocols above
were in accordance with the guidelines (approval number KUIACUC-2017-83)
established by the Committee of Animal Research Policy of Korea University.

Preparation of a Rabbit’s cornea infected by fungi. Three New Zealand white
rabbits, weighting 1.5–2.5 kg, were used for the A. fumigatus-infected cornea
model. All animal treatment procedure was approved by Institutional Animal Care
and Use Committee (IACUC, approval number 2015-13-096) of Asan Medical
Center (AMC). Intrastromal infection method was used to induce fungal corneal
keratitis. Rabbits were anesthetized by intramuscular (IM) injection of the mixture
of ketamine (40 mg kg−1 body weight) and xylazine (10 mg kg−1 body weight) prior
to the procedure. Central cornea of the rabbit eye was gently scrapped with a
15–0–0 surgical blade until the stromal layer was exposed. After scrapping the
epithelium, a surgical needle (30 gauge) containing aspergillus paste was directly
inserted into the stroma. After 5–7 days, the rabbit eyes were examined for
infection by a slit-lamp microscope. If the rabbit corneas had haze ulcer and
corneal scar, then the rabbits were euthanized and the infected rabbit eyeballs were
enucleated. The extracted rabbit eyeballs were fixed in 4% formalin solution at 4 °C
for at least 24 h. After fixation, the infected corneas were torn off from the whole
eye globes, and stored in PBS solution.

Data availability. All relevant data are available from the authors.
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