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High-resolution computational models of 
genome binding events
Yuan Qi1,6, Alex Rolfe1,6, Kenzie D MacIsaac1,6, Georg K Gerber1,2, Dmitry Pokholok3, Julia Zeitlinger3,
Timothy Danford1, Robin D Dowell1, Ernest Fraenkel1,4, Tommi S Jaakkola1, Richard A Young3,5 &
David K Gifford1,3

Direct physical information that describes where transcription 

factors, nucleosomes, modified histones, RNA polymerase 

II and other key proteins interact with the genome provides 

an invaluable mechanistic foundation for understanding 

complex programs of gene regulation. We present a method, 

joint binding deconvolution (JBD), which uses additional 

easily obtainable experimental data about chromatin 

immunoprecipitation (ChIP) to improve the spatial resolution 

of the transcription factor binding locations inferred from 

ChIP followed by DNA microarray hybridization (ChIP-Chip) 

data. Based on this probabilistic model of binding data, we 

further pursue improved spatial resolution by using sequence 

information. We produce positional priors that link ChIP-Chip 

data to sequence data by guiding motif discovery to inferred 

protein-DNA binding sites. We present results on the yeast 

transcription factors Gcn4 and Mig2 to demonstrate JBD’s 

spatial resolution capabilities and show that positional priors 

allow computational discovery of the Mig2 motif when a 

standard approach fails.

ChIP-Chip has emerged as a powerful tool for studying in vivo 
genome-wide protein-DNA interactions including transcription 
factor binding1–13, DNA replication and recombination14,15 and 
nucleosome occupancy and histone modification state16–22. Such 
information has been used to discover transcription factor–DNA 
binding motifs, to predict gene expression and to construct large-
scale regulatory network models10,20,21,23–27. Supplementary Figure 1 
online shows the ChIP-Chip experimental procedure.

Because raw ChIP-Chip data are complex and noisy28, computa-
tional methods are necessary for extracting meaningful informa-
tion. Researchers analyzing these data are typically interested in

discovering distinct binding events, which we define as localized inter-
actions between proteins and DNA. We further define spatial resolution 
to be the distance between an inferred binding event location and its 
true location. An ideal computational method would accurately local-
ize inferred binding events (high spatial resolution), would include no 
false binding events (high specificity) and would not miss true binding 
events (high sensitivity).

We propose JBD as a computational approach that reconstructs 
binding events from ChIP-Chip data at a higher spatial resolution 
than the underlying microarray probe spacing. Because a binding 
event influences multiple proximal microarray probes, we can decon-
volve the predicted probe intensity peak shape from the observed peak 
shape to infer the true binding event location. Our method jointly 
considers all possible configurations of binding events, allowing pairs 
of nearby events to be distinguished more reliably than by other meth-
ods. Additional detailed information about binding events is obtained 
by incorporating sequence data. We do this by linking JBD to DNA 
motif discovery. JBD’s high-resolution output is used to compute a 
positional prior for a DNA sequence motif ’s existence at each base 
pair, which guides the motif-discovery algorithm to small regions of 
DNA sequence. By focusing on regions that are tens of bases in size 
rather than hundreds or thousands, the motif-discovery algorithm 
becomes more resistant to ambiguous and noisy inputs.

Previous ChIP-Chip analysis methods have not attempted to 
improve the underlying microarray’s spatial resolution and have not 
used an experimentally determined peak shape. The simplest analysis 
method for ChIP-Chip data infers binding events at those probes that 
have intensities above a specified threshold. Better methods have gen-
erally used statistical techniques to identify bound promoter regions 
or windows of enriched probes11,21,28–30. One method, MPeak, fits 
a hypothesized shape to ChIP-Chip probe intensities, but does not 
consider multiple binding events jointly or attempt to increase the 
underlying microarray’s spatial resolution31. See the Supplementary 

Discussion online for more on previous work.
We demonstrate our method on the yeast transcription factors 

Gcn4 and Mig2. Using evolutionarily conserved instances of a previ-
ously published Gcn4 sequence motif to define plausible target genes, 
we show that JBD makes more accurate binding predictions with 
higher sensitivity and specificity than do three competing methods. 
We show that using JBD’s output as a positional prior allows motif 
discovery to ignore erroneous input sequences. We use JBD-derived 
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positional priors from Mig2 binding data to find a correct binding 
site motif, which other computational methods have been unable to 
do. To examine JBD’s performance without any uncertainty about 
the true binding event locations, we generated several synthetic data 
sets based on the Gcn4 data. We use these data sets to compare JBD to 
several other methods and to examine JBD’s performance on different 
ChIP-Chip microarray designs.

RESULTS

We formulate the problem of detecting binding events as a prob-
abilistic graphical model that captures the combined effect of 
multiple binding events on each microarray probe. Our model is 
generative, because we specify how an underlying physical process 

probabilistically generates the experimental data. In particular, we 
model DNA fragmentation in the ChIP-Chip protocol (Fig. 1a). The 
fragmentation process produces pieces of DNA of varying sizes at 
a given binding event locus and the genomic interval covered by a 
given fragment determines what probes it influences. JBD uses an 
experimentally measured distribution of fragment sizes to predict 
the probe intensity peak shape that a binding event will produce, and 
then fits this shape to ChIP-Chip data to infer binding event locations. 
Figure 1b provides a summary of the model.

Modeling the effect of binding events on proximal probe intensity

We derive an influence function to model the contribution of DNA 
fragments to intensities of probes proximal to a binding event. In the 

Shear

Hybridize

Microarray

readout

Further sample

preparation

Observed

ratio

Strength

Indicator

Probability

Inferred

binding

variables

y
i

s
j

b
j

π
j

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
0 500 1,000

Fragment length

–500 0 500

Genomic distance

R
e
la

ti
ve

 c
o
n
c
e
n
tr

a
ti
o

n

R
e
la

ti
ve

 p
ro

b
e
 i
n
te

n
s
it
y

a b

c d

Figure 1  JBD probabilistically models key aspects of ChIP-Chip experiments. (a) Key aspects of the ChIP-Chip protocol involve (i) shearing of DNA 

crosslinked to a protein, (ii) immunoprecipitation of bound fragments and (iii) hybridization of the fragments to a microarray and the resulting data readout. 

(b) JBD is a generative probabilistic graphical model, depicted using standard Bayesian Network notation. The unobserved (hidden) binding variables at the 

bottom affect the observed data (probe intensity measurements yi, the top row of circles) through an influence function. For a given genomic location j, we 

model the prior probability of protein-DNA binding (πj), the binding event (bj) and a continuous binding strength (sj). (c) The distribution of DNA fragment 

sizes produced in the ChIP protocol were experimentally measured and statistically modeled. The measured distribution from binding experiments using the 

yeast transcriptional activator Gcn4 is shown (blue) with the fitted statistical model (red). The mean fragment size is 327 bp. (d) An influence function is 

derived from the measured fragment size distribution, specifying the expected relative probe intensity as a function of distance from a binding event.
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standard ChIP-Chip protocol, proteins are crosslinked to genomic 
DNA and the entire mixture is then sheared into randomly sized frag-
ments via sonication. The fragments bound by a protein of interest are 
immunopurified, amplified and labeled before microarray hybridiza-
tion. We measure this prehybridized material on a microfluidics-based 
DNA analyzer to produce an empirical fragment size distribution. 
By measuring material from this step in the ChIP-Chip process, we 
account for all important sources of fragment size variation including 
differences in sonication and nonuniform amplification. We model 
the distribution of fragment sizes with a gamma distribution, and 
fit this model to obtain the influence function. The final influence 
function produces an expected relative probe intensity as a function 
of distance from a binding event. Figure 1c,d shows measured and fit-
ted distributions and the derived influence function (Supplementary 

Methods online).

JBD improves the effective spatial resolution of binding events

We first demonstrate that JBD improves effective spatial resolution 
without sacrificing sensitivity or specificity. We analyze previously 
published in vivo Gcn4 ChIP-Chip binding data measured using a 
microarray with an average probe spacing of 266 bp13. We used the 
JBD model with hidden binding variables spaced every 30 bp across 
the entire yeast genome (analysis using closer spacings of the hidden 
variables increased computational cost without improving our results). 

Figure 2 provides five examples of JBD predictions at previously iden-
tified Gcn4 targets10 and Supplementary Table 1 online shows MIPS 
categories enriched in Gcn4 binding events. To compare JBD’s effective 
spatial resolution to that of other methods, we processed binding event 
probabilities produced by JBD by taking the weighted average position 
of a bound region (weighted by the product of the binding probability 
and binding strength) (Supplementary Methods).

JBD achieved a mean spatial resolution that is 24 bp better than 
other methods with comparable sensitivity or specificity on the Gcn4 
data (Table 1). We computed the effective spatial resolution by pairing 
each predicted binding event to the closest Gcn4 motif site and com-
puting the distance between them. To penalize excessive predictions 
clustered around a single true binding event, we paired each binding 
prediction with the closest motif site that had not already been paired. 
We examined the predictions made by JBD and three other meth-
ods: (i) Rosetta, an adaptation of the error model described in Boyer 
et al.32; (ii) MPeak from Kim et al.31; and, (iii) Ratio, an immunopre-
cipitation (IP)-enrichment ratio cutoff (see the Methods section for 
details). For each method, we tuned the thresholds to produce ~100 
binding predictions genome-wide; the Gcn4 data contains at least this 
many plausible Gcn4 binding events that each method should be able 
to detect. We computed the sensitivity and specificity for each method 
on a set of 77 previously known Gcn4 targets (Supplementary Data 1 
online) and a set of 1,012 likely nontargets (Supplementary Data 2 
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Figure 2  JBD predicts the binding probability of the yeast transcription factor 

Gcn4 every 30 bp across the entire genome. Shown here are five examples 

of known Gcn4 targets. Each example depicts ChIP-Chip probe intensity 

ratios (red, top track), JBD binding probabilities (blue, second track), Gcn4 

evolutionarily conserved motif sites (red blocks) and ORFs (green, bottom 

track). (a) The vertical dashed lines above the Str3 promoter demonstrate 

the difference between the binding position predicted by JBD (left line) and 

methods such as Rosetta or MPeak (right line) that do not work at sub-probe 

resolution. (b,c) Similar cases at the Ggc1 and Odc2 promoters in which 

JBD better localizes binding events to the Gcn4 site. (d) A wide peak in the 

enrichment ratios at the Bap2 promoter that JBD interprets as two binding 

events corresponding to the two conserved Gcn4 motif sites. (e) Two nearby 

motif sites that JBD includes in a single peak in the binding probability.
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online). The Supplementary Methods pro-
vide further details on the evaluation method 
and Supplementary Table 2 online provides 
results for thresholds other than 100 bind-
ing events; Supplementary Data 3 online 
contains the list of genes with a conserved 
Gcn4 motif.

JBD also outperforms the Ratio and MPeak 
methods on synthetic data (Fig. 3). Synthetic 
data provide the most accurate assessment of 
algorithmic performance because the location 
of binding events is known with certainty; 
Gcn4 motifs may be an inaccurate indicator 
of in vivo binding for a variety of reasons. We 
generated 200 simulated regions of DNA each 
containing two binding events using a noise 
model, fragment size distribution and probe 
intensity ratio distribution derived from the experimental Gcn4 ChIP-
Chip data (the Supplementary Methods contain more details). We 
varied the spacing between binding events to evaluate the algorithms’ 
ability to resolve two proximal binding events. JBD misses fewer bind-
ing events and demonstrates substantially better spatial resolution 
than do the other methods (Fig. 3). In particular JBD misses only a 
few binding events when they are spaced 300 bp apart, and misses 
none when they are spaced at least 400 bp apart. We did not use the 
Rosetta method on our synthetic data because it requires an entire 
microarray experiment (including individual channel intensities, 
which we did not generate for our synthetic data sets) rather than 
selected regions of interest to produce meaningful output.

Synthetic ChIP-Chip data reveal microarray design tradeoffs

To help guide the design of future ChIP-Chip experiments, we exam-
ined the effects of microarray probe spacing, number of experimental 
replicates and average DNA fragment size on the spatial resolution 
of JBD’s binding event predictions. We used synthetic data generated 
on the basis of the Gcn4 data as previously described. Each data set 
consists of 200 randomly generated binding events spaced either 1,000 
bp or 500 bp apart, with one or more of the above mentioned design 
parameters varied.

In the first test we varied the microarray probe spacing and the 
average DNA fragment size. The results of this analysis are consis-
tent with the design principle that probe spacing should generally 
be matched to DNA fragment size. That is, if microarray probes are 

closely spaced, shorter DNA fragments yield more accurate binding 
event predictions and vice versa for larger probe spacings and longer 
fragment sizes (see Supplementary Tables 3a,c and 4a,c online for 
complete results).

In the second test we explored the trade-off between microar-
ray probe spacing and the number of experimental replicates. Both 
decreasing probe spacing and increasing the number of experimental 
replicates may require more microarrays and a greater cost for a given 
binding experiment. Because both variables increase an experiment’s 
cost, future studies will want to optimize the array and experimen-
tal design to achieve the desired spatial resolution (Supplementary 

Tables 3b,d and 4b,d online). The results suggest two useful design 
principles. First, more than five experimental replicates do not sub-
stantially improve spatial resolution. Second, a single high density 
microarray (100-bp probe spacing) provides better spatial resolu-
tion than do three experimental replicates using lower density arrays 
(300-bp probe spacing).

Positional priors improve robustness and enable the discovery 

of the Mig2 motif

We linked JBD’s binding event predictions to DNA sequence data 
through ‘positional priors’, which give the probability at every genomic 
base position that a DNA sequence motif occurs. The positional 
prior derived from JBD’s output was used to bias a motif-discovery 
algorithm toward sequence regions at a resolution of tens of bases 
rather than hundreds of bases. This approach differs from typical 

Table 1 Spatial resolution comparison between JBD and other methods. 

Method Mean spatial resolution (x −) σ x − No. of detected known sites 

JBD 41 4.0 33 

Rosetta 68 8.1 29 

MPeak 65 10 24 

Ratio 67 15 15 

The average distance of JBD’s Gcn4 binding predictions to motif sites is smaller than for other methods, and JDB 

identifies more known Gcn4 targets. The first column displays the mean spatial resolution (distances of predictions 

to motifs). The last column reports the number of binding events predicted in promoters of 77 previously identified 

Gcn4 targets (though not necessarily in the same conditions as in our binding experiments). We evaluated binding 

predictions on 573 promoter regions containing evolutionarily conserved Gcn4 motifs. For each method, we 

calibrated parameters so that ~100 binding events were predicted across the genome; no method makes more than 

two false-positive calls. Supplementary Table 2 shows data for other thresholds, which yield similar results. With 

the microarray design analyzed, the mean distance between probes and randomly placed binding events is ~66 bp. 

See the Supplementary Methods for details of the evaluation method and the Supplementary Data 1–3 for list of 

promoter regions used.
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Figure 3  Performance of the JBD, Mpeak and 

Ratio methods. JBD better resolves proximal 

binding events than do other methods. Shown 

here is performance of the JBD, MPeak and Ratio 

methods on 200 simulated DNA regions each 

containing two binding events. We generated the 

synthetic data using a model designed to match 

key features of the actual ChIP-Chip Gcn4 data. 

We varied the spacing between the two binding 

events, effectively controlling the overlapping 

influence of events on proximal probes. The 

effects of closely spaced binding events are tightly 

coupled; binding events’ influences become 

independent at ~1,000 bp. (a,b) For a variety of 

spacings, JBD clearly outperforms the Ratio and 

MPeak methods both in terms of percentage of 

undetected binding events (a) and, mean spatial 

resolution (b). Note that the average spacing 

between simulated microarray probes is 100 bp.
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motif-discovery methods that first identify 
sequences enriched for a motif of interest and 
then assume that motifs occur with uniform 
probability within these sequences.

We first demonstrate that motif discovery 
using JBD-derived positional priors yields 
sequence motifs consistent with the pub-
lished specificities for both Gcn4 and Mig2 
(Supplementary Table 5 online shows the 
discovered and published specificities for 
both factors). Our motif-discovery method 
consists of two steps: (i) input sequence selec-
tion, and (ii) motif search. In the first step we 
can use JBD or another method to select input 
sequences. In the second step we can either 
not use a positional prior, or use a positional 
prior derived from JBD or another method. To 
evaluate JBD’s performance against another 
method, we tested variants of steps one and 
two, in which input sequences were selected 
or positional priors were derived using the 
Ratio method (Supplementary Fig. 2). For 
both Gcn4 and Mig2, using JBD for input 
sequence selection and for positional priors 
yielded a motif that was consistent with the 
known motif. The input sequence selection 
step for Mig2 yielded very few sequences in 
all cases. However, even with only ten input 
sequences selected by JBD, a match to the 
expected motif specificity was achieved using 
positional priors. When positional priors were not used, the quality 
of the resulting motif ’s match to the expected specificity decreased 
markedly (Supplementary Fig. 2). The correct motif for Mig2 was not 
recovered when sequences were selected using the Ratio method.

Positional priors bias motif discovery to the correct answer in the 
absence of informative initialization and in the presence of noise. 
We incorporated the positional prior into an objective function that 
is optimized using the Expectation Maximization (EM) algorithm33. 
EM is a local optimization procedure that is typically restarted from 
multiple initialization points to reduce its sensitivity to local optima. 
We investigated the performance of motif discovery on the Gcn4 data 
set when the motif position weight matrix (PWM) was initialized to 
background nucleotide frequencies. When we used positional priors, 
the EM algorithm was insensitive to this uninformative initialization 
point and produced a motif consistent with the reported specificity34. 
When positional priors were not used, motif discovery failed to learn 
a motif consistent with the known specificity. We found that this effect 
was robust to noise. Information provided by positional priors ren-
ders the motif-discovery algorithm resistant to a false-positive input 
fraction of ~30% (Fig. 4).

DISCUSSION

We have shown that JBD’s joint learning method is able to reconstruct 
multiple binding events that appear in raw ChIP-Chip data as a single 
peak, which is a marked advantage over current approaches. JBD is 
also able to reconstruct binding events at higher spatial resolution 
than do competing methods without loss of specificity or sensitiv-
ity. JBD may prove to be an important tool for dissecting complex 
regulatory programs.

JBD accomplishes the above task by probabilistically modeling the 
noisy data-generation processes with suitable prior probabilities on 

binding to enforce a sparseness constraint on binding events. JBD 
does not use standard deconvolution methods because they would 
introduce high-frequency spatial noise as a consequence of simply 
inverting a low-pass filter (the influence function). Simpler nonjoint 
deconvolution methods such as MPeak fail to handle nearby events, 
because they rely on heuristics rather than on a generative model to 
determine the number of binding events that give rise to the observed 
signal.

Our synthetic results indicate that JBD’s advantages are important 
at high microarray tiling densities. At high tiling densities, each probe 
can be influenced by multiple binding events and the effect of a 
single binding event is spread over more probes. JBD can accurately 
separate the resulting dense and complicated interference patterns. 
By analyzing synthetic data ranging over various background noise 
levels, fragment size distributions and other parameters, we have 
shown that JBD can increase the effective spatial resolution of data 
gathered using many different microarray designs and experimental 
variations.

Finally, we have shown that positional priors at the resolution of 
tens of bases can accurately recover DNA motifs when a standard 
method fails, even with very few examples of bound sequence, as 
in the case of Mig2. Our results further suggest that the use of JBD-
derived positional priors reduce the sensitivity of motif-discovery 
performance to initialization and yield accurate results that are robust 
to false-positive inputs. In a previous study that profiled Mig2 binding 
in yeast10, sequences identified as being bound by Mig2 were analyzed 
using six separate motif-discovery programs, none of which was able 
to recover a motif consistent with Mig2’s experimentally character-
ized specificity35. JBD’s success in guiding motif discovery to the Mig2 
motif suggests that it may be useful in searching for other degenerate 
sequence elements that play critical roles in transcription.
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Figure 4  Positional priors for motif discovery improve robustness to false input DNA sequence regions. 

To vary the fraction of false-positive input sequences, we partitioned DNA sequence regions containing 

a potential binding event into positive and negative sets, based on whether they contained a match to 

the Gcn4 TRANSFAC motif. In each of 87 random trials, sequences with a defined fraction of false-

positive examples were randomly sampled from the positive and negative sets. Motif discovery was 

performed on randomly selected sequence sets, and the mean Euclidean distance of each motif from 

the TRANSFAC Gcn4 motif was calculated. The plot shows the mean motif distance as a function of the 

fraction of false-positive sequence examples for the cases in which positional priors are used (squares) 

or are not used (crosses).
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METHODS
ChIP-Chip data. We analyzed the Gcn4 data previously published by Pokholok 
et al.13. ChIP-Chip data for Mig2 binding and negative control experiments 
using an anti-Myc antibody against an untagged population of yeast cells were 
obtained as per Pokholok et al.13.

We preprocessed microarray data to normalize it and reduce experimental 
noise. The raw intensities from each channel were divided by the median 
intensity from that channel before computing a ratio to arrive at a median 
adjusted ratio. Median normalization accounts for differences in the amount 
of material in each channel and between arrays. We further processed median 
adjusted ratios by subtracting the median adjusted ratio from matched probes 
in averaged negative control experiments and then adding one. The negative 
control experiments account for non-Gcn4 and non-Mig2–related binding 
effects. Supplementary Figure 3 demonstrates the importance of using these 
control experiments to avoid false binding event predictions.

DNA fragment size distribution and influence function. We experimentally 
measured the DNA fragment size distribution of ChIP-Chip IP channel mate-
rial on an Agilent 2100 BioAnalyzer. We fitted a gamma distribution to the 
data and then derived the influence function for the JBD model from the fitted 
parameters. The influence function models the intensity ratio at a probe, d 
bases from a binding site:

(1)     
   

where a denotes the DNA arm length (each DNA fragment has two arms 
around the binding site), pa (a) is the probability of an arm of length a, l is the 
DNA fragment size, d is the distance between the binding event and probe and 
D is the maximum fragment size (Supplementary Methods, Supplementary 

Discussion and Supplementary Fig. 4).

Joint binding deconvolution model. We formulate the binding event detec-
tion problem as a probabilistic graphical model that captures the influence 
of binding events and experimental noise on observed probe intensities. We 
jointly estimate the position and strength of the hidden variables that represent 
unknown binding events using Bayesian inference.

All binding events near a probe i contribute to its intensity yi according to 
the influence function in equation (1). We model the intensity yi at probe i as a 
weighted linear combination of different binding events with additive noise:

(2)
       

        

where bj represents a discrete binding event at position j,
 
sj represents the 

corresponding binding strength, f(| i – j |) represents the influence function 
(coupling strength between binding sites and the probe intensities) and ni is 
additive Gaussian noise with zero mean and variance σi.

Having both bj and sj in equation (2) allows us to separately model the 
existence of a binding event and its binding strength. This makes it easy to 
incorporate our prior knowledge on binding frequency separately from our 
prior knowledge of the enrichment ratios in a particular experiment.

We can write down the likelihood of the observed data as

(3)   

     
        

where �(⋅ | Σj f (| i – j |)sj bj,σi) represents the probability density function of a 
Gaussian distribution with mean Σ j f (| i – j |)sjbj and variance σi.

We assign a discrete prior distribution p(bj | πj) to the binding event bj
 
and 

a gamma distribution to the binding strength sj. Whereas bj
 
indicates a dis-

crete binding event, πj represents the binding probability. The Supplementary 

Methods describe how we estimate the variance σi 
and specify the prior

distributions for bj
 
and sj.

Bayesian joint estimation of binding events and strengths. We use a Bayesian 
approach to estimate the posterior distributions of all the hidden variables 
in the JBD model. Specifically, we use both the data likelihood distributions 
(equation 3) and the prior distributions to compute the posterior distributions 
of the binding probabilities p(bj | y):

  
 

  

(4)

where Σb\j 
means summing or marginalizing over the values of {bk}k ≠ j. 

Similarly, we can compute the posterior distributions p(sj | y) of the binding 
strength sj. The means of the posterior distributions are used as the Bayesian 
estimates of the hidden variables, and the standard deviation of the posteriors 
as the confidence intervals or error bars of the estimates. Note that posterior 
probabilities directly estimate the probability of a binding event and are thus 
not P values (see the Supplementary Methods).

Although theoretically sound, the Bayesian approach is computationally chal-
lenging for the model described above. Given the size of the JBD network, exact 
Bayesian calculations require marginalization over hundreds of thousands of 
hidden variables. Monte Carlo methods36,37, the standard for Bayesian infer-
ence, converge too slowly to be feasible for solving our problem. We thus pres-
ent a novel message-passing algorithm that propagates probabilistic messages 
between the nodes of the JBD model, to approximate the posterior distributions. 
Based on the expectation propagation framework38,39, this new algorithm not 
only uses the structure of the Bayesian network to pass messages for efficient 
computation, but also handles the network with both discrete and continuous 
variables by iteratively refining the approximation of the posterior distributions 
(Supplementary Methods). The software and instructions for use are available 
on our website at http://cgs.csail.mit.edu/jbd.

Using JBD posterior distributions for positional priors. Generating the input 
to the motif-discovery algorithm requires two steps: selection of the sequences 
to be analyzed, and specification of single base resolution prior probabilities for 
motif locations over these sequences.

We associate each JBD estimate of a binding event with a confidence score, 
defined as the product of binding strengths and binding posteriors in a region 
around the binding event. We then rank the JBD binding event predictions by 
their confidence scores. For Gcn4, we selected the sequence regions correspond-
ing to the top 200 binding event predictions and empirically determined that 
these sites gave robust and accurate motif-discovery results. We used the same 
confidence threshold when selecting Mig2 sequences.

Positional priors for motif discovery were derived from the binding posterior 
estimates. We assume that binding events occur directly over the beginnings of 
motif instances. Each 300-bp sequence was weighted with a probability λ that the 
sequence contained a functional motif. We used the maximum binding posterior 
value observed over the sequence as an estimate of this weight. Base-by-base bind-
ing posteriors were generated using simple linear interpolation between the 30-bp 
binding posterior points produced by JBD. These base-by-base posteriors were 
used to weight each position in the 300-base sequence. The weights were then 
normalized so that they summed to the previously determined value of λ.

To select sequences for motif discovery using raw probe intensities, we used 
a 300-bp window around peaks that met a threshold cutoff of 3.7. This thresh-
old was identified, using the Gcn4 ChIP-Chip data set, by testing a series of 
thresholds from 1.0 to 5.0 and determining which binding strength cutoff gave 
motifs with the best average Euclidean distance to the Gcn4 TRANSFAC motif. 
At this threshold, ~50% of the input sequences have matches (defined as 0.40 
of the maximum possible log-likelihood ratio score) to the TRANSFAC motif. 
Positional priors for the Ratio method were derived in a manner analogous to 
those for JBD by using linearly interpolated probe intensity values to weight 
sequence positions. The Ratio method-based weightings were normalized so 
they summed to 0.50 for all sequences.
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Motif discovery. We incorporated positional prior information into a standard 
motif-discovery algorithm33 in the TAMO package40 to bias the motif search toward 
regions with high binding posterior estimates. We used the ZOOPS (zero or one 
occurrences per sequence) probability model outlined as follows:

   

       

(5)

Here D corresponds to the set of N input sequences of length M, and the hidden 
variable Z is a matrix indexed by input sequence and position indicating the start 
position of functional motifs. The prior probability that a functional motif starts 
at position j in sequence i is given by γi,j. The ZOOPS model assumes that each 
sequence contains either zero or one functional motif. We used the EM algorithm 
described by Bailey and Elkan33 to search for the position weight matrix (PWM) 
motif model that maximizes the expected log-likelihood of the data given by the 
above expression.

The positional prior estimates were not only used to guide motif discovery 
during EM, but also to select initialization points for the PWM before running the 
algorithm. To search for a motif of width k, we enumerate all k-mers in the input 
set and count each k-mer’s occurrence, weighting each count by the positional 
prior value at that location. The top 400 k-mers, by weighted count frequency, are 
scored by statistical enrichment according to the hypergeometric distribution as 
described in Harbison et al.10. For trials that did not make use of the positional 
prior information, no weighting was applied to the counts. The top 20 statisti-
cally enriched k-mers were used to initialize the PWM in separate runs of the EM 
algorithm. For both factors we repeated runs of EM at motif widths of 8, 10 and 
15 bp, and the resulting motifs were scored by statistical enrichment. We discarded 
all motifs with a hypergeometric P > 0.001, and scored the remaining motifs 
according to their Euclidean distance to the expected motif (see below). For each 
data set the best match to the expected specificity was reported. We note that for 
trials using positional prior information the most statistically enriched motif was 
also the motif that most closely matched the factor’s known specificity. For Gcn4, 
a motif was available in the TRANSFAC database34. The Mig2 binding specificity 
has been characterized experimentally35.

We further evaluated the utility of positional priors by examining the robust-
ness of our motif-discovery results to false-positive binding events. We used 
the Gcn4 data set for evaluation, because a sufficient quantity of information 
was available for performance evaluation. The DNA sequences used to generate 
our reported Gcn4 motif in Supplementary Figure 2 were partitioned into a 
positive and negative set, based on whether they contained a match to the Gcn4 
TRANSFAC motif. We then generated data sets with a known fraction of false-
positive sequences by randomly replacing true-positive sequences in the positive 
data set with false-positive sequences from the negative data set. During sampling, 
sequences were weighted by their mean binding strength and binding posterior 
product to ensure that the data sets were biased toward sequences for which JBD 
predicts binding. For each data set, motif discovery was performed using either 
JBD positional priors or with no positional priors. The motif position weight 
matrix was initialized to background base frequencies for all trials. We calculated 
the mean Euclidean distance of each motif from the TRANSFAC Gcn4 motif. At 
each level of false positives, we report the motif distance averaged over six separate 
randomly selected data sets.

Motif distance calculations. Motifs were scored by their Euclidean distance to an 
expected motif. For this calculation we determined the alignment of the two motifs 
that produced the best score. When the reverse complement of a motif yielded a 
better match, we used the reverse complement. We required a minimum overlap 
of 6-bp positions. For a motif, M, and an expected motif T, with an overlap of N 
positions, the score is defined as follows:


 

   

The summation over index j is over the four possible bases in the multinomial 
distribution at a particular position in the PWM.

Note: Supplementary information is available on the Nature Biotechnology website.
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