HIGH-RESOLUTION ELECTRON MICROSCOPY

THIRD EDITION

JOHN C. H. SPENCE

Department of Physics and Astronomy Arizona State University

-

CONTENTS

I	Preliminaries	1
	1.1 Elementary principles of phase-contrast microscopy	2
	1.2 Instrumental requirements and modifications for	
	high-resolution work	9
	1.3 First experiments	11
	References	14
2	Electron Optics	15
	2.1 The electron wavelength and relativity	16
	2.2 Simple lens properties	18
	2.3 The paraxial ray equation	25
	2.4 The constant-field approximation	27
	2.5 Projector lenses	28
	2.6 The objective lens	31
	2.7 Practical lens design	33
	2.8 Aberrations	36
	2.9 The pre-field	45
	References	46
3	Wave Optics	48
5	3.1 Propagation and Fresnel diffraction	49
	3.2 Lens action and the diffraction limit	52
	3.3 Wave and ray aberrations	57
	3.4 Strong-phase and weak-phase objects	61
	3.5 Optical and digital diffractograms	63
	References	65
4	Coherence and Fourier Optics	67
	4.1 Independent electrons and computed images	69
	4.2 Coherent and incoherent images and the damping envelo	
	4.3 The characterization of coherence	77
	4.4 Spatial coherence using hollow-cone illumination	80
	4.5 The effect of source size on coherence	82
	4.6 Coherence requirements in practice	84
	References	87
		1

5	High	-Resolution Images of Crystals and their Defects	89
	5.1	The effect of lens aberrations on simple lattice fringes	90
	5.2	The effect of beam divergence on depth of field for simple fringes	94
	5.3	Approximations for the diffracted amplitudes	97
	5.4	Images of crystals with variable spacing—spinodal	
		decomposition and modulated structures	104
	5.5	Are the atom images black or white? A simple	
		symmetry argument	106
	5.6	The multislice method and the polynomial solution	107
	5.7	Bloch wave methods, bound states and 'symmetry reduction'	
		of the dispersion matrix	110
	5.8	Partial coherence effects in dynamical computations-	
		beyond the product representation. Fourier images	116
	5.9	Absorption effects	118
	5.10	Dynamical forbidden reflections	121
	5.11	Computational algorithms and the relationship between them.	
		Supercells and image patching	125
	5.12	Sign conventions	130
	5.13	Testing image-simulation programs. The accuracy of atom	
		position determinations	132
	5.14	Image interpretation in germanium—a case study	134
	5.15	Images of defects in crystalline solids. HREM tomography	139
	Refe	rences	150

6	HRE	M in Biology, Organic Crystals, and Radiation Damage	156
	6.1	Phase and amplitude contrast	156
	6.2	Single atoms in bright field	160
	6.3	The use of higher accelerating voltage	168
	6.4	Contrast and atomic number	171
	6.5	Dark-field methods	173
	6.6	Inelastic scattering	177
	6.7	Molecular image simulation	181
	6.8	Noise, information and the Rose equation	182
	6.9	Molecular imaging in three dimensions—electron	
		tomography	186
,	6.10	Electron crystallography of two-dimensional	
		membrane protein crystals	192
	6.11	Organic crystals	195
	6.12	Radiation damage. Organics	196
	6.13	Radiation damage. Inorganics	200
	Refer	rences	201

; ;

7	Imag	e Processing and Super-Resolution Schemes	207
	7.1	Through-focus series. Coherent detection.	
		Optimization. Error metrics	207
	7.2	Tilt series, aperture synthesis	214
	7.3	Off-axis electron holography for HREM	214
	7.4	Aberration correction	216
	7.5	Combining diffraction and image information	221
	7.6	Ptychography, ronchigrams, shadow imaging,	
		and in-line holography	225
	7.7	Direct inversion from diffraction patterns	230
	7.8	Atom lenses	230
	7.9	Internal source holography, HiO and holographic Alchemi	231
	Refe	rences	232
8	STEM and Z-contrast		
	8.1	Introduction. Lattice imaging in STEM	237
	8.2	Coherence functions in STEM	245
	8.3	Dark-field STEM. Incoherent imaging. Resolution limits	247
	8.4	Multiple elastic scattering in STEM. Channelling	254
	8.5	STEM Z-contrast. TDS. 3-D STEM tomography	256
	Refe	rences	261
9	Elect	tron Sources and Detectors	264
	9.1	The illumination system	265
	9.2	Brightness measurement	267
	9.3	Biasing and high-voltage stability	270
	9.4	Hair-pin filaments	273
	9.5	Lanthanum hexaboride sources	274
	9.6	Field-emission sources. Degeneracy	275
	9.7	Detectors. The charged-coupled device (CCD) camera	277
	9.8	Image plates	280
	9.9	Film	282
	9.10	Video cameras and intensifiers	283
	Refe	rences	284
10	Mea	surement of Electron-Optical Parameters	286
	10.1	Objective-lens focus increments	286
		Spherical aberration constant	288
		Magnification calibration	290
		Objective-lens current measurement	293
	10.5	Chromatic aberration constant	293
	10.6	Astigmatic difference. Three-fold astigmatism	294
	10.7	Diffractogram measurements	295

	10.8	Lateral coherence	298
	10.9	Electron wavelength and camera length	301
	10.10	Resolution	301
	Refer	rences	305
		··· , -·	
11	Insta	bilities and the Microscope Environment	. 307
	11.1	Magnetic fields	307
	11.2	High-voltage instability	310
	11.3	Vibration	311
	11.4	Specimen movement	312
	11.5	Contamination and the vacuum system	314
	11.6	Pressure, temperature and drafts	316
	Refe	rences	316
12	Expe	rimental Methods	318
	12.1	Astigmatism correction	319
	12.2	Taking the picture	320
	12.3	Finding and recording lattice fringes—an example	323
	12.4	Adjusting the crystal orientation	
		using non-eucentric specimen holders	330
	12.5	Focusing techniques and auto-tuning	333
	12.6	Substrate films	336
	12.7	Photographic techniques and micrograph examination	338
	12.8	Ancillary instrumentation for HREM	340
	12.9	A checklist for high-resolution work	341
	Refe	rences	342
13	3 Associated Techniques		344
		X-ray microanalysis and 'ALCHEMI'	345
		Electron energy loss spectroscopy (EELS) in STEM	352
	13.3	Electron microdiffraction and CBED	357
	13.4	Cathodoluminescence in STEM	364
	13.5	Environmental HREM, HREM of surfaces, holography	
		of fields and <i>in-situ</i> manipulation	368
	References		372
Ar	opendi	ces	377
			394
Ine	Index		

: