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Solution-processed scintillators hold great promise in fabrication of low-cost

X-ray detectors. However, state of the art of these scintillators is still challenging in

their environmental toxicity and instability. In this study, we develop a class of

tetradecagonal CuI microcrystals as highly stable, eco-friendly, and low-cost

scintillators that exhibit intense radioluminescence under X-ray irradiation. The

red broadband emission is attributed to the recombination of self-trapped

excitons in CuI microcrystals. We demonstrate the incorporation of such CuI

microscintillator into a flexible polymer to fabricate an X-ray detector for high-

resolution imaging with a spatial resolution up to 20 line pairs per millimeter (lp

mm−1), which enables sharp image effects by attaching the flexible imaging

detectors onto curved object surfaces.
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Introduction

Digital X-ray imaging has been widely used in medical diagnosis, industrial inspection,

and security testing (Kim et al., 2017; Wei and Huang, 2019; Zhao et al., 2020; Wang et al.,

2021; Zhou et al., 2022). The past decades have witnessed the rapid development of various

scintillators which are capable of converting high-energy X-rays photons to visible signals for

indirect X-ray detection (Xu et al., 2020; Ou et al., 2021; Guan et al., 2022; Ma et al., 2022). In

particular, inorganic scintillators such as Gd2O2S:Tb and CsI:Tl were typically used for high-

performance radiation detection and X-ray imaging owing to their high X-ray attenuation

coefficient, large X-ray conversion efficiency, and large-area fabrication (Mengesha et al., 1998;

Nagarkar et al., 1998; Van Eijk, 2002;Weber, 2002). Recently, solution-processable scintillators

such as metal-halide perovskites (Chen et al., 2018; Heo et al., 2018; Zhang et al., 2019; Cho

et al., 2020; Zhang et al., 2021) and rare-earth-activated fluoride materials (Qiu et al., 2020; Ou

et al., 2021; Pei et al., 2021; Chen et al., 2022; Wu et al., 2022) have developed as promising

scintillators owing to their tunable radioluminescence and ease of large-area thin-film

fabrication. However, many inorganic scintillators still suffer from the issues of rigorous

high-temperature fabrication, poor environmental stability, high-cost, and the risk of toxic
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elements (Li et al., 2016; Lv et al., 2019; Wei et al., 2019; Zhang et al.,

2019; Ma et al., 2021). Therefore, it is highly desired to develop

solution-processed, highly stable, and eco-friendly scintillators for

X-ray imaging.

Cuprous iodide (CuI) has beenwidely used in organic catalysts,

photodetectors, and anode covers (Yang et al., 2017; Byranvand

et al., 2018; Yuan et al., 2019; Liu et al., 2021). This high-Z CuI

material can be easily synthesized by a solution-processed method

and highly stable against environmental moisture, and exhibits

strong X-ray absorption and effective broadband self-trapped

exciton (STE) emission. Here, we report a facile method for

solvothermal synthesis of highly stable tetradecagonal CuI

microscintillators with intense X-ray luminescence originating

from self-trapped exciton (STE) emission. We further

demonstrate the utility of these CuI scintillators to fabricate a

flexible detector for high-resolution X-ray luminescence imaging,

with a spatial resolution of 20 lp mm−1.

Results and discussion

In our experiments, we firstly synthesized sheet-like CuI using a

low-temperature coprecipitation method (Shevchenko et al., 2012),

which were post-treated by a hydrothermal reaction to obtain better

crystallinity of tetradecagonal CuI microcrystals. Scanning electron

microscope (SEM) images indicated well-defined tetradecagonal

morphologies of the as-synthesized CuI microcrystals with uniform

morphology and particle sizes (Figure 1A; Supplementary Figure S1).

Powder X-ray diffraction (XRD) measurements showed that the

diffraction peaks were well in agreement with the standard CuI

(JCPDS#83-1105) (Figure 1B), indicating that the as-synthesized

CuI microcrystals have a pure γ-phase sphalerite structure and

belongs to the F-43m (216) space group (Figure 1C; Supplementary

Table S1) (Chahid and McGreevy, 1998). Scanning X-ray

photoelectron spectroscopy (XPS) tests were conducted to confirm

the elemental composition and the monovalent iodine and copper in

the CuI microcrystals (Figure 1D; Supplementary Figure S2). We

further used energy dispersive X-ray spectroscopy (EDS) to confirm

uniform distribution of iodine and copper elements in the as-prepared

CuI microcrystals (Supplementary Figure S3). The optical spectra of

the CuI microcrystals indicated a weak emission at 425 nm and an

intense emission at 730 nm under the ultraviolet illumination (Figures

1E,F; Supplementary Figure S4). In addition, a large Stokes shift is also

displayed in the as-prepared CuI microcrystals, indicating that these

materials are ideal phosphors with almost negligible re-absorption

(Figure 1E). The fluorescence emission lifetimes of CuImicrocrystals at

the emission peak of 425 nm and 730 nm were 1.18 ns and 14.38 μs,

respectively (Supplementary Figure S5).

We performed optical characterization to investigate the

photophysical properties of the as-synthesized CuI microcrystals.

FIGURE 1
(A) SEM image of the as-prepared CuI microcrystals. (B) XRD spectra of the as-prepared CuI microcrystals, CuI nanoflakes, commercial CuI
powder, and standard CuI PDF card. (C) Simplified crystal structural model of the as-prepared CuI microcrystals. (D) XPS of the as-prepared CuI
microcrystals. (E) Excitation spectrum (purple) and emission spectrum (red) of the as-prepared CuImicrocrystals. Inset images are photograph of CuI
microcrystals power under bright-field and UV excitation, respectively. (F) Comparison of fluorescence emission spectra of different CuI
samples under UV excitation. Sample #1-3 represent the as-prepared CuI tetradecahedron, CuI flake, and commercial CuI powder, respectively. A
same weight of sample powders was used to compare the radioluminescence intensities under the same UV irradiations.
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Temperature-dependent fluorescence spectra showed that the

fluorescence emissions at 730 nm decrease with the decreasing of

temperature perhaps due to the decrease in exciton-phonon coupling

(Figure 2A), while the emission at 425 nm was increased (Figure 2B).

EPR spectra showed that the signal at g = 2.003 was increased about

3 times at 298 K and only a little change at 77 K upon UV excitations

(Supplementary Figure S6). In addition, the measurement of

excitation spectra at various emissions from the CuI microcrystals

indicated the same excited states near 400 nm in theCuImicrocrystals

(Figure 2C; Supplementary Figure S7A). The bandgap in the as-

synthesized CuI measured by the UV solid diffuse reflection

absorption spectrum was 2.96 eV (Supplementary Figure S7). We

further confirmed that fluorescence emission intensity of CuI

microcrystals was linearly related with the excitation power

(Figure 2D). For these reason, we considered the luminescence

emission at 425 nm and 730 nm of the as-prepared CuI

microcrystals is possibly dominated by the recombination of free

exciton (FE) and self-trapped excitons. Notably, the ratio between the

integrated area of the STE emission to the integrated area of the FE

emission (SSTE/SFE) increased with the blue-shift of the UV excitation

wavelength (Supplementary Figure S8A). In addition, we observed the

similar luminescence behavior of CuI microcrystals under X-ray and

UVexcitation (Figure 2E), suggesting that they possibly originate from

the same excited state. Taken together, we reason that the high-Z CuI

microcrystal can efficiently absorb the incident X-ray excitations by its

host lattice (Figure 2F), and the STE recombinants to produce a

broadband emission with a large Stokes shift (Luo et al., 2018; Yang

et al., 2019; Lian et al., 2020). This can be further verified by the

measured temperature-dependent X-ray luminescence spectra

(Supplementary Figure S8B).

In a further set of experiments, four samples of CuI

microcrystals prepared via various hydrothermal reaction times

FIGURE 2
(A) Pseudo-color map of temperature-dependent photoluminescence spectra of the CuI microcrystals under UV illumination. (B)
Temperature-dependent luminescence spectra of CuI microcrystals in the wavelength range of 400–500 nm under UV illumination. (C) Excitation
spectra at various emissions from the CuI microcrystals. (D) Linear relationship between the fluorescence emission intensity and the excitation
energy; the excitation wavelength was set at 360 nm (E) Fluorescence emission spectra of CuI microcrystals under UV and X-ray excitations,
respectively. The data were normalized with the free exciton emission peak. (F) Proposed mechanism of X-ray luminescence in CuI microcrystals.
Process one is the energy relaxation process, Process two is the process of forming free excitons, and Process three is the exciton self-trapping
process.
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FIGURE 3
(A) Histogram of SSTE/SFE under UV excitation and SSTE/SFE under X-ray excitation. (B) Absorption spectra of CuI, PbWO4 and CsPbBr3 as a
function of X-ray energy. Attenuation coefficients obtained from reference (Berger et al., 2013). (C) The relation between SSTE/SFE as the function of
X-ray tube voltage. (D)Comparison of radioluminescence spectra of fresh and 4-month-stored CuImicrocrystals. (E) STE and FE emission intensities
of CuI microcrystals before and after immersion in water. (F) Radiation stability of emission at 730 nm under repeated switched X-ray irradiation
at a dose rate of 278 μGy s−1.

FIGURE 4
High-resolution, flexible X-ray luminescence imaging. (A) Schematic diagram of a home-made imaging system. (B) Bright-field image (left) and
X-ray imaging (right) of a standard line pair card. (C) Bright-field (top) and X-ray imaging (bottom) of a small yellow croaker; the red dotted circle
represents the same position. (D) Schematic diagram of different imagingmodes, including X-ray imaging film attached to the target object or placed
outside the target object. (E) Plane imaging (left) and curved, flexible imaging (right) of a bend circuit board.
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(0.5 h, 1 h, 2 h, and 4 h) were used to measure the luminescence

intensity of CuI microcrystals under X-ray and UV excitations. It

was found that the proportion of STE emission induced by X-ray

excitations was much higher as compared to that induced by UV

excitations (Figure 3A). By increasing the voltage energy of X-ray

excitations, the proportion of STE emission increased

correspondingly (Figure 3B). The X-ray absorption coefficient of

CuI microcrystals as a function of X-ray photon energy is

comparable with other scintillators such as PbWO4 and CsPbBr3
(Figure 3C), and the radioluminescence intensity of the CuI

microcrystals was also comparable with several commercial

scintillator powders, including PbWO4, Csl:Tl, Bi4Ge3O12, and

ZnS:Mn (Supplementary Figure S9). Notably, the merits of low-

cost synthesis and nontoxicity of the CuI microcrystals make them

more attractive as excellent scintillators for X-ray imaging

(Supplementary Figure S10). Moreover, the radioluminescence

intensity of these CuI microcrystals only decreased by less than

10% after storage for 4 months (Figure 3D); excellent stability can be

maintained even when the material was immersed in water for 24 h

(Figure 3E). These CuImicrocrystals also exhibited excellent stability

against radiation resistance under pulsed X-ray radiation at a dose

rate of 278 μGy s−1 (Figure 3F; Supplementary Figure S11).

To demonstrate the utility of the CuI microcrystals for X-ray

imaging, we further fabricated a flexible and transparent scintillation

film by embedding the CuI microcrystals into PDMS elastomers

(Supplementary Figures S12, S13). In a typical experiment, the as-

fabricated flexible scintillation film was placed between a portable

X-ray tube and a digital camera (Figure 4A). The acquired X-ray

imaging of a standard line pair card indicated that the spatial imaging

resolution was 20 lp/mm (Figure 4B). This flexible detector was

further used to perform X-ray imaging of the fine internal

structure of a fish, an elastic pen, and others (Figure 4C;

Supplementary Figure S14). Moreover, this flexible imaging film

can be readily attached onto the curved surface of the imaging

object (Figure 4D; Supplementary Figure S15). The experimental

results showed that the use of this flexible scintillation film enabled

a clear X-ray image with less deformed circuit distribution (Figure 4E;

Supplementary Figure S16).

Conclusion

We have developed a class of high-stability γ-phase CuI

microcrystals with uniform tetradecagon morphology and

outstanding X-ray luminescence. Our experimental results

revealed that the strong broadband radioluminescence of CuI

microcrystals originates from efficient X-ray absorption and STE

emission. The successful fabrication of CuI microcrystal-embedded

flexible X-ray detectors offers a promising technology for high-

resolution X-ray imaging of curved objects. Despite the advances in

technology, much effort is still required for in-depth understanding

X-ray luminescence mechanism and precise control over the

materials’ size and morphology of the CuI microcrystals.
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