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Abstract

Physical interaction of regulatory elements in three-dimensional space poses a challenge for 

studies of disease because noncoding risk variants may be substantial distances from the genes 

they regulate. Experimental methods to capture these interactions, such as chromosome 

conformation capture (3C), usually cannot assign causal direction of effect between regulatory 

elements, an important component of disease fine-mapping. We developed a Bayesian hierarchical 

approach that uses two-stage least squares and applied it to a novel set of ATAC-seq from 100 

individuals, to identify over 15,000 high confidence causal interactions. Most (60%) interactions 

occurred over <20Kb, where 3C-based methods perform poorly. For a fraction of loci, we 

identified a single variant that alters accessibility across multiple regions, and experimentally 

validated the BLK locus associated with multiple autoimmune diseases using CRISPR genome 

editing. Our study highlights how association genetics of chromatin state is a powerful approach 

for identifying interactions between regulatory elements.

Introduction

Three-dimensional (3D) interactions between regulatory elements are a fundamental process 

in gene regulation1. Understanding the guiding principles that control these interactions is a 

major research interest in genomics2,3. Long-range regulation poses a challenge for studies 

of human disease because risk variants may be located many kilobases (Kb) from the genes 

they regulate, making causal variant identification difficult4,5. Chromosome conformation 

capture (3C)-based techniques have enabled the generation of genome-scale maps of 3D 

contacts in human cells6–8. These maps have provided valuable insights into large-scale 

structure and organisation of chromosomes9,10, and often also provide useful information 

linking distal disease risk alleles with putatively regulated genes11,12. However, it can be 

hard to distinguish functional interactions, such as enhancer-promoter looping, detected 

using 3C-based methods from a background of random collisions13, which are particularly 

pronounced over distances of less than 20Kb11.

A complementary approach to mapping genome-wide 3D interactions is to utilise germline 

genetic variation. Quantitative trait locus (QTL) mapping of chromatin traits can identify 
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genetic variants that regulate chromatin both locally and distally, sometimes over distances 

of hundreds of kilobases14–17. These distal QTLs are known to be enriched in topologically 

associating domains14,15,17 (TADs), suggesting regulatory regions mapped by chromatin 

QTLs do indeed physically interact with one other. For fine-mapping of putative causal 

variants identified in human disease studies, this approach has some attractive features. First, 

unlike 3C-based techniques, our ability to detect interactions between regulatory elements is 

not correlated with the distance between them. Second, QTLs identified in these studies can 

be naturally aligned with those from disease studies using colocalisation18. Third, causal 

interactions between different regulatory elements can be potentially deduced by Mendelian 

Randomisation19–21 (MR), where germline genetic variants are used as instrument 

variables to resolve relationships between different active regions. Here we develop a 

pairwise hierarchical model (PHM) that incorporates a technique from MR in a Bayesian 

framework to map causal regulatory interactions using ATAC-seq data set from 100 

unrelated individuals of British ancestry.

Results

The model

Associations between genotype at the same genetic variant and chromatin accessibility often 

appear spread across multiple independent “peaks” of open chromatin16 and can arise for 

multiple reasons. Two or more variants in linkage disequilibrium can drive independent 

associations at different peaks (hereafter, “linkage”). Alternatively, a single variant might 

independently drive association signals at multiple peaks (“pleiotropy”). Finally, individual 

variants may alter accessibility at one regulatory element that in turn alters accessibility 

elsewhere in the genome, an indication that these elements functionally interact in 3D space 

(“causality”). Our PHM classifies peak pairs within 500Kb of one another into hypotheses of 

linkage, pleiotropy, causality, a single QTL at either of the modelled peaks or a null 

hypothesis of no QTLs in either peak (Fig. 1A). To compute the pairwise likelihood (Online 

Methods) for a given peak pair j and k, we calculate Bayes Factors (BFj and BFk) for the 

association between genotype at a putative causal genetic variant and chromatin accessibility 

at each member of the pair (Fig. 1B). For the hypothesis of causality we compute Mendelian 

Randomisation Bayes Factors (MR BFj
(k) and MR BFk

(j)) for the regression of chromatin 

accessibility in peak j on peak k (or vice versa) using two stage least squares22 (2SLS), with 

genotype at the given genetic variant as the instrumental variable (Fig. 1B). We compute 

BFs for all variants in a cis window extending 500Kb 5’ and 3’, marginalising by the 

appropriate prior probabilities to derive a “regional” BF (RBF) (Fig. 1C). We use a “variant-

level” prior probability of being a causal regulatory variant within the cis window (Fig. 1D) 

assuming a single causal variant23. We also model a “peak-level” prior probability on the 

probability of observing a caQTL, which is a function of peak height (Fig. 1E), and a “peak-

pair-level” prior probability that adjusts the support for pleiotropy or causality between two 

peaks, as a function of the distance between them (Fig. 1F). Both the peak-level and peak-

pair-level priors are conceptually similar to independent hypothesis weighting24. The model 

outputs a posterior probability that a peak pair belongs to one of the interaction categories, 

including the posterior probability of a causal interaction (PPC). Hereafter PPCjk denotes the 

posterior probability that peak j regulates, or is “upstream” of peak k, while PPCkj denotes 
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the converse (j is “downstream” of k). PPC without a subscript refer to the sum of PPCjk and 

PPCkj.

Mapped causal interactions

Our consensus set contained 277,128 peaks of open chromatin, corresponding to 17 million 

peak pairs. We found that 14% of peak pairs showed some evidence of genetic control (Fig. 

1G). Summing over the posterior probabilities, we estimated that 23,036 peak pairs (0.13%) 

causally interact (for example, Fig. S1A); 15,487 we refer to as “high confidence” 

(PPC>0.5) with a Bayesian false discovery probability25 (BFDP) of 18.4% on average.

Following the initial round of interaction detection, we performed a post-hoc summarisation 

to identify directed acyclic graphs (DAGs) of causally interacting peaks in our high 

confidence call set. Because an exhaustive search of all possible DAGs in a cis window was 

computationally intractable, we used an ad-hoc algorithm (Online Methods). We identified 

3,557 independent DAGs (Fig. S1B), of which 1,366 DAGs involve between 2 peaks and 60 

peaks, with the maximum at the MB21D2 locus (Fig. S1C) that we previously reported16.

Our empirical prior suggested that the probability of any two peaks within 500Kb of each 

another interacting was 1.4% (Fig. 1F) suggesting that 1.23% or over 220,000 causal 

interactions remain to be discovered. However, analysis of down sampled data suggested 

that the number of interactions was far from saturated, with many real interactions below our 

detection limit (Fig. S1D).

Model performance assessment by simulation

To test model performance, we simulated data with one causal variant per focal peak, under 

one of the 5 hypotheses in Fig. 1A (Online Methods). The false positive rate (FPR) of 

causality when linkage or pleiotropy were simulated was 0.7% or 1.5%, respectively (Fig. 

2A). The model found it more challenging to correctly assign the direction of causal effects 

(Fig. 2A; 18.9% incorrect directionality on average). Under simulated linkage, the FPR of 

causality increased with increasing linkage disequilibrium (LD) between the two variants 

(Fig. 2B), but overall was low even for variants in high LD (0.0025 for variants in |r|>0.99).

We extended our simulations to include two causal variants in the focal peak for each 

scenario (Online Methods). Multiple causal variants did not substantially increase the false 

positive rate for any scenario (Fig. S2A). Finally, we simulated hybrid hypotheses of 

linkage, pleiotropy and causality. Here, our power to detect causality reduced to 62.9% 

(hybrid pleiotropy, causality (j→k)) or 37.5% (hybrid linkage, causality (j→k)) and the false 

positive rate also became 5.3% on average across all hypotheses (Fig. S2A).

We also compared our model’s performance on simulated data with MR Steiger, an 

alternative approach to identifying causal interactions26. We note that MR Steiger assumes 

that the causal variant is known, while our model attempts to infer the causal variant from 

the data. Despite this, the PHM produced a lower false positive rate for causality when data 

were simulated under the linkage or pleiotropy models (Fig. 2C), but MR Steiger was better 

at identifying the causal direction of effect. For example, at a PPC>0.5, the PHM correctly 

called 24,332 causal (j→k) peak pairs and incorrectly called 216, 73 and 3,978 linkage, 
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pleiotropy, or causality (k→j) under the true hypothesis of causality (j→k), respectively. For 

the same number of true positives (same power to detect the true causal (j→k) interactions), 

the equivalent numbers were 2,998, 1,014 and 9 for MR Steiger. We observed that the 

misclassification rate of causal direction for the PHM decreased significantly when the 

causal variant was more strongly associated with the focal peak (less than 1% for BFj greater 

than 100) (Fig. S2B).

Model performance assessment using real data

Next, we investigated model performance on real data. Effect directions for inferred causal 

peak pairs were substantially more likely to be in the same direction than peaks in linkage 

(Fig. 2D-E), with 98.2% of peak pairs concordant in the confident causal set compared with 

57.5% in confident linkage hypothesis (posterior probability of linkage > 0.5). Using 

RoadMap Epigenomics data on chromatin state from 53 different cell types (Online 

Methods) we also observed that the activity of causally interacting or pleiotropic peak pairs 

was more highly correlated across tissues than distance matched controls, but significantly 

lower than matched control for linkage peak pairs (Fig. 2F). An example of cross-tissue 

correlation is shown in Fig. S2C.

Because allele-specific signals were not used in the original model, they can provide 

independent confirmation of a genetic effect. We used RASQUAL16 to map caQTLs using 

allele-specific counts only at feature SNPs in the downstream peak region. A QQ-plot of P-

values for the allele-specific signals were significantly skewed toward 0 compared with the 

distance matched controls of null peak pairs or linkage peak pairs (posterior probability of 

null or linkage hypothesis > 0.5) (Fig. 2G, Fig. S2D-E).

Finally, we examined the overlap between transcription factor (TF) binding site footprints 

and the lead variants detected by our PHM, and compared this with results from a 

hierarchical model that did not consider interactions between peaks (HM, as used in the first 

stage of optimisation). Compared with the HM, lead variants detected by the PHM were 

highly enriched in TF footprints (Fig. 2H), particularly B-cell specific TF motifs (Fig. 2I), 

such as IRF1 and PU.1. The ratio of putative binding affinity between reference and 

alternative alleles at the PHM lead variant was also more highly correlated with allelic 

imbalance of ATAC-seq reads at PHM lead SNPs (Fig. 2J) than HM lead SNPs (Fig. S2F).

Comparison with 3C-based assays

We compared causal interactions inferred from our model with chromatin loops inferred 

from Hi-C, promoter Capture Hi-C (Chi-C) and H3K27ac HiChIP applied to GM1287810–

12 (Fig. 3A). 74% of causal interactions were between peaks located within the same TAD 

called from Hi-C, a 5-fold enrichment over genomic background (Fig. 3B-C). The remaining 

causal interactions (26%) were primarily in non-TAD regions (Fig. S3A-B), with peaks 

spanning TAD boundaries being significantly (15-fold) depleted (Fig. S3C) Although rare, 

the TAD boundary-spanning interactions we did detect were as strongly supported by allele-

specific accessibility analysis as those found within TADs (“Across TADs” panel, Fig. S3D). 

Effect directions of lead variants were less concordant when peak pairs spanned one or more 

insulators or TAD boundaries (Fig. S3E), with average concordance of 89.0% and 86.3% 
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respectively (P=4.5x10-7 and 2.9x10-13) compared with background sets (91.8% and 

91.6%). An example of a causal interaction spanning a TAD boundary is shown in Fig. S2D. 

Causal interactions were also enriched for loops inferred from H3K27ac HiChIP and CHi-C 

data (7.7 and 1.4-fold, respectively), although the absolute numbers of overlaps were small 

(152 and 324, Fig. 3B-C). Our model also highlighted interactions that could be missed by 

promoter capture-based techniques. Of the 49,579 peak regions linked to baited promoters, 

we estimated that there were 2,208 causal interactions between the non-promoter elements 

and a further 561 between two peaks located within the same CHi-C bait region (Fig. 3B-C).

Most causal interactions occur over sub 20Kb distances

We found causal interactions inferred from the PHM occurred over much shorter distances 

than those captured by 3C-based techniques (Fig. 3D): 63% were less than 20Kb distant 

from one another, compared with 7% of CHi-C interactions (Fig. 3D). We confirmed that the 

distance distribution did not reflect interactions between pseudo “sub-peaks” that were part 

of the same broad peak (Fig. S3F-G). Our results suggest that many functional three-

dimensional interactions may be below the resolution of conventional 3C-based techniques. 

One example is shown at the promoter region of the MAP1B gene (Fig. 3E). Here, a high 

confidence (PPCjk>0.99) causal interaction occurs between a promoter and an enhancer that 

is less than 13Kb distal, but the contact domain inferred from CHi-C, has weak statistical 

support (CHICAGO score 1.87).

Enhancer-enhancer and promoter-enhancer interactions are common

We next examined the functional classes to which the members of causally interacting 

regulatory elements belonged, using the ENCODE genome segmentation annotations for 

LCLs27,28 (Online Methods). The most frequent class of interactions (5,061 peak pairs, 

22% of all interactions) were strong enhancers (SEs) that appeared to regulate other element 

types, including other SEs (1,531 peak pairs, 6.6%), a 2.5-fold enrichment (Fig. 4A, B). The 

effect directions of the lead variant between SE-SE interactions were significantly more 

concordant compared with the background (Fig. S4A), a 95.0% concordance (P=0.0043) 

compared with the complement set (82.2%), suggesting those regions may work in a 

coordinated manner.

When we focussed only on variants that also altered gene expression, using 4,670 interacting 

peak pairs that jointly colocalised with an eQTL from the GEUVADIS data set (Online 

Methods), we found these were enriched (2.4-fold, P=6.4x10-19) for SE to active promoter 

(AP) interactions (Fig. 4C, D). However, expression-associated variants were also enriched 

for interactions from APs to SEs (2.2-fold) or between pairs of SEs (2.2-fold enrichment) 

(Fig. 4D). One hypothesis is that many of these interactions are mediated by 

transcriptionally induced changes in chromatin accessibility over the gene body, creating 

apparent interactions between a single upstream functional element and chromatin peaks 

throughout the transcribed region. Consistent with this idea, peaks downstream of an AP 

were significantly enriched in the gene body (2.3-fold enrichment, P=8.1x10-24; Fig. S4B) 

compared with peaks to the 5’ of the promoter. This hypothesis is also consistent with the 

observation that chromatin accessibility over the gene body is highly correlated with gene 
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expression level (Fig. S4C). A striking example of this potential phenomenon is found at the 

MB21D2 locus (Fig. S1C).

Genetically-driven changes in the reference epigenome

We found a surprisingly large number of interactions (4,134 peak pairs) originating from 

within repressed regions (Fig. 4A). Preliminary analysis suggested that these might arise due 

to genotype effects on the reference epigenome annotation derived from a single individual 

(GM12878). To test this, we stratified all upstream peaks in causally interacting pairs based 

on whether their lead caQTL genotype in GM12878 was an increasing homozygote, 

decreasing homozygote or heterozygote (Online Methods). Upstream repressed regions were 

highly enriched (3.1-fold) for decreasing homozygotes compared with increasing 

homozygotes (Fig. 4E), suggesting that in these cases a strong caQTL almost completely 

removes a region of open chromatin in GM12878, an example of which is shown in Fig. 4F. 

We found that 1.4% of repressed regions overlapped a caQTL where GM12878 was a 

decreasing homozygote. This estimate is also likely to be a lower bound due to incomplete 

power to detect caQTLs.

Causal interactions improve fine-mapping

Next we examined whether the information on causal direction of variant effects could be 

used to improve fine-mapping accuracy, using gene expression as a model quantitative trait. 

For each peak within a 1Mb cis-window around a gene TSS, we first computed the 

probability of master regulator (PMR) for each peak (Online Methods). We then used a 

hierarchical model23 to compute the posterior probabilities of association (PPA) for eQTL 

variants with PMR and the following four other annotations: (1) inside or outside an ATAC 

peak, (2) eQTL variant location (VL), relative to an ATAC peak coverage, (3) promoter CHi-

C contacts, (4) HiChIP loops from promoter regions (Online Methods for details). Genome-

wide, the best performing annotation was the combination of PMR with ATAC peak status 

and VL, which reduced the 90% credible set of eQTL variants by 65%, from 17 to 6 variants 

on average, compared with 11 variants for CHi-C, 10 for ATAC peaks and 8 for Chi-C 

combined with ATAC peaks (Fig. 5A). The effect of adding information on the causal 

direction, by prioritising the most upstream variant via the PMR, significantly reduced the 

credible set size compared to the ATAC peak annotation alone (P<10-49, paired t-test). We 

then compared our results with data from massively parallel reporter assay (MPRA) 

performed in LCLs29 (Online Methods). We found the highest overlap (21.6% or 182 

emVars) for the combined PMR, ATAC peak and VL annotations (Fig. 5B). We applied this 

approach to a challenging locus, where a strong eQTL for the GPATCH2L gene is associated 

with more than 100 candidate regulatory variants in almost perfect LD (Fig. 5C). With no 

annotation information, the 90% credible set size at this locus is large, at 65 variants. 

Although different annotations produce varying effects, our model proposes a SNP 

(rs74067641:T>C) as the likely causal variant with the highest PPA=0.42. This variant is 

located within a predicted master regulatory peak located furthest upstream in the regulatory 

cascade (Fig. S5A-C). We note that reduction in credible set size is an imperfect measure of 

fine-mapping accuracy in cases where multiple causal variants are segregating.
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Causally interacting caQTLs are enriched in autoimmune GWAS hits and eQTLs

We performed an enrichment analysis of causally interacting caQTL peaks for disease 

GWAS hits. We colocalised our caQTLs with 10 genome-wide association studies (GWAS) 

whose genome-wide summary statistics were available30–37. caQTLs detected in LCLs 

strongly colocalised with autoimmune disease, including Rheumatoid Arthritis (RA; 140 

colocalised caQTL-GWAS loci) or systemic lupus erythematosus (SLE; 96 loci) (Fig. 6A). 

Using RA as an example trait, we found that causally-interacting loci were significantly 

more likely to colocalise (1.8-fold, P=1.4x10-3) with risk loci than non-interacting caQTLs 

(Fig. 6B). Interacting peaks that also colocalised with an eQTL were further enriched (2.9-

fold, P=1.7x10-7). This suggests causal interactions were more often involved in a gene 

regulatory cascade leading to downstream consequences.

CRISPR validation of a putative causal variant at the BLK locus

Finally, we applied our method in an attempt to fine-map a challenging GWAS locus with 

contradictory evidence for multiple causal variants in previous studies. The BLK/FAM167A 

locus on 8p21 has a strong eQTL (gEUVADIS P<10-26 and 10-46 for BLK and FAM167A 

genes, respectively) in LCLs (Fig. 6C) that colocalises well with genome wide significant 

associations for SLE and RA (Fig. S6A-B). Previous attempts to fine-map this locus have 

been hampered by multiple genetic variants in tight LD (Fig. S6C-D). Two SNP variants, 

rs1382568:A>C,G and rs922483:C>T, located near the promoter of the BLK gene, have 

previously been reported as putative causal variants of SLE that alter BLK expression in 

various B and T cell lines38. However, MPRA studies have pinpointed a different deletion 

variant (rs5889371:AG>A) that might also potentially alter BLK expression in LCLs29. Two 

of the previously reported variants (rs5889371 and rs1382568) are located in regions of low 

chromatin accessibility (Fig. S6E-G) and less likely to causally influence BLK expression in 

LCLs.

We detected a single base pair insertion variant (rs558245864:C>CG) located in a strong 

caQTL peak 14Kb upstream of the BLK promoter that interacted with 15 flanking peaks 

including several promoter peaks (Fig. 6C). The insertion variant showed the highest 

posterior probability (PPA=0.59) of any putative causal eQTL variant for BLK gene (Fig. 

6C). This variant is located at the middle of a canonical CTCF binding motif, with an extra 

“G” nucleotide decreasing the predicted CTCF binding affinity to almost to background 

(Fig. 6D). The direction of binding affinity change was consistent with the caQTL signal. 

This variant was also a CTCF ChIP-seq QTL (Fig. 6D), with a 99.7% the probability of 

colocalisation between the CTCF QTL and caQTL for this peak (Online Methods). We used 

CRISPR/Cas9 genome engineering to generate two different heterozygous deletion lines 

from a parental line that was homozygous for the high CTCF binding allele (Online 

Methods). These deletions overlapped the CTCF binding site: the 6bp deletion disrupts the 

right hand side of the binding site and the 18bp deletion that removes almost the entire motif 

(Fig. 6D). ATAC-seq and RNA-seq in the deletion lines revealed a significant down-

regulation of chromatin accessibility at the focal peak compared with the parental line 

(P=0.0005) (Fig. 6E), and a concomitant down-regulation of BLK expression (P=0.0095) 

(Fig. 6F). We observed decreases in accessibility at some neighbouring peaks around BLK 

promoter region (Fig. S6H-I). We also observed an increase in accessibility around 
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FAM167A promoter region (Fig. S6H-I) and in FAM167A expression (Fig. S6J), although 

this was not significant (P=0.18).

Discussion

We have presented a novel approach to detect interactions between regulatory elements, 

which uses principles of Mendelian Randomisation embedded within a Bayesian 

hierarchical model. We show that the majority of causal interactions within 500Kb occur 

over short distances (<20Kb), typically a region of low sensitivity for 3C-based techniques. 

Many of the interactions we detect are between enhancers, which we assemble into 

hierarchies of interacting regulatory elements. We demonstrate that our model can be used to 

identify hierarchies of regulatory elements within a region and prioritise putative causal 

variants, validating a single locus using CRISPR/Cas9 editing.

The low frequency of long-range interactions we observed agrees with previous estimates 

from eQTL studies23,39,40. One question is, given that most regulatory interactions 

detected using 3C-based methods occur over distances of 100Kb and above (Fig. 3D), why 

have large numbers of genetic variants operating at these distances not also been detected? 

Although QTL studies typically test variants in a restricted cis window of 1Mb39–41, this 

does not completely explain the lack of signal: the number of eQTL associations detected 

decreases dramatically by approximately 20Kb distant from the gene TSS23,40. A possible 

explanation is that there may be an underlying relationship between interaction distance and 

cellular frequency, such that long-range interactions occur in a relatively small number of 

cells in the population39. This is consistent with the negative correlation between read 

coverage and distance in Chi-C data (Fig. S7A). It seems plausible that 3C-based methods 

could be more sensitive to rare, long-range regulatory interactions while variants residing in 

these elements have relatively weak effects40, requiring large sample sizes to detect when 

averaged across the entire cell population. An alternative hypothesis is that short-range 

interactions may not be driven by chromatin looping, but instead reflect transcriptional 

activity and the movement of polymerase across the sequence (Fig. S4B-C).

Our study also revealed the genomic architecture of causal interactions between regulatory 

elements. In particular, we detected frequent interactions between annotated enhancer 

elements, many of which we hypothesise are mediated by an intermediate eQTL that alters 

chromatin accessibility globally across the gene body. Nonetheless, the enrichment of these 

interactions in gene bodies was modest, and we also found many examples of interactions 

that were not colocalised with eQTLs, and were located far from annotated genes (an 

example is shown in Fig. S7B). In a small number of cases (18 DAGs) we also found strong 

evidence (PPC > 0.5 for each enhancer pairs) that these occurred between multiple 

enhancers upstream of a promoter (i.e., SE→SE→AP). It is possible that some of these 

represent enhancer “seeding” events, where individual enhancers drive progressive activation 

of additional nearby elements42.

One of the limitations of our method is that regulatory elements lacking a common genetic 

variant that perturbs their function will be missed. Additionally, interactions between 

genotype and regulatory elements further downstream appear to become harder to detect, 

Kumasaka et al. Page 8

Nat Genet. Author manuscript; available in PMC 2019 May 26.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



perhaps due to additional biological noise. One example of this is the systematically lower 

genetic effect sizes (14% decreasing) we found at downstream promoters (Fig. S7C-D).

Our approach allows for a natural prioritisation of variants in disease-associated loci. 

Although overlapping of those variants with open chromatin can reduce credible sets, this 

frequently leaves many loci with tens of variants to characterise by direct experimental 

follow up. Assignment of the direction of effect between different peaks allowed us to 

identify smaller sets of plausible candidate variants by identifying “master regulatory” 

regions. Although we have focused on ATAC-seq data, we believe our model can be readily 

extended to other types of chromatin-based assay, in particular ChIP-seq for histone 

modifications14,15,17. Some limitations of this approach might include a greater difficulty 

in assigning causal variants based on their location within a ChIP-seq peak, which will 

typically be in a nucleosome depleted region and therefore low read coverage14 (for an 

example, see Fig. S7C). However, we anticipate that, applied to existing data sets from 

primary cells, such as that generated by the BLUEPRINT initiative43, that our approach will 

be a valuable tool in dissecting the molecular architecture of specific GWAS loci.

Online methods

ATAC-seq in LCLs

We collected 100 lymphoblastoid cell line (LCL) samples of British ancestry (1000 

Genomes Project, GBR cohort) from Coriell. ATAC-seq library preparation was performed 

for each line (except for the 24 lines we previously performed16) as previously described16. 

We performed 75bp paired end sequencing in 4.4 billion sequence fragments on a HiSeq 

2500 (Illumina). Although data from the 24 lines has been previously sequenced16, we 

performed additional sequencing to increase the coverage. We called 277,128 chromatin 

accessibility peaks on autosomes from the aggregated data (Supplementary Note, Section 1), 

from which we map chromatin accessibility QTLs (caQTLs). We also performed an 

additional ATAC-seq experiment in GM12878 that was not used for QTL mapping, but was 

used to assess genotypic effects on the reference epigenome.

Sequencing data preprocessing

All sequence data sets were aligned to human genome assembly GRCh37. We performed 

adapter trimming for our ATAC-seq data using skewer44 (version 0.1.127; see URLs) before 

alignment. FASTQ files of GEUVADIS RNA-seq data41 (N=372) were downloaded from 

ArrayExpress (Accession E-GEUV-3) and ChIP-seq data for CTCF binding45 (N=50) were 

downloaded from the European Nucleotide Archive (Accession ERP002168). Our ATAC-

seq data and the CTCF ChIP-seq data were aligned using bwa 0.7.446. RNA-seq data were 

aligned using Bowtie247 (version 2.2.4; see URLs) and reads mapped to splice junctions 

using TopHat248 (version 2.0.13; see URLs), using ENSEMBL human gene assembly 69 as 

the reference transcriptome. Following alignment, we performed peak calling in the CTCF 

ChIP-seq and ATAC-seq data by pooling all samples. Fragment counts of ATAC-seq, CTCF 

ChIP-seq and RNA-seq for each feature (a called peak or an union of exons for each gene) 

were normalised into FPKMs using length referred to the peak length in kilobases. Batch 
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effects were adjusted by GC contents and principal components. See Section 2.1-2.5 of 

Supplementary Note for more detail.

SNP genotype data

We downloaded VCF files from the 1000 Genomes Phase III integrated variant set from the 

project website. For the ATAC-seq, RNA-seq and CTCF ChIP-seq samples that did not 

overlap with the 1000 Genomes Phase III samples, we extracted genotype data from the 

1000 Genomes Phase I data or 1000 Genomes high density SNP chip data (performed on the 

Illumina Omni platform). We then performed whole genome imputation for the extracted 

genotype data by using the Beagle software49 (version 4.0; see URLs). See Section 2.6 in 

Supplementary Note for details.

Genomic annotations

To compute ATAC-seq peak height, we pooled ATAC-seq data for the 100 samples. The 

peak height was defined as the highest value of the coverage depth within each peak region. 

Peak height was quantile normalised across all peaks. The relative coverage at each variant 

location (VL) was calculated by the absolute coverage depth divided by the peak height 

inside the peak. This value was used as the VL prior probability for both caQTL mapping 

and eQTL mapping. Peak distance was calculated based on the midpoint of a peak region.

We also used various external genomic annotations for comparison. The Hi-C contact map 

and Hi-C loops for GM12878 were obtained from Rao et al. (2004)10. TAD boundaries 

were defined as the anchor regions of a Hi-C loop. Capture Hi-C data for GM12878 was 

obtained from Cairns et al. (2016)13 and CHiCAGO13 (version 1.1.8; see URLs) was used 

to extract CHi-C interactions with CHiCAGO score > 1. The H3K27ac HiChIP data for 

GM12878 was obtained from Mumback et al. (2017)12. The JuiceBox output was processed 

by HiCCUPS50 implemented in the Juicer Tools (version 0.7.5; see URLs) with default 

parameter setting to obtain the HiChIP loops. The integrated genomic segmentation 

annotation28 combining Segway51 and ChromHMM52 results was downloaded from 

ENCODE Project27 website (URLs). Each ATAC peak was labelled by one of the 7 

different segmentation categories at the peak midpoint. See Section 2.7 in Supplementary 

Note for details.

Roadmap Epigenomics Project data analysis

We downloaded all DNaseI-seq data from 53 cell types from the project web page (URLs). 

We counted the number of reads that mapped to the 277,128 annotated peaks from our 

ATAC-seq data. This count matrix was normalized in the same way as our ATAC-seq data 

(Section 2.3-2.4, Supplementary Note). We computed Spearman’s rank correlation between 

all peak pairs within 500Kb distance of one another.

Pairwise hierarchical model

There are three key features of the model. First, support for the hypothesis of a causal 

relationship between two peaks is computed using two stage least squares22 (2SLS). 

Second, we use a hierarchical model23 in which prior probabilities depend on genomic 

annotations at multiple model levels. Third, the model is empirical, such that the prior 
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probabilities are learned as the penalised likelihood is maximised across all peak pairs 

simultaneously.

The pairwise hierarchical model is a product of finite mixture probabilities over all j-k peak 

pairs in 500Kb (1 ≤ j < k ≤ J; J = 277,128). The finite mixture model comprises the regional 

Bayes factor (RBF
jk
(h)) to observe chromatin accessibility yj and yk at peak j and k across 100 

samples under the different interaction hypotheses h (Fig. 1A). The pairwise likelihood is 

given by

L2(Φ) ∝ ∏
1 ≤ j < k ≤ J

Φ
(0) + ∑

h ∈ H1

Φ
(h)

RBF
jk
(h) ,

where Φ(0) denotes the mixture probability that j-k peak pair is no caQTLs, Φ(h) denotes the 

mixture probability for the alternative hypothesis h and H1 is the set of alternative 

hypotheses, so that Φ(0) + ∑h∈H1 Φ(h) = 1. RBF is obtained from the joint regression model 

p(yj, yk|h) which comprises two independent regression models that also depend on the 

hypothesis h. For the causality hypotheses (H4.1 for the causal interaction from peak j to k 

and H4.2 for peak k to j), we used 2SLS to estimate the causal effect between peaks with 

each genetic variant in the cis window as the instrumental variable (Fig. 1C).

We note that our model is not strictly Bayesian because we do not perform any Bayesian 

inference on the model parameters. Instead, to reduce the computational complexity, we 

employed a two-stage optimisation of the likelihood using the EM algorithm. In the first 

stage we estimated hyperparameters for the variant-level and peak-level prior probabilities. 

We used the standard hierarchical model23 to learn these prior probabilities by temporarily 

assuming peaks are independent. In the second stage, we estimated hyperparameters in the 

peak-pair-level prior regarding Φ(h). We used the Expectation-Maximisation algorithm to 

iteratively estimate hyperparameters while updating the following posterior probabilities

Z
jk
(h) =

Φ
(h)

RBF
jk
(h)

Φ
(0) + ∑

h ∈ H1
Φ

(h)
RBF

jk
(h)

in the E-step. Because all model distributions belong to exponential family, we can utilise 

the penalised iteratively reweighted least square (P-IRLS) method53 in the M-step, which 

does not require calculation of the gradient and Hessian of the log likelihood. All subsequent 

analyses were performed based on the posterior probabilities Z
jk
(h) without any threshold. 

Note that the posterior probability of causality (PPC) is denoted by PPCjk and PPCkj 

(corresponding to Z
jk
(4.1) and Z

jk
(4.2) respectively) in the main text. Mathematical rationale and 

implementation of the pairwise hierarchical model are fully described in Section 3.1-3.5 of 

Supplementary Note. A software package (“PHM”) that computes the BFs, RBFs and 

maximises the pairwise likelihood is available from GitHub (URLs).
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Mapping multi-way interactions

Multi-way interactions were also constructed from PPCjk and PPCkj by finding a DAG 

among more than 2 peaks. We first used only confident causal interactions with PPCjk>0.5, 

then found the most likely parent for each peak, and finally solve the cyclic graphs by 

discarding an interaction with the lowest PPCjk. See Section 3.6 of Supplementary Note for 

details.

Detection of lead caQTL variant

Within each cis-regulatory window (500Kb on either side of a peak), we calculated a 

posterior probability of each variant being the causal caQTL and obtained the maximum a 

posteriori variant as the lead variant. We used the pairwise likelihood to solve the problem 

that multiple caQTL variants are associated with chromatin accessibility due to strong 

linkage disequilibrium. The central assumption here is that variants predicted by our model 

to be upstream in the regulatory cascade are more likely to be causal. See Section 3.7 in 

Supplementary Note for details.

Effect size calculation

For j-k peak pairs, we identified single lead variants under the hypothesis of causality or 

pleiotropy and two causal variants for the linkage hypothesis based on the variant-level 

posterior probability (see Section 3.8, Supplementary Note for more detail). We computed 

effect sizes of the lead variant(s) against the two peaks (j and k) using simple linear 

regression. Under the linkage hypothesis, if the genotypes of the two causal variants were 

negatively correlated (LD index r<0), the effect size of peak k was multiplied by -1 to align 

the effect direction.

Probability of Master regulator

We defined the master regulatory peak as a peak with more than one interacting downstream 

peak and no interacting upstream peaks. We computed the product of the following two 

posterior probabilities: the probability that the peak regulates at least one other peak in the 

cis-window, and the probability the peak is not regulated by any other peak within the cis-

window, which we referred to as the probability of being master regulator (PMR). See 

Section 3.9 of Supplementary Note for details.

Hierarchical model for eQTL fine-mapping

The standard hierarchical model23 was applied to the gEUVADIS RNA-seq data (372 

European samples) with various combinations of the following five annotations: (1) inside or 

outside an ATAC peak (referred to as ATAC); (2) eQTL variant location, relative to an ATAC 

peak (referred to as VL); (3) promoter capture Hi-C contacts (CHi-C); (4) HiChIP loops 

from baited promoter regions (HiChIP); and (5) PMR value at each ATAC peak. The variant-

level prior was learned and the posterior probability of association (PPA) was calculated for 

each variant in 1Mb cis-window centred at TSS. For the eQTL fine-mapping of BLK/

FAM167A locus, we incorporated all the genomic annotations used in the caQTL mapping 

in conjunction with the colocalisation probability of caQTL and eQTL as the weight of the 

prior probability. See Section 3.10 of Supplementary Note for details.
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Colocalisation with expression QTLs

The pairwise hierarchical model can be utilised to colocalise caQTLs with other cellular 

QTLs, such as expression QTLs (eQTLs). The reduced model without causality hypothesis 

(H4.1 and H4.2) was applied to colocalise caQTL-eQTL as well as CTCF binding QTL-

caQTL. We assumed a non-informative prior probability for the three different levels of 

hierarchy and estimated the posterior probability of pleiotropy between caQTL and eQTL/

CTCF binding QTLs as the colocalisation signal. Joint colocalisation probability between 

eQTL and a peak pair is also calculated from the result. See Section 3.11 of Supplementary 

Note for details.

Colocalisation with GWAS summary data

We downloaded the following 10 GWAS summary statistics (see Section 2.9 of 

Supplementary Note for details): Rheumatoid arthritis (RA), schizophrenia (SCZ), systemic 

lupus erythematosus (SLE), Crohn’s disease (CD), ulcerative colitis (UC), inflammatory 

bowel diseases (IBD), type 2 diabetes (T2D), Alzheimer’s disease (AD), atopic dermatitis 

(ATD) and coronary artery disease (CAD). The asymptotic Bayes factors were calculated 

and colocalised with caQTLs using the same model as was used in colocalisation with 

eQTLs. Posterior probability of each caQTL peak colocalised with a GWAS trait was 

calculated and used for the subsequent enrichment analysis. See Section 3.12 in the 

Supplementary Note for details.

Allele-specific accessible chromatin

We used the lead caQTL variant for each peak identified by PHM as the putative causal 

variant. We confirmed allelic imbalance (AI) at feature SNPs inside the downstream peak in 

the confident set of 15,487 causal interactions. If there was a true causal interaction, allelic 

imbalance is observed for individuals who are heterozygous for the lead variant. To assess 

statistical significance of AI we used RASQUAL (URLs) with the “—as-only” option to 

map caQTLs using allele specific counts at feature SNPs.

Overlap of lead SNPs with TFBS

In the high confidence set of 15,487 mapped causal interactions, we detected the lead variant 

for each downstream peak using the HM and PHM (Supplementary Note Section 3.8) and 

selected 1,577 downstream peaks where lead SNP differed between the two models, 

excluding any peak where the lead variant was an INDEL or CNV). Then we generated the 

ATAC-seq cleavage (Transposase cut site) around the lead SNPs (30bp on either side).

To investigate motif disruption of the lead variants, we downloaded the 3,059 motifs from 

CISBP54 (version 1.02; see URLs). Within each chromatin accessibility peak, we generated 

all possible personal genome sequences using phased haplotypes of SNPs and INDELs for 

our 100 samples. We computed the position weight matrix (PWM) score for each motif and 

the posterior probability of transcription factor (TF) binding as follows:

p(TF binding | sequence) =
πPWM1

(1 − π)PWM0 + πPWM1
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where PWM1 denotes the PWM score for the motif given a part of sequence within the peak 

and PWM0 denotes the PWM score with background probability (0.25 for each nucleotide). 

We set the prior probability of TF binding as 0.001 for any TF, and defined a TF as bound if 

p(TF binding|sequence) was greater than 0.5.

Enrichment analysis with posterior probability of causal interaction

Any enrichment analysis was carried out based on PPC for all j-k peak pairs. We compute a 

2 × 2 table of a binary annotation Xjk (e.g., if j-k peak pair within TAD then Xjk = 1 

otherwise 0) and the existence of causality between j-k peak, such that

T = ∑
j, k

X
jk

Z
jk
(4) 1 − X

jk
Z

jk
(4)

X
jk

1 − Z
jk
(4) (1 − X

jk
)(1 − Z

jk
(4))

where Z
jk
(4) = PPC

jk
+ PPC

k j
 (PPC for peak j and k). We compute the odds ratio from the 

table T to perform hypothesis testing. See Section 3.13 of Supplementary Note for details.

Simulation strategy

We simulated 17,349,412 peak pairs under each of the 4 hypotheses: causality (j→k), 

causality (k→j), linkage and pleiotropy. To simulate realistic linkage disequilibrium, we 

used real genotype data of 100 samples. To simulate a caQTL at peak j, a causal variant was 

chosen at random, weighted by the estimated variant-level prior from the real data. The 

effect size and standard deviation of the error of the simulated causal variant were the same 

as the estimated effect size and standard deviation for that variant from the simple linear 

regression and 2SLS of the real data. Chromatin accessibility for each sample at peak j was 

then simulated as a draw from a Normal distribution, with mean set to the effect size times 

the genotype dose, and variance equal to the squared standard deviation. For the linkage 

hypothesis, we repeated this procedure for peak k. For the pleiotropy hypothesis, we 

generated chromatin accessibility at peak k with the same causal variant at peak j. For 

causality from peak j to k, we used the 2SLS estimator of effect size and standard deviation 

to generate chromatin accessibility at peak k.

We also assessed two other scenarios where our model assumptions are potentially violated. 

First, generated chromatin accessibility with two causal variants for the focal peak under 

causality or pleiotropy, or four causal variants (two in each peak) under linkage. In addition, 

we simulated hybrid hypotheses where combinations of linkage, pleiotropy and causality 

were considered. See Section 3.14 of Supplementary Note for more detail.

To compare PHM to MR Steiger, we fit both models (PHM and MR Steiger) to the 

simulated data under the 4 different hypotheses (causality (j→k), causality (k→j), linkage 

and pleiotropy), and tested their ability to distinguish the causality (j→k) peak pairs from 

each of the 3 other scenarios in turn. A positive call set was defined if the PPCjk > T1 for 

PHM (where T1 was a variable threshold), or for PMR and PSteiger both < T2 and Steiger Z 

statistics > 0 for MR Steiger (where T2 was also a variable threshold). Importantly, in these 
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tests, the MR Steiger model was given the correct causal variant, while PHM attempted to 

infer the putative causal variant from the data.

Comparison with massively parallel reporter assay (MPRA)

We downloaded the table of combined LCL analysis for all 39,478 variants with MPRA29. 

We extracted 842 variants that showed significant allelic imbalance according to the criteria 

applied in the paper (referred to as expression-modulating variant; emVar). We then selected 

the lead eQTL variant for each gene based on the eQTL PPA and asked how many 

overlapped the validated emVar. When there were ties in PPA for the lead eQTL variants, we 

randomly selected one variant.

Knock-out of BLK-FAM167A locus (rs558245864:C>CG) using CRISPR/Cas9

The lymphoblastoid cell line HG00146, which is homozygous for the reference 

rs558245864 allele, was nucleofected with an enhanced Cas9-2a-GFP plasmid and a guide 

RNA expression plasmid targeting the rs558245864 locus. Deletion clones were selected, 

expanded and then subjected to ATAC-seq and RNA-seq. Methods for engineering of the 

rs558245864 locus are described in full in the Section 4.1-4.6 of Supplementary Note.

Differential chromatin accessibility and expression analyses

We used DESeq55 (see URLs) to perform differential chromatin accessibility and 

differential expression analyses. We compared the two replicates of the parental line against 

the four replicates of the deletion lines (two replicates for D1 and D2 heterozygous lines, 

respectively). See Section 4.7 of Supplementary Note for more detail.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the pairwise hierarchical model and summary statistics.
(A) The five main hypotheses of interaction between peaks. (B) Genetic associations with 

chromatin accessibility and related genomic annotations as input data. The Bayes factor 

(BF) of genetic associations with peaks (solid lines) are computed from the simple linear 

regression. The BFs of association between peaks (dashed lines) are computed using two 

stage least square method in the Mendelian Randomisation (MR). (C) For the j-k peak pair, 

BFs obtained in Fig. 1B are calculated for all variants in a cis-window and averaged as the 

regional Bayes factor (RBF). The schematic shows the two types of BFs across all variants 

were averaged by the variant level prior probability that the peak j is upstream of k (genetic 

variant is causal to peak j) to map causal interaction from j to k. (D) The estimated relative 

caQTL enrichments for genomic annotations used to compute the variant level prior 

probability in Fig. 1C. (E) The estimated prior probability of a peak being a caQTL as a 

function of the peak height quantile among 277,128 peaks. The B-spline function was 

applied to capture non-linear relationship. (F) The estimated prior probability that a peak 

pair is pleiotropic or causal as a function of peak distance. Two different B-spline functions 

were applied. (G) The breakdown of mapped interactions according to Fig. 1A. The 

numbers are based on the sum of posterior probabilities.
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Figure 2. Model performance assessment by simulation and real data.
(A) Confusion matrix of mapped interactions under the 4 hypotheses. Percentages are 

calculated from peak pairs with posterior probability was greater than 0.5. The blue 

rectangle highlights the false positive rate (0.7%) for mislabelling linkage as causality. (B) 
Posterior probability of causality (PPC) versus r2 between two caQTL variants simulated 

under linkage. The blue line shows the average false positive rate (mislabelling linkage as 

causality) in 1% r2 bins (area under this curve is 0.7%, equivalent to the blue rectangle in 

Fig. 2A). (C) Sensitivity and specificity of causal interactions for PHM and MR Steiger in 

simulated data. The y-axis shows the number of true positive (TP; simulated causal (j→k) 

model) peak pairs against the number of false positive on the x-axis (FP; simulated under the 

causal (k→j), linkage or pleiotropy model) peak pairs. The horizontal dashed line illustrates 

PPCjk=0.5 for PHM. (D) Effect sizes of the lead variant at upstream and downstream peaks 

in confident causal peak pairs. (E) Effect sizes of two independent caQTLs at peaks in 

linkage (posterior probability greater than 0.5). Linkage peaks with lead variants with LD 

index r2>0.25 were used. (F) Distribution of Spearman’s rank correlation coefficient of 

DNaseI-seq read count across 53 cell types from the Roadmap Epigenomics Project 

stratified by the mapped interaction categories (Online Methods). Tow-sided t-test was 

performed with the distance matched control for linkage, pleiotropy and causality, 

respectively (n=98,963, 12,233 and 15,487 peak pairs). (G) QQ-plot of –log10 P-values for 

allele-specific accessibility of downstream peak for the high confidence set of 15,487 causal 

peak pairs (y-axis), and for 15,487 randomly chosen, distance-matched controls where the 

posterior probability of either null or linkage hypothesis was greater than 0.5 (x-axis). (H) 
Aggregated ATAC-seq cleavage across 1,577 regions around the lead SNPs detected by 

pairwise hierarchical model (PHM; grey) and simple hierarchical model (HM; blue line). (I) 
QQ-plot of Binomial test P-values for 2,570 motifs in CISBP (Online Methods). Blue points 

correspond to the HM and grey points correspond to the PHM. (J) The ratio of putative TF 

binding affinities between reference and alternative allele at each lead SNP versus the ratio 

of ATAC-seq allele-specific (AS) counts (n=14,642 SNPs). AS counts were generated by 

aggregating only heterozygous individuals at each lead variant. The red line shows the linear 

regression line.
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Figure 3. Comparison with 3C-based assays.
(A) Schematics of Hi-C, CHi-C and HiChIP annotations. (B) The numbers of causal peak 

pairs overlapping with the annotations in Fig. 3A. Topologically associating domains (TAD), 

loop anchors (LA), other-other (OO), other-bait (OB), inside bait (IB). (C) Enrichment Odds 

Ratio (OR) with 95% confidence interval of causal interactions with annotations (Online 

Methods). For Hi-C and HiChIP annotations, n=15,884,515 peak pairs (peak distance > 

35Kb) were used to compute the odds ratio and all peak pairs (n=17,349,412) were used for 

CHi-C annotations. (D) Distribution of interaction length. For our interactions, we computed 

the distance between all 17 million peak pairs considered, and weighted these by the 

posterior probability of causality (PPC). (E) An example of causal interactions found in the 

promoter flanking region of MAP1B gene. There is a caQTL peak (with the QTL SNP 

rs1217817:G>A) 10Kb upstream of MAP1B promoter affects multiple open chromatin 

peaks including the promoter peak.
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Figure 4. Comparison with genome segmentation.
(A) The numbers of causal peak pairs overlapping ENCODE genome segmentation. 

Numbers of interactions were computed weighting by PPCjk. The ATAC-seq peaks are 

classified by 7 different regulatory categories: active promoter (AP); poised promoter (PP); 

strong enhancer (SE); weak enhancer (WE); repressor (R); transcribed region (T); and 

insulator (I). Each bar indicates upstream peak category and the colour code indicates 

downstream peak category. (B) Enrichment of ENCODE segmentation category pairs for our 

causal interaction. Heatmap shows the odds ratios (see Online Methods for computation of 
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enrichment using PPCjk) for all combinations of segmentation categories at upstream and 

downstream peaks (among n=17,349,412 total peak pairs). The segmentation category pairs 

that were above FDR 10% or supported by less than 10 causal peak pairs are masked by 

grey. (C) The numbers of causal peak pairs that are jointly colocalised with one or more 

eQTLs overlapped with the ENCODE segmentation. (D) Enrichment of ENCODE 

segmentation category pairs for our causal interactions that are jointly colocalised with one 

or more eQTLs (among n=23,068 causal peak pairs) (see Online Methods for computation 

of enrichment using PPCjk). (E) The number of peak pairs whose upstream peak overlaps 

with one of the seven segmentation categories, stratified by the genotypes of GM12878 at 

lead QTL variant (Online Methods). Each genotype is labelled as a combination of 

decreasing “D” and increasing “I” alleles according to the sign of QTL signal at the lead 

variant. Colour code is same as in Fig. 4A. (F) An example of causal interaction from a 

repressed region to a weak enhancer. The normalised ATAC-seq coverage is stratified by 

three genotype groups at rs2046338:C>A. The yellow line shows ATAC-seq coverage of 

GM12878 whose genotype is AA (decreasing homozygote) at rs2046338.
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Figure 5. Fine-mapping eQTLs using mapped causal interactions as an annotation.
(A) Distribution of the number of variants in the 90% credible set, across all protein coding 

genes with more than one colocalised ATAC peaks (N genes=1,207) over nine different 

annotation combinations. Non-informative prior (FLAT); inside/outside an ATAC peak 

(ATAC); HiChIP anchor regions (HiChIP); CHi-C contact domains (CHi-C); variant location 

(VL); probability of master regulator (PMR). In the boxplots, the box represents the 

interquartile range (IQR), the black line is the median, the whiskers are 1.5 times the IQR 

above or below the first and third quartiles, with data points outside the whiskers shown by 
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open circles. (B) The number of expression-modulating variants (emVars) overlapping lead 

eQTL variants detected by the eQTL hierarchical model with various annotations. (C) An 

example of fine-mapped region with more than hundred of significant variants in almost 

perfect LD. The top panel shows negative Log10 Bayes factors of eQTL for GPATCH2L 

gene using gEUVADIS RNA-seq data. Each point is coloured by the degree of LD index (r2 

value) with the index variant (rs147768071:AGTTTT>A). The SNP (rs74067641:T>C) in 

the master regulatory peak shows the highest PPA with ATAC+PMR+VL annotation.
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Figure 6. Enrichment analysis and fine-mapping of GWAS associations and a CRISPR 
validation.
(A) Number of caQTLs colocalised with GWAS hits. The numbers are based on the sum of 

posterior probabilities of colocalisation between a caQTL peak and a GWAS trait. 

Rheumatoid arthritis (RA); schizophrenia (SCZ); systemic lupus erythematosus (SLE); 

Crohn’s disease (CD); ulcerative colitis (UC); inflammatory bowel diseases (IBD); type 2 

diabetes (T2D); Alzheimer’s disease (AD); atopic dermatitis (ATD); coronary artery disease 

(CAD). (B) Enrichment odds ratio (OR) with 95% confidence interval of causally interacting 

caQTL peaks (blue) and those that are colocalised with one or more eQTLs (red) relative to 
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isolated caQTLs colocalised with GWAS hits (among n=277,128 peaks). (C) A chromatin 

accessibility altering variant at the BLK/FAM167A locus. The top panel shows negative 

log10 Bayes factors of eQTL mapping for BLK gene using gEUVADIS RNA-seq data. Each 

point is coloured by the degree of LD index (r2 value) with the index variant 

(rs1382568:A>C,G). The middle panel shows the posterior probability of association (PPA) 

obtained from the full annotation model (Online Methods) in which the insertion variant 

rs558245864:C>CG shows the highest PPA. The bottom panel shows ATAC-seq coverage 

depth stratified by the insertion variant (rs558245864) with the causal interactions from the 

peak in which the insertion variant exists. (D) CRISPR engineered locus around the insertion 

variant. The insertion variant disrupts the CTCF binding site and attenuates the binding 

affinity (bar plot) calculated from the canonical CTCF binding motif (CISBP: M6183_1.02). 

Independent analysis of CTCF ChIP-seq binding QTL supports the result. CRISPR 

engineering was performed to generate two different deletions (D1 and D2) from the 

parental line (HG00142) whose genotype is reference homozygote at the insertion variant. 

The maximum CTCF binding affinity around the region after extracting the deleted 

sequences is lower than that of the alternative allele. (E) FPKMs at the focal peak for the 

two heterozygous deletion lines (D1: green and D2: orange) compared with the parental line 

with reference homozygote (R/R: navy). All lines were replicated twice as different cell 

cultures (n=6 replicates in total; see Online Methods for P-value calculation). (F) FPKMs of 

BLK gene expression for the same lines in Fig. 6E (n=6 replicates; see Online Methods for 

P-value calculation).
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