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Abstract

Despite its importance to plant function and human health, the genetics underpinning element levels in maize grain remain largely un-
known. Through a genome-wide association study in the maize Ames panel of nearly 2,000 inbred lines that was imputed with �7.7 million
SNP markers, we investigated the genetic basis of natural variation for the concentration of 11 elements in grain. Novel associations were
detected for the metal transporter genes rte2 (rotten ear2) and irt1 (iron-regulated transporter1) with boron and nickel, respectively.
We also further resolved loci that were previously found to be associated with one or more of five elements (copper, iron, manganese,
molybdenum, and/or zinc), with two metal chelator and five metal transporter candidate causal genes identified. The nas5 (nicotianamine
synthase5) gene involved in the synthesis of nicotianamine, a metal chelator, was found associated with both zinc and iron and suggests a
common genetic basis controlling the accumulation of these two metals in the grain. Furthermore, moderate predictive abilities were
obtained for the 11 elemental grain phenotypes with two whole-genome prediction models: Bayesian Ridge Regression (0.33–0.51) and
BayesB (0.33–0.53). Of the two models, BayesB, with its greater emphasis on large-effect loci, showed �4–10% higher predictive abilities
for nickel, molybdenum, and copper. Altogether, our findings contribute to an improved genotype-phenotype map for grain element
accumulation in maize.
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Introduction

Elements are important in every aspect of organismal develop-

ment. In higher plants, at least 20 elements are involved in key

biological functions (Mengel and Kirkby 2001). To maintain

elemental homeostasis, plants require the activities of metal

transporters, chelators, and signaling pathways for the regulation

of optimal uptake, transport, and storage of metal ions (Clemens

2001). The complex network responsible for elemental accumula-

tion in various plant organs and tissues such as physiologically

mature seed is coordinated at the genetic level, but it can be per-

turbed by alterations in the soil chemical environment, plant ar-

chitecture, physiology, and metabolism (Baxter 2009). However,

the genetic underpinnings of the biological processes that

regulate elemental uptake, transport, and storage have yet to be

fully elucidated in model plants and crop species.

Maize (Zea mays L.) is a globally important staple crop, serving

as a critical source of calories in Sub-Saharan Africa and Latin

America (FAOSTAT 2018). However, the declining soil fertility of

farming systems contributes in part to the unrealized potential

yield of maize in these geographies (Dixon et al. 2001). Not only

does the deficiency or excess of one or more key elements in the

soil limit maize plant productivity (ten Berge et al. 2019), but it

also has implications for human nutrition if this causes an

unfavorable elemental profile in the maize grain (Graham and

Welch 1996; Welch 2002; Welch and Graham 2004). This could

pose serious malnutrition-related health problems in a maize-

based diet because such a diet may not provide the recom-

mended dietary allowances of micronutrients such as iron (Fe)

and zinc (Zn) (Welch and Graham 2002). The development of

crop varieties with improved nutritional quality through plant

breeding, a strategy known as “biofortification,” has the potential

to sustainably address micronutrient deficiencies in developing

nations (Diepenbrock and Gore 2015; Bouis and Saltzman 2017).

Depending on the element and plant species, elements

accumulated in seed could originate from direct root uptake or

remobilization from senescing tissues through the involvement
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of transporters and chelators (Waters and Sankaran 2011).

Several metal transporter and chelator protein families, such

as METAL TOLERANCE PROTEIN (MTP), NATURAL RESISTANCE-

ASSOCIATED MACROPHAGE PROTEIN (NRAMP),

NICOTIANAMINE SYNTHASE (NAS), YELLOW STRIPE-LIKE (YSL),

and ZINC-REGULATED TRANSPORTER (ZRT)/IRON-REGULATED

TRANSPORTER (IRT)-LIKE PROTEIN (ZIP), have been bioinformati-

cally identified in the genomes of Arabidopsis [Arabidopsis thaliana

(L.) Heynh.], rice (Oryza sativa L.), maize and other plant species,

yet only a subset from each family have been functionally

characterized (Whitt et al. 2020). Many metal transporters and

chelators have broad substrate specificity (Axelsen and Palmgren

2001), making it difficult to infer their primary roles with

homology-based approaches. In maize, only a few metal trans-

porter genes have been functionally studied including rotten ear1

(rte1), rte2, and tassel-less1 (tls1) for boron (B) (Chatterjee et al.

2014, 2017; Durbak et al. 2014), yellow stripe1 (ys1) and ys3 for Fe

(Von Wiren et al. 1994; Chan-Rodriguez and Walker 2018),

and ysl2 (Zang et al. 2020) and zip5 (Li et al. 2019) for Fe and Zn. Of

these, transgenic maize overexpressing zip5 with an endosperm-

specific promoter was shown to accumulate higher levels of Fe

and Zn in grain (Li et al. 2019).

Genetic mapping approaches offer another opportunity to

identify the largely unknown genes responsible for elemental

concentration in maize grain. There have been a number of link-

age analysis studies that have used biparental populations to

identify quantitative trait loci (QTL) associated with an elemental

concentration in maize grain, especially for Fe and Zn (Lung’aho

et al. 2011; �Simi�c et al. 2012; Qin et al. 2012; Baxter et al. 2013; Jin

et al. 2013; Gu et al. 2015; Asaro et al. 2016; H. Zhang et al. 2017;

Ziegler et al. 2017; Fikas et al. 2019). However, the biparental popu-

lations used in these studies did not provide gene-level mapping

resolution due to the limited number of recent recombination

events (Zhu et al. 2008; Myles et al. 2009). Thus, the causal genes

presumably residing in the large QTL intervals with low resolu-

tion could not be conclusively identified.

Genome-wide association studies (GWAS) that exploit the ex-

tensive phenotypic variation and ancient recombination of many

individuals comprising a diversity population (association panel)

offer higher mapping resolution to dissect complex traits than bi-

parental mapping populations (Myles et al. 2009; Lipka et al. 2015).

A total of 46 marker-trait associations for the concentration of Zn

and Fe in grain were identified in a tropical maize association

panel (Hindu et al. 2018). Some of these associations were inde-

pendently supported by separate QTL analyses in biparental pop-

ulations. However, the association signals were not definitively

resolved to causal genes. Through joint-linkage (JL) analysis and

GWAS in the US maize nested association (NAM) panel, Ziegler

et al. (2017) identified six high confidence candidate genes under-

lying association signals for four elements (manganese, Mn; mo-

lybdenum, Mo; phosphorus, P; and rubidium, Rb), but not all

signals for these and other elements could be unambiguously

mapped to single genes. Overall, the promise of GWAS for identi-

fying the causal genes responsible for elemental accumulation in

maize grain has yet to be fully realized, but efforts could be im-

proved with the use of larger, more diverse association panels

which have been densely genotyped.

When GWAS is employed to elucidate the molecular genetic

basis of phenotypes, the significantly associated markers tend to

be those in strong linkage-disequilibrium (LD) with causal loci

of large effect (Myles et al. 2009). Therefore, if a phenotype is

genetically controlled by mostly small-effect loci, the heritable

fraction of a phenotype may not be completely explained by

GWAS-detected loci alone. If this occurs, genomic prediction

models that employ all available genome-wide markers to

account for a range of small to large marker effects across the

entire genome (i.e., whole-genome prediction, WGP) could be

used to improve trait prediction accuracy (Meuwissen et al. 2001;

Gianola et al. 2009; de Los Campos et al. 2013). Furthermore,

trained WGP models are used in genomic selection to increase ge-

netic gain per unit of time when breeding for phenotypes having

polygenic inheritance, as marker-assisted selection is better

suited for Mendelian and oligogenic traits (Lorenz et al. 2011;

Desta and Ortiz 2014; Owens et al. 2014). To our knowledge, WGP

models have only been evaluated on elemental grain phenotypes

of wheat (Triticum aestivum L.) (Velu et al. 2016; Manickavelu et al.

2017; Alomari et al. 2018) and only Zn for maize (Guo et al. 2020;

Mageto et al. 2020).

In our study, a maize inbred association panel consisting of

1,813 individuals imputed with �7.7 million SNP markers was

used for the genetic dissection and prediction of natural variation

for elemental concentration in grain. The objectives of our study

were to (i) assess the extent of phenotypic variation and heritabil-

ity of 11 elemental grain phenotypes, (ii) conduct a GWAS to iden-

tify candidate causal genes controlling variation for 11 elemental

phenotypes in maize grain, (iii) compare detected GWAS signals

with genetic mapping results from the U.S. maize NAM panel,

and (iv) evaluate the predictive abilities of two WGP models hav-

ing different assumptions of the underlying genetic architecture

for the elemental grain phenotypes.

Materials andmethods
Plant materials and experimental design
We evaluated more than 2,400 maize inbred lines from the North

Central Regional Plant Introduction Station association panel

(hereafter, Ames panel) (Romay et al. 2013) at Purdue University’s

Agronomy Center for Research and Education in West Lafayette,

IN, on Raub silt loam (fine-silty, mixed, superactive, and mesic

Aquic Argiudolls) and Chalmers silty clay loam (fine-silty, mixed,

superactive, and mesic Typic Endoaquolls) soils in 2 consecutive

years (2012–2013). A single replicate of the entire experiment was

grown in each of the 2 years following a design that has been

previously described in Owens et al. (2019). Briefly, the maize in-

bred lines were partitioned into six sets according to their flower-

ing time, with each set arranged as a 20� 24 incomplete block

design. Within a set, each incomplete block was augmented with

the random positioning of a B73 plot (experiment-wide check)

and two plots of a set-specific check. Experimental units were

one-row plots that had a length of 3.81m, with �15 plants per

plot. The physiologically mature grain from the hand-harvested,

dried, and shelled self-pollinated ears (at most six) of each har-

vestable plot were bulked to generate a representative, composite

sample for element analysis.

Phenotypic data analysis
We ground 4,406 grain samples weighing 10g each from 2,177 in-

bred lines and a separate set of 11 repeated check lines with a

Retsch ZM200 mill (Retsch, Haan, Germany). For inductively

coupled plasma mass spectrometry (ICP-MS) analysis, �0.3 g of

each ground sample, which had been oven dried at 80�C for 4h to

remove remaining moisture, was acid-digested in a closed tube

as described in Wheal et al. (2011). Elemental concentrations of

samples were measured using ICP-MS (7500x; Agilent, Santa

Clara, CA) according to the method of Palmer et al. (2014). The 18

quantified elements were aluminum (Al; for only monitoring
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contamination with soil), arsenic (As), boron (B), calcium (Ca),

cadmium (Cd), cobalt (Co), copper (Cu), Fe, potassium (K), magne-

sium (Mg), Mn, Mo, sodium (Na), nickel (Ni), P, lead (Pb), selenium

(Se), and Zn in lg g�1 on a dry weight basis. In each of 10 digestion

batches, a blank and a certified reference material (CRM; NIST

8433 corn bran) were added for quality assurance. In addition, 6

to 7 experimental samples were replicated twice within each

batch, allowing the assessment of technical (measurement) error.

Technical replicate sample pairs with a relative standard devia-

tion >10% were removed, which resulted in the removal of three

inbred lines. Samples (0.8%) with Al present at >5 lg g�1 were

considered to have unacceptable levels of purported soil contam-

ination (Yasmin et al. 2014), thus resulting in the removal of an

additional eight inbred lines from the dataset.

To improve the quality of the resultant dataset of 4,351 sam-

ples from the remaining 2,166 inbred lines and separate set of 11

repeated check lines, we assessed phenotypes for missing values

due to the limit of detection (LOD) for ICP-MS. The levels of Ca

and Ni were below the LOD for 1.98% and 18.30% of samples, re-

spectively. Separately for each of these two elements, a lg g�1

value was approximated for the missing value of each of these

samples by imputing a uniform random variable ranging from 0

to the minimum ICP-MS detection value for the given element

within each year (Lubin et al. 2004; Lipka et al. 2013). Given the

potential for biased results (Lubin et al. 2004), we excluded six

elements (As, Cd, Co, Na, Pb, and Se) that had more than 70% of

samples with a concentration below the LOD for ICP-MS.

We screened the generated dataset of 11 elemental pheno-

types without missing values from the 2,166 inbred lines and sep-

arate set of 11 repeated check lines for significant outliers

according to the procedure of Owens et al. (2019). Briefly, the full

mixed linear model (Equation 1) of Owens et al. (2019) was fitted

for each elemental phenotype in ASReml-R version 3.0 (Gilmour

et al. 2009). The model terms included check as a fixed effect and

genotype (noncheck line), year, genotype-by-year (G�Y) interac-

tion, set within year, plot grid row within year, incomplete block

within set within year, and ICP-MS batch as random effects.

Studentized deleted residuals (Neter et al. 1996) produced from

these mixed linear models were examined to remove significant

outlier observations for each phenotype after a Bonferroni correc-

tion for a¼ 0.05. The variance component estimates generated by

refitting the full model (Figure 1) for each outlier screened pheno-

type were used to calculate heritability on a line-mean basis

(Holland et al. 2003; Hung et al. 2012), with the delta method

(Lynch and Walsh, 1998; Holland et al. 2003) used to calculate

their standard errors.

To generate the best linear unbiased predictor (BLUP) values,

a best-fit model was selected for each outlier-screened pheno-

type through iteratively fitting the above full mixed linear model

in ASReml-R version 3.0, and retention of only random effect

terms found to be significant (a¼ 0.05) in a likelihood ratio test

(Littell et al. 2006). The final best-fitted model was used to obtain

a BLUP for each elemental phenotype for each inbred line

(Supplementary Table S1). Given that elements are not always

distributed evenly among seed tissues (e.g., pericarp, endo-

sperm, and embryo) and extreme grain phenotypes could have

substantially altered elemental composition (Lombi et al. 2009,

2011; Pongrac et al. 2013; Baxter et al. 2014), 247 inbred lines clas-

sified according to Romay et al. (2013) and Germplasm

Resources Information Network (GRIN; https://www.ars-grin.

gov/) as sweet corn, popcorn, or with an endosperm mutation

were conservatively removed from the dataset. All of the

remaining 1,919 inbred lines had BLUP values for 10 or more of

the 11 elemental phenotypes.

Genotype data processing and imputation
We used target and reference SNP genotype sets in B73

RefGen_v4 (B73 v4) coordinates to increase the marker density of

the Ames panel with an approach similar to Ramstein et al.

(2020). In brief, the raw genotypes of genotyping-by-sequencing

(GBS) SNPs (ZeaGBSv27_publicSamples_raw_AGPv4-181023.h5,

available on CyVerse at http://datacommons.cyverse.org/browse/

iplant/home/shared/panzea/genotypes/GBS/v27) scored at

943,455 loci were obtained for the Ames panel from Romay et al.

(2013), providing a total of 2,172 GBS samples with a call rate

�20% from 1,839 of the 1,919 inbred lines with phenotypic data

for constructing the target set. We initially used a stringent fil-

tered dataset of 35,082 SNPs [call rate �50%, % heterozygosity

�10%, index of panmixia FIT �0.8, and linkage disequilibrium

(LD) r2 � 0.2] derived from the Romay et al. (2013) dataset to calcu-

late pairwise identity by state (IBS) between multiple samples of

the same “accession number” for each of 260 lines in PLINK ver-

sion 1.9 (Purcell et al. 2007). This analysis resulted in the detection

and removal of all samples of 23 inbred lines that had a mean IBS

value < 0.95 for all within-line sample comparisons, producing a

concordance-enhanced dataset of 2,098 GBS samples from 1,816

inbred lines that segregated for biallelic SNPs at 477,155 of the

943,455 SNP loci. To merge two or more GBS samples from the

same line, SNP genotype calls with �50% occurrence were

selected as the consensus genotype, whereas calls with <50%

occurrence were set to missing. After consensus-calling, 1,813

lines with a call rate �0.2, % heterozygosity �10%, and inbreeding

coefficient (F) �0.8 were retained, which comprised the final set

of lines used for downstream genetic analyses. Finally,
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Figure 1 Sources of variation for 11 elemental grain phenotypes in the
Ames panel. The phenotypic variance was statistically partitioned into
the following components: genotype (G), genotype-by-year interaction
(G�Y), year (Y), set within year [S(Y)], block within set within year
[BL(S�Y)], inductively coupled plasma mass spectrometry (ICP-MS)
batch (BA), row within year [R(Y)], and residual error variance (REV).
Variance component estimates were calculated for all random effects
from the full model Equation 1 of Owens et al. (2019). The table below
indicates which random effects were significant (*) according to a
likelihood ratio test (a¼0.05).
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heterozygous genotype calls were set to missing given their po-

tential to be the result of paralogous alignments.

To construct the reference SNP genotype set, we used the

maize HapMap 3.2.1 unimputed datasets (hmp321_agpv4_

chrx.vcf.gz, where x is 1 to 10, available on CyVerse at https://

datacommons.cyverse.org/browse/iplant/home/shared/panzea/

hapmap3/hmp321/unimputed/uplifted_APGv4/) consisting of

�83 million variants identified from more than 1,200 lines

(Bukowski et al. 2018) that included variants called from the

higher coverage sequencing (average of �7x) of the maize 282

(Goodman-Buckler) panel of Flint-Garcia et al. (2005). This data-

set was processed in the following manner: selection of

14,613,169 SNPs [biallelic, call rate � 50%, minor allele fre-

quency (MAF) �1%, local LD flag present, and NI5 flag absent],

heterozygous genotype calls set to missing, and imputation of

all missing SNP genotype data. With the resultant dataset

serving as the reference panel, SNP genotypes at the 14,613,169

loci were imputed based on GBS SNPs (target set) in the final

set of 1,813 lines from the Ames panel with BLUP values

(Supplementary Table S1). All imputation was conducted in

BEAGLE v5.0 (Browning et al. 2018) with 10 iterations for initial

burn-in, 15 sampling interactions, an effective population size

of 50,000 (Ross-Ibarra et al. 2009), and the U.S. maize NAM ge-

netic linkage map (McMullen et al. 2009) (https://www.mai

zegdb.org/data_center/map) to provide further information on

the recombination landscape. The quality of the imputed geno-

types was further enhanced by retaining only biallelic SNPs with

MAF �1% and predicted dosage r2 (DR2) � 0.80, resulting in

12,211,420 SNPs. In PLINK version 1.9 (Purcell et al. 2007), this

SNP dataset was LD pruned with a sliding window of 100 SNPs

and step size of 25 SNPs to construct datasets for the 1,813 lines

that included only those SNPs with pairwise r2 < 0.99 (7,719,799

SNPs for marker-trait association tests) or r2 < 0.10 (361,302

SNPs for population structure and relatedness estimation).

Genome-wide association study
We conducted marker-trait associations at the genome-wide

level as previously described in Owens et al. (2019). Briefly, to re-

duce heteroscedasticity and nonnormality of the residuals, the

Box-Cox power transformation procedure (Box and Cox 1964) was

invoked for each phenotype with an intercept-only model

through the “boxcox” function in MASS package version 7.3-50 in

R version 3.5.1 (R Core Team 2018) that chose the optimal conve-

nient lambda (Supplementary Table S2) for the transformation

of BLUP values (Supplementary Table S3). With a mixed linear

model that used the population parameters previously deter-

mined approximation (Zhang et al. 2010), each of the 7,719,799

SNP markers was tested for an association with transformed

BLUP values of each phenotype from the 1,813 lines in the R pack-

age GAPIT version 2018.08.18 (Lipka et al. 2012). The fitted mixed

linear models included principal components (PCs) and a geno-

mic relationship matrix (kinship) to control for population struc-

ture and relatedness. In GAPIT, the 1,813 line � 361,302 SNP

genotype matrix was used to calculate the kinship matrix with

VanRaden’s method 1 (VanRaden 2008) and PCs with the prcomp

function from the R base package. The Bayesian information cri-

terion (Schwarz 1978) was used to determine the optimal number

of PCs for model inclusion. The amount of phenotypic variation

explained by a SNP was approximated as the difference between

the likelihood-ratio-based R2 statistic (R2
LR) (Sun et al. 2010) of a

mixed linear model with or without a given SNP included. The

Benjamini–Hochberg procedure (Benjamini and Hochberg 1995)

was used to control the false discovery rate (FDR) at the 5% level

for each phenotype.

To better clarify complex association signals, the multi-locus

mixed-model (MLMM) approach (Segura et al. 2012) that employs

forward–backward stepwise regression to sequentially add signif-

icant markers as fixed effects (covariates) was used to control for

major-effect loci in genome-wide scans for marker-trait associa-

tions. The multiple-Bonferroni criterion (mBonf) was used to

choose the optimal model. The statistical control of major-effect

loci was further evaluated by reconducting GWAS with the

MLMM-selected SNPs included as covariates in the mixed linear

models fitted in GAPIT.

Population structure analysis
We classified the inbred lines of the Ames panel to better under-

stand the allele frequency patterns of associated SNPs across

subpopulations. The 1,813 line � 361,302 SNP genotype matrix,

which had been also used for a principal component analysis

(PCA; see Genome-wide association study section of Materials

and Methods), served as the input dataset for the estimation of

population structure with fastSTRUCTURE (Raj et al. 2014). The

number of ancestral populations (K) were varied from 1 to 10

with the simple prior when conducting the fastSTRUCTURE

analysis. We selected K¼ 3 as the number of subpopulations

based on the collective evaluation of the fastSTRUCTURE and

PCA results in combination with earlier findings on patterns of

population structure in the Ames panel (Romay et al. 2013). The

1,813 lines were assigned to one of three subpopulations (SP1,

SP2, or SP3) if they had an assignment value of Q� 0.7. If lines

had assignment values of Q< 0.7 for all three subpopulations,

they were considered to be admixed (Supplementary Table S4).

The SP1, SP2, and SP3 subpopulations predominantly consisted

of lines classified as nonstiff stalk (NSS), tropical, and stiff stalk

(SS), respectively.

Candidate gene identification
To identify candidate genes, we first constructed a set of distinct

loci significantly associated with the elemental phenotypes. A lo-

cus was defined as an association signal composed of at least two

SNPs significant at 5% FDR within 100 kb from one another, with

the most significant SNP designated as the peak marker at a lo-

cus. Estimates of pairwise LD (r2) between a peak SNP and all

SNPs within 6 5Mb were calculated in TASSEL v5.2.49 (Bradbury

et al. 2007). If two or more peak SNPs occurred within 6 5Mb of

each other, a locus was declared distinct if its peak SNP had an r2

value < 0.2 with all other designated peak SNPs. The genomic

search space to identify candidate genes was limited to within

6100kb of each peak SNP, given the rapid LD decay in this maize

association panel (Romay et al. 2013). In addition, the candidate

gene search process was partly informed by a curated list of

genes involved in the accumulation of elements in plants (Whitt

et al. 2020). The top three unique best hits of the nine most plausi-

ble candidate genes in Arabidopsis (Columbia-0 ecotype) and rice

(O. sativa L. ssp. Japonica cv. “Nipponbare”) with E-values <1 were

identified by BLASTP with default parameters at TAIR (https://

www.arabidopsis.org) and RAP-DB (https://rapdb.dna.affrc.go.jp)

databases, respectively (Supplementary Table S5).

Integration of genetic mapping results
The genetic mapping results from joint linkage (JL) analysis and

GWAS of grain elemental phenotypes in the U.S. nested associa-

tion mapping (NAM) panel (Ziegler et al. 2017) were joined

with those generated from our GWAS in the Ames panel
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(Supplementary Tables S6 and S7). Given that the four field sites

(New York, Florida, North Carolina, and Puerto Rico) included in

the study of Ziegler et al. (2017) had climates and soil types

different from those of the Indiana field site, we focused the

comparative on NAM genetic mapping results based on BLUP

phenotypes generated from a combined analysis of all four loca-

tions (All Locs). To accomplish this, first the markers used for JL

analysis (SNPs) and GWAS (SNPs and small indels) in the NAM

panel were uplifted from B73 v2 to B73 v4. To uplift markers,

50 nt flanking sequences (101nt total) were clipped from each

side of the marker position in the B73 v2 assembly, followed by

alignment of the flanking sequences to the B73 v4 assembly

through the use of Vmatch v2.3.0 (Kurtz 2010) with the follow-

ing options: -d -p -complete -h1. Alignments to B73 v4 were fil-

tered to retain the highest scoring and unique alignment for

each individual marker. Markers not having a high confidence,

unique alignment were discarded from the uplifted results. If

markers defining the upper or lower bounds of a QTL support

interval could not be uplifted to B73 v4, then the next closest

outer SNP marker that could be uplifted was used so as not to

compromise the calculated 95% support interval.

Whole-genome prediction
We evaluated two WGP models, Bayesian ridge regression (BRR)

and BayesB (Habier et al. 2011; Pérez and de los Campos 2014).

The BGLR package version 1.0.8 (Pérez and de los Campos 2014)

was used to implement the two WGP models for the trans-

formed BLUP values of each phenotype from the 1,813 lines

with a Markov chain Monte Carlo process as follows: 12,000 iter-

ations with a burn-in of 4,000 and a thinning of 5. As a compro-

mise between model run time and performance, the LD-pruned

(r2 < 0.10) dataset of 361,302 genome-wide SNPs was used for

both computationally intensive WGP models with an expected

minimal loss of information. A stratified fivefold cross-

validation scheme that accounted for population structure was

conducted 10 times for each of the 11 phenotypes, with predic-

tive ability calculated as the mean Pearson’s correlation of

transformed BLUP values with genomic estimated breeding val-

ues across folds. Both models used the same fold assignments,

and each fold had the same subpopulation (SP) proportion

(SP1, SP2, SP3, and admixed) as calculated for the entire panel

(Supplementary Table S4).

Results
Phenotypic variation
On average, K, P, and Mg were the most abundant (>1,000 lg g�1)

elements in grain from the Ames panel, followed by Ca at an al-

most two orders of magnitude lower average concentration

(Table 1). For the other elements, the average concentrations of

Zn and Fe were closest to Ca, whereas Mn, Cu, B, Mo, and Ni had

average concentrations <7 lg g�1. The calculated correlations

between the 11 elements ranged from essentially nonexistent

(r< 0.01) between Mo and Ni to very strong (r¼ 0.70) between P

and Mg (Supplementary Figure S1). Interestingly, we detected a

strong correlation (r¼ 0.55) between Fe and Zn, which suggests

that these two elements could have a partially shared genetic ar-

chitecture. All 11 elements showed significant genotype-by-year

interaction, but which accounted for only a small percentage of

the total phenotypic variance (Figure 1). The 11 phenotypes had

an average heritability of 0.70, with a range of 0.33 for B to 0.87

for Cu (Table 1). Even though these phenotypes were influenced

by the environment, our results indicate that the exhibited

phenotypic variation was mostly attributable to genetic variation

among inbred lines.

Genome-wide association study
A GWAS was conducted for the 11 elemental phenotypes with

1,813 lines of the Ames panel imputed with �7.7 million SNPs.

Collectively, 1,917 significant marker-trait associations were

detected for B, Cu, Mn, Mo, Ni, and Zn, but none were found for

Ca, Fe, Mg, K, and P at a genome-wide FDR of 5% (Figure 2 and

Supplementary Figure S2). Examination of local LD patterns re-

solved the 1,917 marker-trait associations into a robust set of 33

loci (Supplementary Table S8). The search space for candidate

genes was defined as 6100kb of the most significant SNP (i.e.,

peak SNP) at each of the 33 loci, a window size considerate of

high marker density, wide variance in rapid rate of LD decay

(mean r2 of 0.2 within �1–10 kb) in the panel (Romay et al. 2013),

and distant cis-regulatory variants (Salvi et al. 2007; Studer et al.

2011; Wallace et al. 2014; Rodgers-Melnick et al. 2016; Huang et al.

2018; Ricci et al. 2019).

The two loci significantly associated with B comprised a mildly

complex association signal spanning from 127.4 to 128.7Mb on

chromosome 3 (Figures 2 and 3; Supplementary Table S8). The

peak SNP of each locus (locus 1: 3-127841465, P-value 2.68E-08;

locus 2: 3-128693026, P-value 6.47E-08) was separated by a physi-

cal distance of �851kb, with virtually no LD (r2 ¼ 0.03) between

them. The peak SNP of the second locus, 3-128693026, was

Table 1 Means, ranges, and standard deviations (Std. Dev.) of untransformed BLUP values (in lg g�1) for 11 elemental grain phenotypes
evaluated in the Ames panel and estimated heritability on a line-mean basis and their standard errors (Std. Err.) across 2 years

BLUPs Heritabilities

Phenotype Number of lines Mean Range Std. Dev. Estimate Std. Err.

B 1812 2.19 1.59–3.09 0.21 0.33 0.03
Ca 1813 39.72 8.60–121.08 12.7 0.77 0.01
Cu 1812 2.32 0.91–5.75 0.68 0.87 0.01
Fe 1810 23.59 14.62–36.33 3.29 0.75 0.01
K 1813 4435.72 2944.20–6671.02 431.62 0.76 0.01
Mg 1813 1334.16 955.20–1814.08 115.97 0.61 0.02
Mn 1812 6.12 2.38–11.69 1.44 0.78 0.01
Mo 1812 0.49 0.29–0.85 0.07 0.65 0.02
Ni 1809 0.23 �0.04–1.12 0.14 0.77 0.01
P 1813 3298.76 2453.00–4341.12 277.24 0.61 0.02
Zn 1813 30.68 12.59–52.32 4.36 0.79 0.01
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located �59kb from the open reading frame (ORF) of the rotten

ear2 (rte2) gene (Zm00001d041590) encoding a B efflux transporter

(Chatterjee et al. 2017).

The peak SNPs for the strongest two of five association signals

for Cu on chromosome 8 (Figure 2) were separated by a physical

distance of �1.1Mb and in weak LD (r2 ¼ 0.15) with each other. Of

the two, the more significant peak SNP (8-137939692; P-value

4.69E-24) was located within a gene (Zm00001d011063)

(Supplementary Figure S3) coding for a protein 43%–60% identical

at the amino acid sequence level to three type 2 metallothioneins

(MTs) in rice (Supplementary Table S5) (Zhou et al. 2006; Kumar

et al. 2012). Members of the plant MT family are low-molecular

weight, cysteine-rich metal-binding proteins and of which some

have been shown to bind Cu and other metal ions (Guo et al. 2008;

Benatti et al. 2014).

The least significant of the two peak SNPs (8-136857539;

P-value 9.10E-15) resided within the calcium pump1 (cap1)

gene (Zm00001d011013) (Supplementary Figure S4) encoding a

calmodulin-regulated P-type Ca2þ-ATPase that had been shown

to have slightly enhanced mRNA expression in maize roots under

anoxic conditions (Subbaiah and Sachs 2000). Although plausible,

to our knowledge it had never been reported to transport Cu. The

peak SNPs for the other three loci (3–5) on chromosome 8, as well

as the two loci (8–9) on chromosomes 3 and 7 were within

6100kb of candidate genes (Supplementary Table S9) less likely

to be involved in Cu chelation or transport.

Of the two loci associated with Mn (Figure 2), the strongest

signal was located 162.9 to 163.2Mb on chromosome 1

(Supplementary Figure S5). The peak SNP (1-162962818, P-value

3.61E-12) of this locus resided about 2.2 kb from a gene

(Zm00001d030846) encoding a protein with 74% and 72% se-

quence identity to NRAMP3 and NRAMP4 of Arabidopsis

(Supplementary Table S5) that in addition to Fe, export Mn from

vacuoles to chloroplasts in leaf mesophyll cells (Lanquar et al.

2005, 2010). An additional four SNPs within this gene were signifi-

cantly associated (P-values 7.48E-11 to 3.18E-10) with Mn and in

very strong LD (r2 > 0.90) with the peak SNP.

The weaker effect locus at �184.6Mb on chromosome 3

(Supplementary Figure S6) for Mn was defined by two significant

SNPs. Both SNPs were in very strong LD (r2 ¼ 0.79) with one an-

other. The peak (3-184559931; P-value 2.11E-07) and second SNPs

(3-184590243; P-value 5.46E-07) were approximately 29 and

0.78 kb, respectively, from a gene (Zm00001d042939) that codes

for a protein with 80% sequence identity to METAL TOLERANCE

PROTEIN 11 (MTP11) of Arabidopsis (Supplementary Table S5)

that transports Mn2þ (Delhaize et al. 2007).

Figure 2 Manhattan plot of results from a genome-wide association study of the six elemental grain phenotypes with significant associations at the 5%
FDR level in the Ames panel. Each point represents a SNP with its �log10 P-value (y-axis) from a mixed linear model analysis plotted as a function of
physical position (B73 RefGen_v4) across the 10 chromosomes of maize (x-axis). The red horizontal dashed line indicates the �log10 P-value of the least
statistically significant SNP at 5% FDR. The most probable candidate genes within6 100 kb of the most significant SNP (i.e., peak SNP) of each
numbered locus are labeled above their corresponding association signals.
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The strongest signal for Mo spanned from 246.5 to 250.3Mb on

chromosome 1 (Supplementary Figure S7), with the peak SNP

(1-248672716; P-value 5.58E-24) �71kb from the molybdate

transporter1 (mo1) gene (Zm00001d033053) that codes for a protein

having 69% sequence identity to the mitochondrial-localized

MOLYBDATE TRANSPORTER 1 (MOT1) from Arabidopsis

(Supplementary Table S5) that specifically transports Mo

(Tomatsu et al. 2007; Baxter et al. 2008). Furthermore, the peak

SNP was in very strong LD (r2 ¼ 0.95) with a highly significant SNP

(P-value 1.03E-21) located within the gene. The other four loci

(13–16) collectively consisted of 10 significant SNPs across three

chromosomes but were within 6 100kb of less probable candi-

date genes (Supplementary Table S9).

Of the 15 loci associated with Ni, the strongest signal mapped

from 261.8 to 263.3Mb on chromosome 1 (Figure 2). The peak SNP

(1-262893725, P-value 1.98E-26) at this locus (Figure 4) was lo-

cated �82kb from the iron-regulated transporter1 (irt1) gene

(Zm00001d033446) (Mondal et al. 2014), which encodes a protein

sharing amino acid sequence similarity (55–57% identical) with

members of the ZIP transporter family in Arabidopsis that trans-

port a variety of divalent metal ions including Ni2þ (Vert et al.

2009; Nishida et al. 2011; Li et al. 2019). In addition, 15 significant

SNPs within irt1 were associated with Ni and, on average, were in

strong LD (mean r2 of 0.52) with the peak SNP. The peak SNPs for

the other 14 Ni-associated loci (18–31), however, were within 6

100kb of candidate genes (Supplementary Table S9) with more

speculative involvement in Ni accumulation.

Two significant SNPs comprised the locus associated with Zn

at �179.9Mb on chromosome 7 (Supplementary Table S8). Also,

these two SNPs were in moderately strong LD (r2 ¼ 0.69) with

each other. Of these two SNPs, the peak SNP (7-179962589;

P-value 8.67E-09) was nearest (�1.9 kb) to the nicotianamine

synthase5 (nas5) gene (Zm00001d022557) that codes for a class II

NAS purportedly involved in synthesizing the metal ion chelator

nicotianamine (Zhou et al. 2013). Notably, a weaker association

signal significant at 15% FDR was identified for Fe with a peak

SNP (7-180077496; P-value 1.06E-07) at a distance of �112kb from

nas5 (Supplementary Figure S8). The minor allele of each peak

SNP, which was associated with a higher mean concentration of

either Zn or Fe, occurred at very low frequencies in the tropical

(�5%) and Stiff Stalk (�1%) subpopulations (Supplementary

Table S10).

On chromosome 5, the association signal for Zn ranged from

195.6 to 195.8Mb (Supplementary Figure S9), with the peak SNP

(5-195765640; P-value 1.10E-09) only 1.2 kb from the yellow stripe-

like2 (ysl2) gene (Zm00001d017427). The protein encoded by ysl2

has 58% and 63% sequence identity with AtYSL1 and AtYSL3

(Yordem et al. 2011) that transport metal-nicotianamine com-

plexes to various Arabidopsis plant tissues (Waters et al. 2006).

Also, three significant SNPs (P-values 7.72E-08 to 1.38E-07) within

this gene were in moderately strong LD (mean r2 of 0.39) with the

peak SNP.

Clarification of association signals to identify the
largest-effect loci
The MLMM approach, which helps resolve complex association

signals, selected one or more SNPs for Cu, Mn, Mo, Ni, and Zn,

but none for the presumably weaker signals of the other six

elements (Supplementary Table S11). The top one or two most

significant peak SNP markers that had been detected with the

Figure 3 A regional Manhattan plot of locus 2. Scatter plot of association
results from a mixed model analysis of B grain concentration and
linkage disequilibrium (LD) estimates (r2) for a genomic region that
contains the peak SNP (3-128693026) at locus 2. Each vertical line
represents the �log10 P-value of a SNP. Triangles are the r2 values of each
SNP relative to the peak SNP (indicated in red) at 128,693,026bp (B73
RefGen_v4) on chromosome 3. The red horizontal dashed line indicates
the �log10 P-value of the least statistically significant SNP at a genome-
wide false discovery rate of 5%. The yellow vertical line indicates
the genomic position of the rotten ear2 (rte2) gene Zm00001d041590.
The open triangles indicate SNPs that are within the candidate gene.
The light blue rectangle demarcates the 6 100 kb candidate gene search
space surrounding the peak SNP.

Figure 4 A regional Manhattan plot of locus 17. Scatter plot of
association results from a mixed model analysis of Ni grain
concentration and linkage disequilibrium (LD) estimates (r2) for a
genomic region that contains the peak SNP (1-262893725) at locus 17.
Each vertical line represents the �log10 P-value of a SNP. Triangles are
the r2 values of each SNP relative to the peak SNP (indicated in red) at
262,893,725 bp (B73 RefGen_v4) on chromosome 1. The red horizontal
dashed line indicates the �log10 P-value of the least statistically
significant SNP at a genome-wide false discovery rate of 5%. The yellow
vertical line indicates the genomic position of the iron-regulated
transporter1 (irt1) gene Zm00001d033446. The open triangles indicate
SNPs that are within the candidate gene. The light blue rectangle
demarcates the 6 100 kb candidate gene search space surrounding the
peak SNP.
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mixed linear model in GAPIT were selected by the MLMM for Cu

(locus 7; MT), Mn (locus 10; NRAMP), Mo (locus 12; mo1), Ni (locus

17; irt1), and Zn (locus 32, ysl2; locus 33, nas5). Furthermore, the

MLMM had selected an additional two SNPs, 9-1875785 (locus 29)

and 9-745061 (locus 28), for Ni. When a conditional mixed linear

model analysis was conducted separately for Cu, Mn, Mo, Ni, and

Zn with their respective MLMM-selected SNPs as covariates, there

were no remaining significant SNPs at a genome-wide 5% FDR

(Supplementary Figure S10). This suggests the MLMM had identi-

fied and conditional models had accounted for the major loci

contributing to phenotypic variation.

Comparison of genetic mapping results
We assessed the findings of our study through a comparison in-

volving the JL-QTL analysis and GWAS results of these elemental

grain phenotypes in the U.S. maize NAM panel (Supplementary

Tables S6 and S7) (Ziegler et al. 2017). Of the identified candidate

genes, rte2 and irt1 were novel associations, whereas the other

seven candidate genes were coincident with NAM JL-QTL (Ziegler

et al. 2017). However, cap1, mo1, Zm00001d011063 (MT),

Zm00001d030846 (NRAMP), nas5 for Zn, and ysl2 were distant

from their respective NAM GWAS peak variants within JL-QTL

support intervals (average: �1.68Mb; range: 0.356–4.67Mb),

whereas nas5 for Fe and Zm00001d042939 (MTP) were 126.9 and

0.203 kb, respectively, from their closest peak NAM GWAS vari-

ant. The joint consideration of GWAS results suggests that the

large-effect loci associated with natural variation for the six-

grain elements in the NAM panel were all resolved to the level of

highly probable causal genes in the Ames panel.

Whole-genome prediction
We evaluated the predictive ability of WGP for the 11 elemental

phenotypes with two models that have different assumptions

about the distribution of underlying genetic effects, BRR and

BayesB (Habier et al. 2011; Pérez and de los Campos 2014). On av-

erage, BRR and BayesB had nearly identical prediction abilities of

0.45 and 0.46, respectively, across the 11 phenotypes (Table 2). As

expected, given the results of Combs and Bernardo (2013), the

predictive abilities of both WGP models were strongly correlated

with the heritabilities of all phenotypes (BRR, r¼ 0.66, P-value <

0.05; BayesB, r¼ 0.65, P-value < 0.05). While the predictive abili-

ties from both models were essentially equivalent for most

phenotypes, the predictive abilities of Ni, Mo, and Cu increased

by 10.42%, 4.00%, and 3.92%, respectively, with BayesB relative

to BRR.

Discussion

Elemental homeostasis is critically important, with prolonged de-

ficiencies or toxicities in essential elements negatively affecting

plants (Marschner 2011). To date, the identification of causal

genes via GWAS has mostly centered on elemental levels in roots

and shoots for model and crop plant species (Huang and Salt

2016; Yang et al. 2018), thus the prioritization of candidate genes

contributing to elemental accumulation in grain of staple crops

remains an important pursuit. To this end, we conducted GWAS

on the concentrations of 11 elements in grain from �2,000 lines

of the maize Ames panel imputed with �7.7 million SNP markers.

By leveraging the tremendous genetic diversity and rapid intra-

genic LD decay of this powerful genetic resource, we identified

nine candidate genes encoding proteins with functions relevant

to the accumulation of elements in maize grain. We also demon-

strated moderate prediction abilities for the 11 elements with

two different WGP models, which is especially relevant for Fe and

Zn biofortification of maize grain (Welch and Graham 2002).

Novel loci associate with B and Ni
We detected novel associations of rte2 and irt1 with levels of B

and Ni in maize grain, respectively. The rte2 gene, coding for a B

efflux transporter, is one of six members of a small gene family

(rte1-6) (Chatterjee et al. 2017). Even though the duplicated rte1

and rte2 genes were reported to have contrasting tissue-specific

expression patterns across maize reproductive and root tissues, it

was also shown that they work in concert to provide B for maize

plants growing in B-depleted soils (Chatterjee et al. 2017). It is pos-

sible that rte1 (maize1 subgenome) and rte2 (maize2 subgenome)

functionally diverged following the most recent tetraploidization

event of the maize genome (Schnable et al. 2011), potentially

explaining why not even a very weak association signal was

detected with B at rte1. Given that rte2 has high sequence similar-

ity to the class I B transporters of Arabidopsis and rice (Miwa et al.

2006; Nakagawa et al. 2007; Miwa and Fujiwara 2010; Chatterjee

et al. 2014, 2017), we hypothesize in our study that rte2 had an in-

direct involvement in the accumulation of B in grain by playing a

role in xylem loading of B.

The irt1 gene, which underpinned an association signal for Ni

on chromosome 1, is in the maize gene family with sequence

similarity to the ZIP family of transporters (Mondal et al. 2014)

that transport Fe, Zn, and other divalent metal ions in other

plants (Eide et al. 1996; Grotz et al. 1998; Korshunova et al. 1999; Li

et al. 2019). AtIRT1, which is 55% identical in amino acid sequence

to ZmIRT1 (Mondal et al. 2014), is a plasma membrane protein

Table 2 Most plausible candidate genes identified through a genome-wide association study of 11 elemental phenotypes in grain from
the Ames panel

Phenotype Locus

number

SNP IDa
P-value FDR-adjusted

P-value

SNP R
2b Gene ID Annotated

gene function

B 2 3-128693026 6.47E-08 4.59E-02 0.01 Zm00001d041590 B transporter (rte2)
Cu 6 8-136857539 9.10E-15 2.34E-08 0.03 Zm00001d011013 Ca transporter (cap1)
Cu 7 8-137939692 4.69E-24 3.62E-17 0.04 Zm00001d011063 Metal chelator (MT)
Mn 10 1-162962818 3.61E-12 2.79E-05 0.02 Zm00001d030846 Metal transporter (NRAMP)
Mn 11 3-184559931 2.11E-07 1.71E-02 0.01 Zm00001d042939 Metal transporter (MTP)
Mo 12 1-248672716 5.58E-24 4.31E-17 0.04 Zm00001d033053 Mo transporter (MOT; mo1)
Ni 17 1-262893725 1.98E-26 6.75E-20 0.05 Zm00001d033446 Metal transporter (ZIP; irt1)
Zn 32 5-195765640 1.10E-09 8.51E-03 0.02 Zm00001d017427 Metal-NA transporter (YSL; ysl2)
Zn 33 7-179962589 8.67E-09 1.75E-02 0.01 Zm00001d022557 Metal chelator (NAS; nas5)
Fe 7-180077496 1.06E-07 1.53E-01 0.01 Zm00001d022557 Metal chelator (NAS; nas5)

a SNP ID nomenclature consists of chromosome number, followed by physical position (bp) in B73 RefGen_v4 coordinates
b SNP R2 is calculated as follows: R2 likelihood ratio of model with SNP minus R2 likelihood ratio of model without SNP (Supplementary Table S8)
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demonstrated to be critical for Fe2þ uptake inside Arabidopsis

root epidermal cells (Vert et al. 2002), but also showed to have en-

hanced activity as a transporter of Ni2þ in Arabidopsis roots un-

der Ni excess conditions (Nishida et al. 2011, 2015). Li et al. (2015)

reported that overexpression of Zmirt1 in Arabidopsis produced

higher concentrations of Fe and Zn in roots and seeds. Therefore,

we speculate that irt1 contributed to Ni accumulation in maize

grain as a metal transporter with a yet to be characterized

broader range of specificity that includes Ni2þ.

Higher mapping resolution afforded by the Ames
panel
The other seven identified candidate genes co-localized with

NAM JL-QTL and GWAS signals. With the exception of

Zm00001d042939 (MTP), they were more finely mapped in the

Ames panel than in the U.S. NAM panel. The proteins with the

highest identity (80% and 93%) to Zm00001d042939 in

Arabidopsis (AtMTP11) and rice (OsMTP11) (Supplementary Table

S5) are Golgi-localized Mn transporters involved in conferral of

Mn tolerance by a mechanism hypothesized to involve one or

both of vesicular transport to the vacuole or extracellular secre-

tion (Delhaize et al. 2007; Peiter et al. 2007; Farthing et al. 2017;

Zhang and Liu 2017; Tsunemitsu et al. 2018). Notably, through a

GWAS in a sorghum association panel, a syntenic ortholog

(Sobic.003G349200) of Zm00001d042939 (Y. Zhang et al. 2017) was

implicated in the genetic control of Mn grain levels (Shakoor et al.

2016). Although different in cellular function and localization

compared to MTP11, Zm00001d030846 (NRAMP), a member of a

largely uncharacterized maize gene family (Jin et al. 2015), enco-

des a protein closely related to the multispecific metal transport-

ers AtNRAMP3 and AtNRAMP4 in Arabidopsis. In addition to their

roles as vacuolar iron effluxers, these two NRAMP proteins were

shown by Lanquar et al. (2005, 2010) to be functionally redundant

vacuolar membrane-localized transporters involved in the export

of Mn to the cytosol from the vacuole of mature leaf mesophyll

cells in Arabidopsis.

The mo1 gene, inferred to be orthologous to MOT1 proteins in

Arabidopsis and rice (Supplementary Table S5), underlied the Mo

association signal on chromosome 1. AtMOT1 was the first cloned

and characterized Mo-specific transporter in plants (Tomatsu

et al. 2007; Baxter et al. 2008) and hypothesized to regulate Mo

content (Baxter et al. 2008). Complementation studies with

Arabidopsis ecotypes also showed that natural allelic variants of

AtMOT1 altered shoot Mo content (Baxter et al. 2008).

Comparatively, a QTL identified for the genetic control of shoot

and grain Mo concentration in a rice mapping population was

fine mapped to a molybdate transporter (OsMOT1; 1), with the Mo

transport activity of this causal gene confirmed via genetic and

transgenic complementation (Huang et al. 2019). Furthermore,

Huang et al. (2019) showed that a knockout of OsMOT1; 1, a gene

shown to have strong root expression, produced lower levels of

Mo in grain, resulting likely from lower root-to-shoot transloca-

tion of Mo.

The stronger of two association signals for Cu on chromosome

8 was underlain by the candidate Zm00001d011063, which

encodes an uncharacterized protein possessing weak amino acid

sequence similarity to Arabidopsis MTs (Supplementary Table

S5) that are involved in homeostasis and remobilization of

Cu (Benatti et al. 2014). Although not yet implicated in Cu

accumulation, the rice protein with the highest sequence identity

to Zm00001d011063, OSMT2b (also named as OsMT-I-2c)

(Supplementary Table S5), had altered transcript abundance in

rice shoot and root seedling tissues after Cu treatment (Yuan

et al. 2008). The second genetically distinct signal coincided with

cap1, a gene that codes for a calmodulin regulated P-type Ca2þ-

ATPase (Subbaiah and Sachs 2000). The CAP1 protein is 80% iden-

tical in sequence to ECA1 in Arabidopsis (Supplementary Table

S5), which is an ER-localized P2A-type Ca2þ-ATPase reported to

transport Ca2þ, Mn2þ, and potentially other divalent cations in

root cells (Wu et al. 2002). This is a somewhat unexpected but still

plausible finding, given that heavy metal P1B-type ATPase sub-

family members from Arabidopsis and rice have demonstrated

Cu transport activity (Hirayama et al. 1999; Andrés-Colás et al.

2006; Kobayashi et al. 2008; Deng et al. 2013; Huang et al. 2016).

A key step toward the biofortification of maize
grain
Suggestive of a pleiotropic locus for two correlated phenotypes,

nas5 underpinned the coincident association signals for Fe and

Zn on chromosome 7. This gene family member encodes a class

II NAS putatively responsible for synthesizing nicotianamine–a

divalent metal chelator responsible for the internal transport of

trace metals including Fe and Zn (Reviewed in Curie et al. 2009;

Schuler et al. 2012). Nicotianamine is also a precursor for produc-

ing mugineic acid family phytosiderophores exuded by roots of

graminaceous plants to facilitate Fe uptake (reviewed in Curie

et al. 2009; Swamy et al. 2016). In particular, activation tagging of

OsNAS3, the rice protein with the highest sequence identity to

nas5 (Zhou et al. 2013), resulted in higher nicotianamine levels

that led to increased Fe and Zn in rice grain (Lee et al. 2009). In

maize, nas5 was found to be strongly expressed in stems and in-

duced under excessive Fe and Zn conditions, suggesting its more

localized involvement in homeostasis and transport, but this has

yet to be extensively characterized (Zhou et al. 2013).

Nonetheless, the identification of SNPs tagging the low-

frequency nas5 alleles associated with increasing Fe or Zn grain

levels is a key step toward facilitating biofortification of tropical

maize. Many people with deficiencies for both of these elements

subsist predominantly on maize grain in developing nations

(Welch 2002; Welch and Graham 2004).

The ysl2 gene associated with Zn on chromosome 5 encodes a

protein with amino acid sequence similarity to the YSL family of

transporters that uptake metal-phytosiderophores or metal-

nicotianamine complexes (reviewed in Curie et al. 2009). Of the

three Arabidopsis proteins (AtYSL1-3) with high sequence iden-

tity to ysl2, AtYSL1 and AtYSL3 (Yordem et al. 2011) were both im-

plicated in the remobilization of Zn from senescing leaves as a

complex with nicotianamine to developing seeds (Waters et al.

2006). Recently, Zang et al. (2020) showed that ZmYSL2 is a

metal-nicotianamine transporter involved in the transport of Fe

from the endosperm to embryo in the developing maize grain,

but importantly they also implicated ZmYSL2 in the transport of

Zn. Interestingly, the ys1 gene that encodes a Fe(III)-PS trans-

porter (Curie et al. 2001), the gene family member most closely re-

lated to ysl2 (Yordem et al. 2011), was �68kb from the peak SNP

for Zn on maize chromosome 5, but has contradictory support as

a key contributor for Zn uptake or allocation (Wiren et al. 1996;

Roberts et al. 2004; Schaaf et al. 2004; Chan-Rodriguez and Walker

2018). Therefore, ys1 and ysl2 merit joint consideration in future

fine mapping and mutagenesis studies to more conclusively

determine their independent or collective contribution to Zn

accumulation in grain.

Generalizability of genetic mapping results
Importantly, our GWAS findings for all 11 elemental traits may

not be generalizable beyond the Ames panel itself or where it was
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grown. As an example, the number of JL-QTL detected by Ziegler

et al. (2017) for each of the 11 elemental grain phenotypes ranged

from 3 (B) to 17 (Mn) with varied effect sizes (R2
¼ 0.8 to 37.6%) in

the U.S. NAM panel that affords higher statistical power (Yu et al.

2008). The findings of Ziegler et al. (2017) include a total of 11, 5,

12, and 11 JL-QTL identified for Ca, K, Mg, and P, respectively,

which are the four elements that lacked significant associations

in the Ames panel (Supplementary Table S6). Although these

detected genetic differences could be attributed to environmental

factors that influence elemental accumulation in grain (Ziegler

et al. 2017), it is also possible that in the Ames panel the genetic

architecture for each of these high concentration macroelements

is predominated by rare variants of weak to modest effect, thus

limiting their detectability even with a high density of SNP

markers used in GWAS. Despite the genetic differences between

association panels for macronutrients, seven of the nine candi-

date causal genes identified for micronutrients in the Ames panel

co-localized with NAM JL-QTL and GWAS signals, thus these ge-

netic signals are more likely to be reproduced in further indepen-

dent genetic mapping panels and environments.

Informing whole-genome prediction with genetic
mapping results
We conducted WGP of grain elemental phenotypes in maize,

resulting in, on average, moderate predictive abilities from BRR

(0.45) and BayesB (0.46) across all phenotypes that are compara-

ble to those obtained for elemental phenotypes in wheat grain

(Velu et al. 2016; Manickavelu et al. 2017; Alomari et al. 2018) and

for Zn in maize grain (Guo et al. 2020; Mageto et al. 2020). For Ni,

Mo, and Cu, the BayesB model that allows for a few of many

genome-wide markers to have large effects (Meuwissen et al.

2001; Gianola et al. 2009; de Los Campos et al. 2013) modestly out-

performed (3.92–10.42%; Table 2) the BRR model with homoge-

neous shrinkage across all markers (Gianola 2013; de Los Campos

et al. 2013). These three elements had the highest number of asso-

ciated loci (5–15) and the largest amount of phenotypic variation

explained by peak SNPs (3–5%) tagging a candidate causal gene

(Figure 2; Table 3), implying that BayesB could better fit the ge-

netic architecture of Ni, Mo, and Cu (de Los Campos et al. 2013).

Taken together, our GWAS-informed WGP results provide a foun-

dational framework for exploring the additional modeling of

identified large-effect loci when conducting genomic selection of

elemental grain phenotypes in maize breeding populations

(Bernardo 2014).

Conclusions

We found 11 elemental grain phenotypes to be moderately herita-

ble in the maize Ames panel, with minor but significant genotype-

by-year interaction. The novel associations of rte2 and irt1 with B

and Ni, respectively, in combination with enhanced pinpointing

of seven candidate casual genes for Cu, Fe, Mn, Mo, and/or Zn illus-

trate the high level of statistical power and mapping resolution con-

ferred by the Ames panel for genetically dissecting complex trait

variation in maize. However, not all detected GWAS signals were

resolved down to an individual gene with a definitive role in metal

transport or chelation, thus potentially revealing novel candidate

genes that could be further assessed for function in mutagenesis

experiments. In addition, we identified two loci (nas5 and ysl2) that

could be leveraged with marker-based breeding approaches to

increase Zn levels inmaize grain. Notably, the nas5 gene also associ-

ated with the concentration of Fe in grain, thus helping to enable

multi-trait selection (Jia and Jannink 2012) for developing bioforti-

fied maize varieties to help combat dietary Fe and Zn deficiencies

that collectively affect more than 2 billion people worldwide

(Viteri 1998; Prasad 2014). Furthermore, the moderate WGP predic-

tion accuracies for Zn and Fe concentrations imply that both

grain phenotypes should respond favorably to genomic selection

approaches. Overall, our work has provided new insights into the

genetic architecture of elemental accumulation in maize grain and

strengthened the knowledge base needed to accelerate genomics-

assisted breeding efforts for increased grain concentrations of Zn

and Fe in maize breeding populations.

Data availability

The raw genotypes of GBS SNPs (ZeaGBSv27_public

Samples_raw_AGPv4-181023.h5) are available on CyVerse (at

http://datacommons.cyverse.org/browse/iplant/home/shared/

panzea/genotypes/GBS/v27). The maize HapMap 3.2.1 unim-

puted datasets (hmp321_agpv4_chrx.vcf.gz, where x is 1 to 10)

are available on CyVerse (at https://datacommons.cyverse.org/

browse/iplant/home/shared/panzea/hapmap3/hmp321/unim

puted/uplifted_APGv4/). The untransformed and transformed

BLUP values of the phenotypes are provided in Supplementary

Tables S1 and S3, respectively. Supplemental Material available

at figshare: https://doi.org/10.25387/g3.13644098.
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Table 3 Predictive abilities of 11 elemental grain phenotypes of
the Ames panel from Bayesian ridge regression (BRR) and BayesB
models

Phenotype BRR BayesB

Predictive

ability

Std.

Dev.

Predictive

ability

Std.

Dev.

B 0.33 0.01 0.33 0.01
Ca 0.47 0.01 0.47 0.01
Cu 0.51 0.01 0.53 0.01
Fe 0.46 0.01 0.46 0.01
K 0.34 0.01 0.34 0.01
Mg 0.45 0.01 0.45 0.01
Mn 0.50 0.01 0.50 0.01
Mo 0.50 0.01 0.52 0.01
Ni 0.48 0.01 0.53 0.01
P 0.40 0.01 0.40 0.01
Zn 0.50 0.01 0.50 0.01
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