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Abstract. The hippocampus is a brain structure that is involved in several cog-

nitive functions such as memory and learning. It is a structure of grate interest 

due to its relationship to neurodegenerative processes such as the Alzheimer's 

disease. In this work, we propose a novel multispectral multiatlas patch-based 

method to automatically segment hippocampus subfields using high resolution 

T1-weighted and T2-weighted magnetic resonance images (MRI). The pro-

posed method works well also on standard resolution images after superresolu-

tion and consistently performs better than monospectral version. Finally, the 

proposed method was compared with similar state-of-the-art methods showing 

better results in terms of both accuracy and efficiency. 

1 Introduction 

The hippocampus (HC) is a complex gray matter structure of the brain located un-

der the surface of each temporal lobe. It is involved in many cognitive functions such 

as memory and spatial reasoning [1]. It presents changes in its structure across the 

lifespan related to normal aging [2] as well as to several dysfunctions like epilepsy 

[3], schizophrenia [4] and Alzheimer's disease [5]. 

The HC is a three dimensional curved structure that has been linked to the sea 

horse. The hippocampus is composed of multiple subfields that can be divided into 

sections called the dentate gyrus, the cornu ammonis (CA) and the subiculum. The 

CA is also subdivided in sub-sections CA1, CA2, CA3, CA4, layers alveus, stratum 

oriens, stratum pyramidale, stratum radiatum, stratum lancosum and stratum molecu-

lare. These layers present a high neuron density and are very compact so high resolu-

tion imaging is required to identify them. 

Due to this morphological complexity and limitations of MR image resolution, 

most of past studies have been performed over the whole hippocampus volume by 

segmenting it as a single object [6]. These studies showed that the whole hippocam-

pus volume is a good biomarker for Alzheimer's disease [7]. However, hippocampus 

subfields have shown to be affected differently by AD and normal aging in ex-vivo 

studies [5]. 



Although high resolution MRI is becoming more accessible in certain scenarios, 

these data have been traditionally manually segmented. However, manual segmenta-

tion is a highly time consuming procedure which requires trained raters specially for 

complex structures such as hippocampus subfields. Taking about 50 hours per case it 

is impossible to apply manual delineation to large cohort studies. 

To avoid this problem automated solutions have been developed in the last years. 

The method proposed by Chakravarty et al. consists of a multiatlas method based on 

the estimation of several non-linear deformations and a label fusion step [8]. Also 

using a multiatlas approach Yushkevich et al. proposed a method where a multiatlas 

approach is combined with a similarity-weighted voting and a learning-based label 

bias correction [9]. In a different manner, Van Leemput et al. used a statistical model 

of MR image formation around the hippocampus to produce automatic segmentation 

[10]. Recently, Iglesias et al. pursued this work and replaced the model by a more 

accurate atlas generated using ultra-high resolution ex-vivo MR images [11]. 

In this work we propose a fast and accurate multispectral multiatlas patch-based 

method to segment the hippocampus subfields according to the atlas presented in [12]. 

The proposed method is an extension of a recently proposed segmentation algorithm 

called OPAL [13]. This extension integrates  multispectral similarity estimation and a 

novel non-local regularization post-processing step. 

2 Material and Methods 

2.1 Image data 

In this paper, we used a High Resolution (HR) dataset composed of 5 cases with T1-

weighted and T2-weighted images to construct a library of manually labeled cases. 

The HR images are publicly available at the CoBrALab website     

(http://cobralab.ca/atlases). Both, the HR images used as input and the manually la-

beled validation dataset are the same as those used in Pipitone et al. [14]. 

To create the HR atlases MR images were taken from 5 healthy volunteers (2 

males, 3 females, aged 29–57).  T1- and T2-weighted images were acquired for all 

subjects on a 3 T GE Discovery MR 750 system (General Electric, Milwaukee, WI) 

using an 8-channel head coil. High-resolution T1-weighted images were acquired 

using the 3D inversion-prepared fast spoiled gradient-recalled echo acquisition, 

FSPGR-BRAVO, in a scan time of ~20 min, with the following parameters: 

TE/TR=4.3 ms/9.2 ms, TI=650 ms, α=8°, 2-NEX, FOV= 22 cm, slice thickness=0.6 

mm, 384×384 in-plane steps for an approximately isotropic resolution of 0.6 mm 

dimension voxels. High-resolution T2-weighted images were acquired using the 3D 

fast spin echo acquisition, FSE-CUBE, in a scan time of ~16 min, with the following 

parameters: TE/TR=95.3 ms/2500 ms, ETL=100 ms, 2NEX, FOV=22 cm, slice thick-

ness=0.6 mm, 384×384 in-plane steps for approximately isotropic 0.6 mm dimension 

voxels. Reconstruction filters, ZIPX2 and ZIP512, were also used resulting in a final 

isotropic 0.3 mm dimension voxels. All 2-NEX scans were then repeated three times 

and averaged for a total of 6-NEX. The hippocampi and each of their subfields were 



segmented manually by an expert rater including 5 labels (CA1, CA2/3, CA4/dentate 

gyrus, stratum radiatum/stratum lacunosum/stratum moleculare (SR/SL/SM), and 

subiculum).  For more details about the labeling protocol please read the original 

paper [12]. 

Figure 1: Example of an HR MRI case. Figure shows T1w and T2w images and its 

corresponding manual segmentation. 

2.2 Preprocessing 

All the images (T1 and T2) were first filtered with a spatially adaptive non-local 

means filter [20] and inhomogeneity corrected using the N4 method [21]. Later, they 

were linearly registered to the Montreal Neurological Institute space (MNI) using the 

ANTS package [15] and the MNI152 template. Next, we left-right flipped the images 

and cropped them to the right hippocampus area so we have 10 right hippocampus 

crops. Note that after considering the flipped versions of the images only one of both 

hippocampi has to be considered otherwise we would have the same hippocampi 

twice. After that, we non-linearly registered the cropped images to the cropped 

MNI152 template to better match the hippocampus anatomy. Finally, we normalized 

the images to have the same mean and standard deviation as the MNI152 template 

and a sharpening operation (by substracting the laplacian of the image) was applied to 

the images to minimize the blurring introduced by the interpolation during the non-

linear registration process.  

2.3 Library 

Multiatlas based segmentation methods are based on the use of a library of manu-

ally labeled cases. In our case, to construct the library, we processed the 5 HR images 

(T1 and T2 versions) as described in the previous section to finally have a 10 hippo-

campi library. 

2.4 Labeling and regularization 

 

Multispectral Optimized PatchMatch (MOPAL) 

 



One of the most time consuming parts of non-local label fusion technique is the 

patch matching step. To reduce the computational burden of this process, we used an 

adaptation of the OPAL method [13] that is a 3D adaptation of the patchmatch tech-

nique proposed by Barnes et al. [16].. For more details, see the original OPAL paper 

[13] 

In the original OPAL method, the probability maps from 2 different scales (patch 

sizes) were mixed using a late fusion scheme with equal weights for both scales. In 

this work, we learn a label dependent mixing coefficient to balance the different scale 

contributions per label using a gradient descend technique. Moreover, the maps re-

turned by OPAL consists of a probability map for each label that is being considered. 

These maps are the processed to obtain the final segmentation by choosing the label 

with maximum probability for each voxel. When using a multiscale approach two 

probability maps are obtained for each label (one for patch size). Therefore a combi-

nation is required to generate a single probability map for each label. This step was 

done using a global mixing coefficient giving equal weight to every label. Given that 

different labels have different subjacent anatomy it is possible that different structures 

perform obtain better segmentation from one benefit more from one scale than the 

other so we calculated an individual mixing coefficient for every label to maximize 

the segmentation accuracy. We use multispectral distance computation taking into 

account information derived from T1 and T2 MRI in order to compute patch corre-

spondences in a more robust manner. OPAL estimates the quality of a match by com-

puting a distance as the sum of squared differences (SSD). This proposed multispec-

tral distance in a balanced sum of SSDs (one per channel) that we called multispectral 

sum of squared differences (MSSD): 
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Where A and B represent the target image for T1 and T2, A’ and B’ represent the 

libraries for T1 and T2 repectively, P(Ai) ∈ A is a patch form image A centered on the 

coordinates i, P(Bj) ∈ B is a patch from image B centered on the coordinates j, λ is a 

coefficient required to balance the different distance contributions and M is the num-

ber of voxels per patch. 

 

Label regularization 

 

Automatic segmentations produced by MOPAL are performed at patch. Even thou 

patchwise segmentation implies regularization it is not sufficient to produce smooth 

contours.. Since hippocampus subfields are regular and layered structures, some extra 

regularization may help to produce feasible segmentations. To this end, the probabil-

ity map (resulting from the combination of both considered scales) is regularized 

using a non-local means filter [17]. The final segmentation is generated by calculation 

the maximum probability for each voxel for all 5 structures probability maps. 



3 Experiments and results 

In this section a set of experiments are presented to show the performance of the 

method and the effect of the proposed modifications. All the experiments have been 

done by processing the cases from the library described before in a leave-two-out 

fashion by removing the case being processed and its mirror counterpart (thus using 

only a library of 8 images instead of 10).  

3.1 MOPAL parameters 

OPAL [13] was developed and evaluated for the segmentation of the whole hippo-

campus, so an optimization of the method parameters was performed. To measure the 

accuracy we used the DICE [18] coefficient for all the 5 structures. In all the experi-

ments, we set the patch sizes to 3x3x3 and 9x9x9 voxels, for each scale respectively. 

The restricted search area was set to 7x7x7 voxels. The number of independent Patch 

Matches was set to 32 and the number of iterations of OPAL to 4. The 6 scale mixing 

coefficients (5 structures + background) (alfa=[0.4711, 0.3443, 0.3826, 0.3900, 

0.8439, 0.7715]) and MSSD balance parameters (λ=0.9) were empirically estimated.  

The multispectral proposed method was compared with the corresponding mono-

modal version (for both T1 and T2 MRI) using the same parameters with exception of 

λ. In Table 1, it can be observed how the T2 based results are better than the corre-

sponding T1 based results. This result is in line with results of previous studies on this 

topic (ref??) . However, T2 based segmentation seems to be worse than T1 based for 

CA2/CA3 structure while multispectral based segmentation benefits from both T1 and 

T2 based segmentation and performs well for all the structures.      

 

Table 1: Mean DICE and standard deviation for each structure segmentation using 

high resolution T1, T2 and Multispectral respectively. Best results in bold. Significant 

differences between T1 and T1+T2 are marked with * and between T2 and T1+T2 are 

marked with † (p< 0.05). 

Structure T1 HR T2 HR T1+T2 HR 

Average 0.6253 ± 0.0926 0.6762 ± 0.0716 0.6957 ± 0.0651* 

CA1 0.6752 ± 0.0254 0.7304 ± 0.0464 0.7439 ± 0.0298* 

CA2\CA3 0.6865 ± 0.0367 0.6468 ± 0.0642 0.7015 ± 0.0398† 

CA4\DG 0.7129 ± 0.0319 0.7709 ± 0.0323 0.7710 ± 0.0255* 

SR\SL\SM 0.5085 ± 0.0960 0.5994 ± 0.0531 0.6145 ± 0.0632* 

Subiculum 0.5434 ± 0.0473 0.6336 ± 0.0485 0.6476 ± 0.0406* 

Hippocampus 0.8782 ± 0.0174 0.8880 ± 0.0171 0.9011 ± 0.0097 

3.2 Label regularization 

We performed also an experiment to measure the effect of the label regularization 

on the segmentation results. We optimized the non-local means filter parameters 

(patch size=3x3x3, search volume= 7x7x7 and the smoothing parameter h=0.02). In 



Table 2 improvements can be seen in almost every structure compared to Table 1.In 

Figure 2 an example of the segmentation results is presented. 

 

Table2: Mean DICE and standard deviation for each structure segmentation using 

high resolution T1, T2 and Multispectral respectively. Values showing improvement 

with the regularization in bold. 

Structure T1 HR T2 HR T1+T2 HR 

Average 0.6286 ± 0.0930 0.6775 ± 0.0704 0.6985 ± 0.0657 

CA1 0.6788 ± 0.0252 0.7314 ± 0.0477 0.7487 ± 0.0287 

CA2\CA3 0.6901 ± 0.0372 0.6491 ± 0.0638 0.7058 ± 0.0381 

CA4\DG 0.7164 ± 0.0319 0.7705 ± 0.0330 0.7730 ± 0.0257 

SR\SL\SM 0.5102 ± 0.0971 0.6032 ± 0.0558 0.6176 ± 0.0653 

Subiculum 0.5476 ± 0.0483 0.6332 ± 0.0488 0.6473 ± 0.0436 

Hippocampus 0.8806 ± 0.0178 0.8890 ± 0.0172 0.9032 ± 0.0104 

3.3 Standard resolution vs High resolution 

As high resolution MR images are not widely available, especially in clinical envi-

ronments, we analyzed how the proposed method performs on standard resolution 

images. For this purpose, we reduced de resolution of the HR images by a factor 2 by 

convolving the HR images with a 2x2x2 boxcar kernel and then decimating the result-

ing image by a factor 2. As the library used in our method is located in the 0.5 mm 

resolution MNI space, the obtained down-sampled images were upsampled by a fac-

tor 2 using BSpline interpolation and a superresolution method called Local Adaptive 

SR (LASR) [19]. Results are shown in Table 3. As can be noticed, segmentations 

performed on images up-sampled with SR were better than using interpolation. More-

over, this experiment shows that the proposed method is able to produce competitive 

results when using standard resolution images.    

 

Table 3: Mean DICE and standard deviation for each structure segmentation using 

the high resolution library and applying BSpline interpolation and LASR to the previ-

ously downsampled image to be segmented. Segmentation produced using the multi-

spectral version of the method. Best results in bold. 

Structure BSpline LASR 

Average 0.6696 ± 0.0738 0.6884 ± 0.0682 

CA1 0.7247 ± 0.0382 0.7420 ± 0.0286 

CA2\CA3 0.6878 ± 0.0516 0.7010 ± 0.0437 

CA4\DG 0.7498 ± 0.0358 0.7622 ± 0.0291 

SR\SL\SM 0.5834 ± 0.0688 0.6060 ± 0.0656 

Subiculum 0.6023 ± 0.0495 0.6308 ± 0.0442 

Hippocampus 0.9001 ± 0.0102 0.9042 ± 0.0095 



3.4 Comparison 

We compared our method with another recent method applied to hippocampus 

segmentation using the same number of structures and labeling protocol. The com-

pared method is called MAGeT [8] and is lies on the estimation of a large number of 

non-linear deformations followed by a majority vote label fusion. Table 4 shows that 

the proposed method obtained higher DICE coefficients for all the structures. In terms 

of computation efficiency our method requires only a few minutes while MAGeT has 

an execution time of several ours per case. It has to be noted that MAGET results are 

computed in MNI space at 0.9 mm resolution while MOPAL results are computed at 

0.5 mm resolution. 

 

Table 4: Mean DICE for each structure. Segmentation performed by MAGeT and the 

proposed method. Best results in bold. 

Structure MAGET(0.9mm) Proposed (0.5mm) 

Average 0.526 0.6985 

CA1 0.563 0.7487 

CA2\CA3 0.412 0.7058 

CA4\DG 0.647 0.7730 

SR\SL\SM 0.428 0.6176 

Subiculum 0.58 0.6473  

Hippocampus 0.816 0.9032 

4 Discussion 

In this paper we present a new hippocampus subfield segmentation method based 

on an extension of a recent method called OPAL. The proposed method achieves 

better segmentation results using an improved multiscale mixing strategy and espe-

cially a novel multispectral distance computation that enables to find better matches. 

Also, a post-processing step has been also added to regularize label probability maps 

The proposed method has been showed to perform well on standard resolution im-

ages, obtaining competitive on typical clinical data. This fact is of special importance 

because it will allow analyzing a large number of retrospective data. Finally, it has 

been shown that the proposed method compares well to another related state-of-art 

method obtaining better results in terms of both accuracy and reduced execution time.  
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